CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015 Certified

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS AUTONOMOUS SYLLABUS (2022-2023 and ONWARDS)

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

MISSION

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosenfields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR B.Sc Mathematics, B.Sc Physics, B.Sc Chemistry PROGRAMME

After completing a B.Sc., programme, a learner will be able to

PO NO.	On completion of B.Sc Mathematics / B.Sc Physics / B.Sc Chemistry
	Programme, the students will be able to
PO1	DOMAIN KNOWLEDGE
	Analyse, design and develop solutions by applying from fundamental concepts of
	basic sciences and expertise in discipline.
PO2	PROBLEM SOLVING
	Ability to think abstractly, to evaluate and concentrates effectively on problem-
	solving, as well as knowledge of global challenges.
PO3	CREATIVE THINKING AND TEAM WORK
	Develop prudent decision-making skills and mobility to work in teams to solve
	multifaceted problems.
PO4	EMPLOYABILITY
	Self-study acclimatize them to observe effective interactive practices for practical
	learning enabling them to be a successful science graduate.
PO5	LIFE LONG LEARNING
	Assure consistent improvement in the performance and arouse interest to pursue
	higher studies in premium institutions.

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc MATHEMATICS

PSO NO.	The Students of B.Sc Mathematics will be able to	POs Addressed
PSO1	Procure a precise understanding of the mathematical concepts.	PO1, PO3
PSO2	Excel by enhancing interpersonal skills, overcoming procedural challenges and intending career paths.	PO3, PO4
PSO3	Recognize, strengthen and analyse mathematical problems in order to acquire better conclusion.	PO4, PO5
PSO4	Manipulate numerical abilities across a variety of domains.	PO2, PO5
PSO5	Develop and desire to learn more about advanced mathematics and its applications.	PO5

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

PG AND RESEARCH DEPARTMENT OF MATHEMATICS B.Sc MATHEMATICS PROGRAMME STRUCTURE

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS-LOCF)

(For the candidates admitted from the Academic year 2022-2023 Onwards)

ter					Hrs.	ts	Exa	am		
Semester	Part	Course	Course Title	Course Code	Inst. Hrs. / week	Credits	Hrs.	Marl	KS	Total
Se	\mathbf{P}_{2}				In /	Ū	Η	Int	Ext	T.
			இக்கால இலக்கியம் Hindi Literature & Grammar – I	22ULT1 22ULH1						
	Ι			22ULS1	6	3	3	25	75	100
			Basic French – I	22ULF1						
	II	English Language Course – I (ELC)	Functional English for Effective Communication – I	22UE1	6	3	3	25	75	100
Ι		Core Course – I (CC)	Differential Calculus and Trigonometry	22UMA1CC1	5	4	3	25	75	100
	III	Core Course – II (CC)	Integral Calculus	22UMA1CC2	4	4	3	25	75	100
	111	First Allied Course – I (AC)	Mathematical Statistics I	22UMA1AC1	5	4	3	25	75	100
		First Allied Course – II (AP)	Mathematical Statistics (P)	22UMA1AC2P	2	2	3	40	60	100
	IVAbility Enhancement Compulsory Course-I (AECC)UGC Jeevan Kaushal- Universal Human Values22UGVE22								-	100
		,	Fotal		30	22				700
	Ι	Language Course-II (LC)	இடைக்கால இலக்கியமும், புதினமும் Hindi Literature &	22ULT2 22ULH2			3	25	75	
			Grammar – II Poetry, Textual Grammar	220LH2 22ULS2	5	3				100
		_	and Alankara Basic French – II	22ULF2						
	II	English Language Course – II (ELC)	Functional English for Effective Communication – II	22UE2	6	3	3	25	75	100
П		Core Course – III (CC)	Differential Equations and Laplace Transforms	22UMA2CC3	5	5	3	25	75	100
	III	Core Course – IV (CC)	Vector Calculus and Fourier Series	22UMA2CC4	4	4	3	25	75	100
		Core Practical –I (CP)	MATLAB Programming (P)	22UMA2CC1P	2	2	3	40	60	100
		First Allied Course – III (AC)	Mathematical Statistics II	22UMA2AC3	4	3	3	25	75	100
	IV	Ability Enhancement Compulsory Course-II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	-	100
		Ability Enhancement Compulsory Course-III (AECC)	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100
		Extra Credit Course	SWAYAM		As p	er UGC	Reco	mmenc	lation	
		Te	otal		30	23				800

	Ι	Language Course-III	காப்பியமும்,	22ULT3						
		(LC)	நாடகமும் Hindi Literature &	22ULH3					75	
			Grammar – III		5	3	3	25		100
			Prose, Textual Grammar and Vakyarachana	22ULS3						
			Intermediate French – I	22ULF3						
	Π	English Language Course – II (ELC)	Learning Grammar Through Literature – I	22UE3	6	3	3	25	75	100
	III	Core Course – V (CC)	Analytical Geometry (3D)	22UMA3CC5	4	4	3	25	75	100
III		Core Course – VI (CC)	Classical Algebra and Theory of Numbers	22UMA3CC6	5	5	3	25	75	100
		Second Allied Course – I (AC)	Python Programming	22UMA3AC4	5	4	3	25	75	100
		Second Allied Course–II (AP)	Python Programming (P)	22UMA3AC5P	3	2	3	40	60	100
		Generic Elective Course- I	Mathematics for	22UMA3GEC1						
	IV (GEC)		Competitive Examinations – I		2	2	3	25	75	100
			Basic Tamil-I	22ULC3BT1						
			Special Tamil-I	22ULC3ST1						
		Extra Credit Course	SWAYAM	As	per U	GC Recommendation				
			Total	30 23				700		

15 Days INTERNSHIP during Semester Holidays

	Ι	Language Course-IV (LC)	பண்டைய	22ULT4						
			இலக்கியமும்,							
			உரைநடையும்							
			Hindi Literature & Functional Hindi	22ULH4	6	3	3	25	75	100
			Drama, History of Drama Literature	22ULS4						
			Intermediate French - II	22ULF4						
	II	English Language Course – IV (ELC)	Learning Grammar Through Literature - II	22UE4	6	3	3	25	75	100
		Core Course – VII(CC)	Sequences and Series	22UMA4CC7	5	5	3	25	75	100
	III	Core Course – VIII(CC)	Methods in Numerical Analysis 22UMA4CC8		5	5	3	25	75	100
IV		Second AlliedCourse- III (AC)	Internet of Things	22UMA4AC6	4	3	3	25	75	100
IV		Internship	Internship	22UMA4INT	-	2	-	-	-	100
		Generic Elective Course- II (GEC)	Mathematics for Competitive Examinations – II	22UMA4GEC2	2	2	3	25	75	100
	IV		Basic Tamil-II	22ULC4BT2						
			Special Tamil-II	22ULC4ST2						
		Skill Enhancement Course – I	Statistical Tools and	22UMA4SEC1P						
		(SEC)	Techniques - R		2	2	3	40	60	100
	E	ra Credit Course	Programming (P)		,			Daat		
	EXI	tra Credit Course	SWAYAM		F	as per	UGC	Reco	mmenda	ation
			Total		30	25				800

		Core Course – IX (CC)	Abstract Algebra	22UMA5CC9	6	6	3	25	75	100
		Core Course – X (CC)	Real Analysis	22UMA5CC10	5	5	3	25	75	100
		Core Course – XI (CC)	Statics	22UMA5CC11	5	5	3	25	75	100
	III	Core Course XII (CC)	Discrete Mathematics	22UMA6CC12	5	5	3	25	75	100
			A. Operations Research	22UMA5DSE1A						
v		Discipline Specific Elective – I	B. Astronomy	22UMA5DSE1B	5	4	3	25	75	100
		(DSE)	C. Artificial Intelligence	22UMA5DSE1C						
	IV	Ability Enhancement Compulsory Course-IV (AECC)	UGC Jeevan Kaushal - Professional Skills	22UGPS	2	2	-	100	-	100
	1 '	Skill Enhancement Course – II (SEC)	LaTeX (P)	22UMA5SEC2P	2	2	3	40	60	100
		Extra Credit Course	As per UGC Recommendation				ion			
	Extra Credit Course SWAYAM Total									700
		Core Course – XIII (CC)	Linear Algebra	22UMA6CC13	5	5	3	25	75	100
		Core Course – XIV(CC)	Complex Analysis	22UMA6CC14	5	5	3	25	75	100
		Core Course –XV (CC)	Dynamics	22UMA6CC15	4	4	3	25	75	100
		Core Course –XVI (CC)	Cyber Security	22UGCS	5	4	3	25	75	100
	III		A. Graph Theory	22UMA6DSE2A						
VI		Discipline Specific Elective –	B. Number Theory	22UMA6DSE2B	5	4	3	25	75	100
		II (DSE)	C. Fundamentals of Big Data Analytics	22UMA6DSE2C						
		Project	Project Work	22UMA6PW	5	4	-	-	100	100
		Gender Studies	Gender Studies	22UGGS	1	1	-	-	-	100
	V	Extension activity		22UGEA	0	1	0	-	-	-
				Total	30	28				700
				Grand Total	180	150				4400

Note:

Part - I-Language - Tamil/Hindi/French/Sanskrit

Part – II- English

List of Allied Courses:

Allied Course I- Mathematical Statistics

Allied Course II- Computer Science

Part	Course	No. of	Credits	Total Credits
		Courses		
Ι	Tamil/ Other Language	4	12	12
II	English	4	12	12
	Core (Theory& Practical)	16+1	77	
	Project Work	1	4	
TTT	Internship	1	2	109
III	First Allied	3	9	
	Second Allied	3	9	
	DSE	2	8	
	GEC	2	4	
	SEC	2	4	
IV	AECC-I -Universal Human Values	1	2	
	AECC-II-Environmental Studies	1	2	15
	AECC-III-Innovation and	1	1	15
	Entrepreneurship		-	
	AECC-IV- Professional Skills	1	2	
V	Gender Studies	1	1	02
	Extension Activities	_	1	
		44		150

The Internal and External marks for Theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	40	60

FOR THEORY:

The passing minimum for CIA shall be 40% out of 25 marks [i.e. 10 marks].

The passing minimum for University Examinations shall be 40% out of 75 marks [i.e. 30 marks].

FOR PRACTICAL:

The passing minimum for CIA shall be 40% out of 40 marks [i.e. 16 marks].

The passing minimum for University Examinations shall be 40% out of 60 marks [i.e. 24 marks].

SEMESTER I

CORE COURSE – I (CC)

DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(2022-2023 Onwards)

Semester I	Internal Marks: 2	5	External Marks:75				
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS			
CODE							
22UMA1CC1	DIFFERENTIAL	CORE	5	4			
	CALCULUS AND						
	TRIGONOMETRY						

Course Objective

- **Compute** mathematical quantities using differential calculus and **interpret** their meaning.
- **Explore** fundamental concepts of single variable calculus
- **Apply** calculus concepts to solve real-world problems such as optimization and related rates problems.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain the basic concepts of differentiation, extreme functions of two variables.	K2
CO2	Apply the concept of differentiation for explaining curvature/.	K3
CO3	Explore the solution of problems from a mathematical perspective.	K3
CO4	Associate various types of hyperbolic and inverse hyperbolic functions and Solve problems in summation of trigonometric series.	K4
CO5	Examine the conceptual understanding and fluency with trigonometric functions, techniques and manipulations necessary for success in calculus.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

Syllabus

UNIT I

Successive Differentiation:

curvature when the curve is given in polar coordinates. UNIT III

UNIT II

Curvature:

Expansions:

Expansions of $cos \ n\theta$ and $sin \ n\theta$ -Expansion of $tan \ n\theta$ in powers of $tan \ \theta$ -Expansion of tan(A + B + C +) (omitting examples on formation of equations) – Powers of sines and cosines of θ in terms of functions of multiples of θ – Expansions of $cos^n \theta$ when n is a positive integer – Expansions of $sin^n \theta$ when n is a positive integer – Expansions of $sin^n \theta$ and $cos \theta$ in a series of ascending powers of θ .

The n^{th} derivative – Standard results – Method of splitting the fractional expressions into

Curvature – Circle, radius and centre of curvature – Cartesian formula for the radius of

partial fractions – Trigonometrical transformation – Formation of equations involving derivatives

- Leibnitz formula for the n^{th} derivative of a product - A complete formal proof by induction.

UNIT IV

Hyperbolic functions:

Hyperbolic functions – Relation between hyperbolic functions – Relations between hyperbolic functions and circular functions – Inverse hyperbolic functions.

UNIT V

Derivatives for Graphing and Applications:

Maxima and Minima:

Maxima and Minima of functions of two variables – Working Rule – Lagrange's method of undetermined multiplier

Tracing of Curves – Tracing of curves whose equation is in Cartesian coordinates.

UNIT VI

Self Study for Enrichment:

Meaning of the Derivative: Geometrical interpretation – Meaning of the sign of the differential coefficient - *p*-*r* equation: Pedal equation of a curve – The expansions of sin θ and cos θ to find the limits of certain expressions – Logarithms of complex quantities: Logarithms of complex quantities – To find the logarithm of x+iy – General value of logarithm of x+iy – Tracing of Curves : Polar Equation.

(15 HOURS)

(15 HOURS)

(15 HOURS)

curvature - The coordinates of the centre of curvature - Evolute and Involute - Radius of

(15 HOURS)

(15 HOURS)

Text Books

- Narayanan. S, .Manicavachagom Pillay. T. K. (2015). *Calculus Volume I*. S. Viswanathan (Printer & publishers) Pvt Ltd.
- Narayanan. S, .Manicavachagom Pillay. T. K. (2013). *Trigonometry*. S. Viswanathan (Printer & publishers) Pvt Ltd.
- UNIT-I Chapter III: Sections 1.1 1.6, 2.1, 2.2 [1]
- UNIT-II Chapter X: Sections 2.1 2.6 [1]
- UNIT-III Chapter III: Sections 1 4, 4.1, 5 [2]
- UNIT- IV Chapter IV: Sections 1,2,2.1,2.2,2.3 [2]
- UNIT- V Chapter VIII: Sections 4, 4.1,5 [1] Chapter XIII: Sections 1.1 & 1.2 [1]

Reference Books

- 1. Arumugam. S and Issac. (2014). Calculus. New Gamma Publishing House.
- Singaravelu. A. (2003). *Differential Calculus and Trigonometry*. A.Singaravelu and R.Ramaa 1st edition, Nagapattinam, R Publication.
- 3. Bali. N.P. (2010). Differential Calculus. Laxmi Publications (P) Ltd. New Delhi.

Web Links

- 1. https://www.youtube.com/watch?v=s8hVridQ5IA
- 2. <u>https://www.youtube.com/watch?v=KijGLjxKlsY</u>
- 3. <u>https://www.youtube.com/watch?v=IQJ0UiM91Z4</u>
- 4. https://www.youtube.com/watch?v=43cMRs2pat4
- 5. <u>https://www.youtube.com/watch?v=mAC88G_cc_M</u>
- 6. <u>https://www.youtube.com/watch?v=CioY8ElsjO4</u>
- 7. <u>https://youtu.be/zExo4_TpOAw</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

1. Dr. P. Sudha

CORE COURSE – II (CC)

INTEGRAL CALCULUS

(2022-2023 Onwards)

Semester I	Internal Mar	ks: 25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
22UMA1CC2	INTEGRAL	CORE	4	4		
	CALCULUS					

Course Objective

- Analyze the properties of definite integral and Reduction formulae.
- **Explore** the order of Integration, Triple Integrals, Beta and Gamma functions.
- Apply Geometrical Applications of Integration of area under plane curve.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Apply the concepts of double, triple integrals.	K3
CO2	Distinguish the concepts of Beta and Gamma functions.	K3
CO3	Apply the concept of definite integral to solve various problems.	K3
CO4	Interpret the definite integral geometrically as the area under a plane curve.	K3
CO5	Evaluate the types of integration.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	3	2
CO2	3	2	3	3	2	2	2	3	3	3
CO3	3	3	3	3	3	2	3	2	2	2
CO4	3	2	3	3	2	3	3	3	2	2
CO5	3	3	3	3	3	2	2	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

Syllabus

UNIT I

Integration: Integration of rational algebraic functions: $\int \frac{dx}{ax^2 + bx + c} - \int \frac{lx + m}{ax^2 + bx + c} dx = -$

Integration of Irrational functions $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ – Any expression of the form

$$\int \frac{dx}{(x-k)\sqrt{ax^2+bx+c}} - \int \frac{dx}{a+b\cos x}$$
 (Integration of these types only)

UNIT II

(12 HOURS)

(12 HOURS)

Properties of Definite Integrals – Integration by parts – Reduction formulae.

UNIT III

Multiple Integrals: Definition of the double integrals – Evaluation of the double Integrals – **Triple Integrals**

UNIT IV

Improper Integrals: Beta and Gamma functions: Definition – convergence of $\Gamma(n)$ – Recurrence formula for gamma functions – Properties of Beta functions – Relation between Beta and Gamma functions – Definite integrals using Gamma functions

UNIT V

Geometrical Applications of Integration - Areas under plane curves: Cartesian Co-ordinates - Area of a closed curve - Examples - Area in polar co-ordinates

UNIT VI

Self-study for Enrichment:

 $\int \frac{dx}{a\cos x + b\sin x}$ – Bernoulli's formula – Applications of Multiple Integrals – Applications

of Gamma functions to multiple integrals – Approximate Integration.

Text Books

- 1. Narayanan, S. & Manicavachagom Pillay, T.K.(2015), Calculus, Volume II, S. Viswanathan (Printers & publishers) Pvt Ltd.
- UNIT I Chapter 1: Sections 7.3 (Type I & II) 8 - Case II and case V, 9
- UNIT II Chapter 1: Sections 11, 12, 13 (13.1 – 13.9)
- UNIT –III Chapter 5: Sections 2.1, 2.2 & 4
- Chapter 7: Sections: 2.1 2.3, 3 5UNIT – IV
- UNIT –V Chapter 2: Sections 1.1 - 1.4

(12 HOURS)

(12 HOURS)

(12 HOURS)

Reference Books

- 1. Shanti Narayan, Integral Calculus (2002), S. Chand & Company Ltd
- 2. Shanti Narayan & Mittal, P. K (2008) Integral Calculus, S. Chand & Company Ltd
- 3. Singh, U. P. Srivastava, R. J & Siddiqui, N. H. (2011) Integral Calculus, Wistom Press.

Web Links

- 1. <u>https://youtu.be/w-T90XSM90s</u>
- 2. https://youtu.be/VXSn6EY9klg
- 3. https://youtu.be/2l-_SV8cwsw
- 4. <u>https://youtu.be/bLhxQldbWW8</u>
- 5. https://youtu.be/4KDenLHggDM
- 6. <u>https://youtu.be/db7d_a0wiUg</u>
- 7. <u>https://youtu.be/zFy-OpajEtA</u>
- 8. <u>https://youtu.be/j6A44yOrGfU</u>
- 9. <u>https://youtu.be/scKJXbOpePM</u>
- 10. https://youtu.be/FsC3do74Ulo

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

1. Dr. P. Shalini

FIRST ALLIED COURSE -I (AC)

MATHEMATICAL STATISTICS I

(2022-2023 Onwards)

Semester I	Internal Mark	as: 25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
22UMA1AC1	MATHEMATICAL	ALLIED	5	4		
	STATISTICS I					

Course Objective

- **Enable** the students to acquire the knowledge of statistics.
- Analyze the properties of various statistical functions.
- **Explore** the concepts of some statistical distributions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Apply Student's t, Fisher's t and F statistics to derive their probability Distribution	K3
CO2	Analyze how correlation is used to identify the relationships between variables and how regression analysis is used to predict outcomes.	К3
CO3	Solving mean, median, mode, moments and moment generating functions of discrete and continuous distributions.	K3
CO4	Distinguish between a discrete and a continuous random variable.	K4
CO5	Examine the various properties of expectation, variance and the concept of covariance.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

Syllabus

UNIT I

Random Variables and Distribution Functions

Random Variable – Distribution Functions – Properties of Distribution Function – Discrete Random Variable – Probability Mass Function – Discrete Distribution Function – Continuous Random Variable – Probability Density Function – Various Measures of Central Tendency, Dispersion, Skewness and Kurtosis for Continuous Probability Distribution – Continuous Distribution Function – Joint Probability Mass Function and Marginal and Conditional Probability Function – Joint Probability Distribution Function – Joint Density Function, Marginal Density Function - The Conditional Distribution Function and Conditional Probability Density Function. UNIT II (15 HOURS)

Mathematical Expectation

Mathematical Expectation – Addition Theorem of Expectation – Multiplication Theorem of Expectation – Co-variance – Expectation of a Linear Combination of Random Variables – Variance of a Linear Combination of Random Variables – Expectation of a Continuous random variable – Conditional Expectation & Conditional Variance.

UNIT III

Generating Functions

Moment Generating Function – Theorems on moment Generating Functions– Cumulants– Additive Property of Cumulants – Effect of Change of Origin and Scale on Cumulants – Characteristic Function – Properties of Characteristic Function.

UNIT IV

Correlation and Linear Regression

Introduction – Meaning of Correlation – Scatter Diagram – Karl Pearson's Co-efficient of Correlation: Limits for Correlation Co-efficient – Assumptions Underlying Karl Pearson's Correlation Co-efficient – Rank Correlation : Spearman's Rank Correlation Co- efficient – Tied or Repeated Ranks – Repeated Ranks (continued) - Introduction – Linear Regression : Regression Co-efficient - Properties of Regression Co-efficient – Angle between two lines of Regression.

UNIT V

Exact Sampling Distributions

Chi-Square Distribution: Introduction – Derivation of the Chi-Square Distribution (χ^2) –M.G.F. of Chi-Square Distribution : Cumulant Generating Function of χ^2 -Distribution – Limiting Form of χ^2 -Distribution for–Characteristic Function of χ^2 -Distribution – Mode and Skewness of χ^2 -Distribution – Additive Property of χ^2 Variates – Chi- Square Probability Curve – Students 't' Distribution : Derivation of the Students 't' Distribution – Fisher's 't' – Distribution

(18 HOURS)

(13 HOURS)

(14 HOURS)

(15 HOURS)

of Fisher's 't' – Constants of t-distribution – Limiting Form of t-distribution – F- Distribution : Derivation of Snedecor's F- Distribution – Constants of F– Distribution – Mode and Points of Inflexion of F- Distribution.

UNIT VI

Self-Study for Enrichment:

Independent Random Variables – Uniqueness Theorem of Characteristic Function – Limits for the Rank Correlation Coefficient – Graph of t-distribution – Critical Values of t .

Text Books

- 1. Gupta, S.C. & Kapoor, V.K. (2004). *Elements Of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.
- Gupta, S.C. & Kapoor, V.K. (2015). Fundamentals Of Mathematical Statistics. Sultan Chand & Sons, New Delhi.
- UNIT-I Chapter 5: Sections 5.1 to 5.5.3, 5.5.5 [1]
- UNIT-II Chapter 6: Sections 6.1 to 6.8 [1]
- UNIT-III Chapter 6: Sections 6.9 to 6.11.1 [1]
- UNIT- IV Chapter 10: Sections 10.1 to 10.4.2 & 10.7, 10.7.1 to 10.7.3 [2] Chapter 11: Sections 11.1 to 11.2.3 [2]
- UNIT- V Chapter 15: Sections 15.1 to 15.3.6 [2] Chapter 16: Sections 16.2 to 16.2.5, 16.5, 16.5.1 to 16.5.3 [2]

Reference Books

- 1. Pillai, R.S.N. Pillai & Bhagavathi. (2008). *Statistics, Theory and Practice*. S.Chand & Sons.
- 2. Bhishma Rao, G.S.S. (2011). Probability and Statistics. Scitech Publications (India) Pvt Ltd.
- 3. Veerarajan, T. (2010). *Probability, Statistics and Random Processes*. Tata McGraw Hill Education Private Limited.

Web Links

- 1. <u>https://www.youtube.com/watch?v=YXLVjCKVP7U</u>
- 2. <u>https://www.youtube.com/watch?v=xTpHD5WLuoA</u>
- 3. <u>https://www.youtube.com/watch?v=wjwLTNYOuI4</u>
- 4. <u>https://www.youtube.com/watch?v=zmyh7nCjmsg</u>
- 5. <u>https://www.youtube.com/watch?v=ux8zQvWWLk</u>

Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment and Smart Classroom.

Course Designer

1. Ms. V. ManiMozhi

FIRST ALLIED COURSE - II (AC)

MATHEMATICAL STATISTICS (P)

(2022-2023 Onwards)

Semester I	Internal Marks	s: 40	External Marks:60			
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
CODE						
22UMA1AC2P	MATHEMATICAL	ALLIED	2	2		
	STATISTICS (P)					

Course Objective

- Understands the basic concepts in quantitative data analysis.
- **Apply** the technical knowledge to **interpret** and **solve** the problems.
- **Explore** the ideas of Excel in Statistics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explore various statistical concepts in Excel.	K3
CO2	Solve the Measures of Central Tendency and Measures of Dispersion using Excel.	K3
CO3	Compute Correlation and Regression co-efficient between two data sets and their applications.	K3
CO4	Analyze the concepts of testing the hypothesis and apply the test to the real-life problems.	K4
CO5	Make use of formulas, including the use of built-in functions.	K3

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	1	2	3	2	2	2	3	2	2	2
CO2	1	2	3	2	2	2	3	2	2	2
CO3	1	2	3	2	2	2	3	2	2	2
CO4	1	2	3	2	2	2	3	2	2	2
CO5	1	2	3	2	2	2	3	2	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

LIST OF PROGRAMS

- 1) Arithmetic Mean, Geometric Mean and Harmonic Mean.
- 2) Median and Mode.
- 3) Quartile Deviation and Mean Deviation.
- 4) Standard Deviation and Co-efficient of Variation.
- 5) Karl Pearson's Co-efficient of Skewness.
- 6) Bowley's Co-efficient of Skewness.
- 7) Moments and Kurtosis.
- 8) Karl Pearson's Co-efficient of correlation.
- 9) Rank Correlation.
- 10) Fit the regression line.
- 11) Test the hypothesis for the difference between two sample means.
- 12) Test the hypothesis for single proportion.
- 13) Test the significance of hypothesis using 't' test.
- 14) Test the significance of hypothesis using 'F' test.
- 15) Test the significance of hypothesis using chi-square test.

Text Books

1. Asha Chawla. & Seema Malik. (2017). *Statistical Analysis with MS Excel*. Avichal Publishing Company.

Reference Books

- 1. Web Tech Sol. (2010). *Mastering Microsoft Excel Functions and Formulas*. Khanna Book Publishing Company.
- 2. Neil J. Salkind. (2015). Excel Statistics a Quick Guide. SAGE Publications, Inc.
- 3. Charles Zaiontz. (2015). Statistics using Excel Succinctly. E-Book.

Web links

- 1. <u>https://www.youtube.com/watch?v=2rEhWFhSqnI</u>
- 2. <u>https://www.youtube.com/watch?v=L9TiYC6tQmU</u>
- 3. <u>https://www.youtube.com/watch?v=v5kYz3ADPBI</u>
- 4. <u>https://www.youtube.com/watch?v=9cXluqvGe8c</u>
- 5. <u>https://www.youtube.com/watch?v=egAvfCZTpz8</u>
- 6. <u>https://www.youtube.com/watch?v=7Y1g340tcbU</u>
- 7. <u>https://www.youtube.com/watch?v=_QnsH74zXhA</u>
- 8. <u>https://www.youtube.com/watch?v=BlS11D2VL_U</u>
- 9. <u>https://www.youtube.com/watch?v=_WNUfgZipww</u>

- 10. https://www.youtube.com/watch?v=j966OJol0iA
- 11. <u>https://www.youtube.com/watch?v=mUycvaTRrCw</u>
- 12. <u>https://www.youtube.com/watch?v=ckcUt3EyD-Q</u>

Pedagogy

Power point presentations, Live Demo, Hands on training.

Course Designers

- 1. Dr. P. Saranya
- 2. Dr. C. Saranya

SEMESTER II

CORE COURSE – III (CC)

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

(2022-2023 Onwards)

Semester II	Internal Marks: 25	External Marks:75					
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS			
CODE							
22UMA2CC3	DIFFERENTIAL	CORE	5	5			
	EQUATIONS AND						
	LAPLACE TRANSFORMS						

Course Objective

- **Explain** the basics of Ordinary Differential Equations.
- **Emphasize** in the field of Partial Differential Equations.
- **Explore** the mathematical methods formatted for major concepts.

CourseOutcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain various notions in ODE, PDE, Laplace transforms.	K1,K2
CO2	Classify the problem models in the respective area.	K3
CO3	Identify the properties of solutions in the field of mathematics.	К3
CO4	Solve various types of problems involving differential equations.	К3
CO5	Analyze the applications of the Differential equations in practical	K4
	life.	

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

Syllabus

				COGNITI
UNIT	CONTENT	HOURS	COs	VE
				LEVEL
Ι	Equations of the first order but of higher degree: Equations solvable for dy/dx – Equations solvable for y – Equations solvable for x – Clairaut's form – Extended form of Clairaut's form – Exact differential equations – Conditions of integrability of M dx + N dy = 0 – Practical rule for solving an exact differential equation – Rules for finding integrating	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
	factors - simple problems.			
II	Linear equations with constant coefficients: Definition – The operator D – Complementary function of a linear equation with constant coefficients – Particular integral – General method of finding P.I. – Special methods for finding P.I. of the forms e^{ax} , cos ax or sin ax, $e^{ax}V$, x^m – Linear equations with variable coefficients – Methods of finding particular integrals – Method of Variation of Parameters (Omit third & higher order equations).	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Partial differential equations of the first order:Classification of Integrals – Derivation of partialdifferential equations – By elimination of constants – Byelimination of constants – Byelimination of constants – Byelimination of an arbitrary function – Lagrange'smethod of solving the linear equation – Special methodsfor some standard formsF(p,q) = 0, F(x, p,q) = 0, F(y, p,q) = 0, F(z, p,q) = 0,f ₁ (x, p) = f ₂ (y, q)Clairant's form – Equations reducible to the standardforms – Charpit's method .	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Partial differential equations of higher order: Introduction – Homogeneous differential equation – Methods of finding C.F. – Methods of finding P.I. of the forms	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4

	e^{ax+by} , x^ry^s , $sin(ax+by)$ or $cos(ax+by)$,		CO5	
	$e^{ax+by}\varphi(x,y).$			
	Laplace transforms & inverse laplace transforms:			
	Definition – Piecewise continuity – Sufficient			
V	conditions for the existence of the Laplace Transforms –		CO1	V 1
	Basic results – Laplace Transform of periodic functions		CO1,	K1,
	– Some general theorems & simple applications –	1.5	CO2,	K2,
	Evaluation of certain integrals using Laplace Transform	15	CO3,	K3,
	- The Inverse Laplace Transforms -Modification of		CO4,	K4,
	results in Laplace Transform to get the inverse Laplace		CO5	K5
	Transform - Use of Laplace Transforms in solving ODE			
	with constant coefficients.			
	Self Study for Enrichment:			
	(Not included for End Semester Examination)			
	Equations that do not contain x explicitly-			
	Equations that do not contain y explicitly- Equations		CO1,	K1,
	homogeneous in x and y - Special method of		CO2,	K2,
VI		-	CO3,	K3,
	evaluating the P.I. when X is of the form x^{m} -Solving		CO4,	K4
	of few standard forms from Charpit's method - Methods		CO5	
	of finding P.I. of the forms $\sin ax \sin by$ or $\cos ax \cos by$ -			
	Use of Laplace Transforms in solving system of			
	differential equations.			

Text Books

- 1. Narayanan, S and Manicavachagom Pillay, T.K (2016). *Differential Equations And Its Applications*.S.Viswanathan Publishers Pvt. Ltd.
- Arumugam, S and Thangapandi Isaac, A (2014). *Differential Equations And Applications*. New Gamma publishing House.
- UNIT-I Chapter IV: Sections 1 3 [1]
 Chapter II: Section 6 [1].
 UNIT-II Chapter V: Sections 1-5 [1] (Omit 5.5)
 Chapter VIII: Section 4 [1] (Omit 6.1)
- UNIT-III Chapter XII: Sections 1-6 [1]
- UNIT- IV Chapter V: Sections 1-2 [2]
- UNIT- V Chapter IX: Sections 1-8 [1]

Reference Books

1. Raisinghania M.D. (2008). Ordinary and Partial Differential Equations.S.Chand & Company.

Web Links

- 1. https://youtu.be/aYrsPeE7NLO
- 2. https://youtu.be/913LV 0QDO0
- 3. <u>https://youtu.be/JEyzOtRPnjk</u>
- 4. https://youtu.be/6rTtLQr8uq0
- 5. https://youtu.be/ZDHmF5PBk-8

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

CourseDesigner

1. Dr. R.Divya

CORE COURSE – IV (CC) VECTOR CALCULUS AND FOURIER SERIES (2022-2023 Onwards)

Semester II	Internal Marks: 25	External Marks:75			
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
CODE		CODE		4	
22UMA2CC4	VECTOR CALCULUS AND FOURIER SERIES	CORE	4	4	

Course Objective

- **Explain** the basics principles of vector calculus.
- **Explore** the mathematical methods with vector integration.
- Understand the concepts and properties of Fourier Series.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember and recall the concepts of Vector Calculus and	K1
	Fourier Series.	
CO2	Solve various types of problems in the Core area.	K3
CO3	Explain the concepts of odd and even functions.	K3
CO4	Describe the development of series.	К3
CO5	Examine the concepts of integration for finding solution.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	3	2	3	3	2	2	3
CO3	3	2	3	3	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
Ι	Vector Differentiation: Vector valued function of a single scalar variable. Differential Operators: Definition – The Vector differential operator – The operator $a.\nabla$, where a is a unit vector – The Gradient of a scalar point function – Equation of tangent plane and normal –Divergence and Curl of a vector .	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
Π	Vector Integration: Vector Integration – Line integrals-Normal Surface Integral $\int_{S} \vec{F} \cdot \vec{n} \cdot dS$ – Flux across a Surface-Volume Integral $\int_{V} F \cdot dV$ (Simple Problems only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Vector Integration: Gauss's Divergence Theorem $\int_{S} \vec{F} \cdot \vec{n} \cdot dS = \int_{V} div \vec{F} dV$ - Stoke's theorem $\int_{c} \vec{F} \cdot \vec{n} \cdot d\vec{r} = \int_{S} curl \vec{F} \cdot \vec{n} dS$ - Green's theorem - Stoke's theorem in space.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Fourier series: Fourier series – definition - Fourier Series expansion of periodic functions with Period 20 and period 2a – Odd & even functions in Fourier Series.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Fourier series: Half- range Fourier Series – definition - Development in Cosine series - Development in Sine series - Change of interval.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	 Self Study for Enrichment: (Not included for End Semester Examination) Theorems on differentiation- Properties of grad φ - Stoke's theorem in Cartesian form - Properties of odd and even functions- Combination of Series. 	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Books

- 1. Khanna. M.L., *Vector Calculus*, Jai Prakash Nath and Co., 8th Edition, (1986).
- Narayanan.S, Manicavachagam Pillai. T.K., *Calculus*, Vol.III, S.Viswanathan (Printers and Publishers) Pvt Limited, (2014).
- UNIT-I Chapter I: Section 1 [1]

Chapter II: Sections 2-4, 6,7[1]

- UNIT-II Chapter III: Sections 1 4 [1]
- UNIT-III Chapter III: Sections 5 7 [1]
- UNIT- IV Chapter IV: Sections 1-3 [2]
- UNIT- V Chapter IV: Sections 4-6 [2]

Reference Books

- Duraipandiyan. P & Lakshmi Duraipandian, Vector Analysis, Emarald Publishers (1998).
- 2. Vittal. P.R. & V.Malini, Vector Analysis, Margham Publications (2014).
- 3. Sankarappan. S & Arulmozhi. G. (2006). *Vector Calculus, Fourier Series and Fourier Transforms,* Vijay Nicole imprints Private Limited, Chennai.

Web References:

- 1. <u>https://www.youtube.com/watch?v=FfJtVvOtqTM&list=PLU6SqdYcYsfJz9FAzbgoc</u> <u>ljlkw4NXAar-</u>
- 2. <u>https://www.youtube.com/watch?v=9LqzrAHrSS0&list=PLeIE3weEKo4YnuLABA</u> <u>WpfuN9ufYJjg1SR</u>
- 3. <u>https://www.youtube.com/watch?v=KCS-</u> VTm398I&list=PLhSp9OSVmeyLke5_cby8i8ZhK8FHpw3qs
- 4. <u>https://www.rtu.ac.in/expert/app/documents/kjangid@rtu.ac.in_51629122020100932a</u> <u>m.pdf</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

1. Dr. R. Radha

CORE PRACTICAL – I (CP)

MATLAB PROGRAMMING (P)

(2022-2023 Onwards)

Semester II	Internal Mar	External Marks:60		
COURSE	COURSE TITLE	Hrs /Week	CREDITS	
CODE				
22UMA2CC1P	MATLAB	Core Practical – I (CP)	2	2
	Programming (P)			

Course Objective

- **Apply** MATLAB as a simulation tool.
- Compute mathematical solutions using MATLAB and develop inter-disciplinary skills.
- Determine syntax, semantics, data-types and library functions of numerical computing.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain fundamental concepts of MATLAB.	K2
CO2	Illustrate a great numbers of MATLAB commands and how to use them in programming and in many applications in Mathematics.	K2
CO3	Compute simple program for a given problem in MATLAB coding.	K3
CO4	Determine the result and the outcome of any command or script.	K4
CO5	Deduce Mathematical solutions using MATLAB tools.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

Listings:

- 1. Finding the leap year.
- 2. Operations using Matrices (Addition, Subtraction, Multiplication, Transpose and Inverse)
- 3. Basic plotting of variables (Simple and multiple data set).
- 4. Sorting of given data.
- 5. Finding the sum of n numbers, sum of square of n numbers, sum of 'n' odd numbers.
- 6. Finding the roots of a polynomial equation.
- 7. Solving system of equations using matrices.
- 8. Finding the Eigen vectors and Eigen values.
- 9. Generating Fibonacci series.
- 10. Vector operations.
- 11. Evaluation of integrals.
- 12. Finding the derivatives of given order.
- 13. Operations on sets.

Web Links

- 1. <u>https://www.youtube.com/watch?v=_Rd61S1yS24</u>
- 2. <u>https://www.youtube.com/watch?v=EF4wmV5xBM0</u>
- 3. <u>https://www.youtube.com/watch?v=XsrhAO3r3VY</u>
- 4. <u>https://www.youtube.com/watch?v=aEjeuj5jfLU</u>
- 5. <u>https://www.youtube.com/watch?v=ZBafH5fss1E</u>
- 6. <u>https://www.youtube.com/watch?v=XtiAC4adozQ</u>
- 7. https://www.youtube.com/watch?v=kt8QSkt-M6c
- 8. <u>https://www.youtube.com/watch?v=y4Sy9xo-pFU</u>
- 9. <u>https://www.youtube.com/watch?v=pi6Dkvs6rP4</u>
- 10. https://www.youtube.com/watch?v=YzEp0jiVyYs
- 11. https://www.youtube.com/watch?v=LFoutvnfP6A
- 12. https://www.youtube.com/watch?v=7BJUX3oIIz0

Pedagogy

Power point presentations, Live Demo, Hands on Training.

Course Designer

1. Dr. P. Saranya

FIRST ALLIED COURSE -III (AC)

MATHEMATICAL STATISTICS II

(2022-2023 and Onwards)

Semester II	Internal Mark	ks: 25	ExternalMarks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
22UMA2AC3	MATHEMATICAL STATISTICS II	ALLIED	4	3		

Course Objectives

- **Enable** in-depth knowledge of probability.
- **Explore** the concepts of some statistical data.
- Analyse the properties of discrete and continuous distributions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
C01	Define the basic concepts in probability, some special distributions, and sampling distributions.	K1
CO2	Explain the properties of probability, special distributions and the theory of sampling distributions to find solutions of real-life problems.	K2
CO3	Solve problems in probability, some special distributions and sampling distributions.	K3
CO4	Examine the given data and interpret the results	K4
CO5	Analyze probability, and various distributions in the case of solid conclusions about the values of the population parameter.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium)Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Theory of probability:	12	CO1,	K1,
	Introduction – Short History – Definitions of Various		CO2,	K2,
	Terms - Mathematical or Classical or 'a Priori'		CO3,	КЗ,
	Probability – Statistical or Empirical Probability –		CO4,	K4
	Mathematical Tools: Preliminary Notion of sets -		CO5	
	Sets and Elements of Sets – Operations on Sets –			
	Algebra of Sets - Axiomatic approach to Probability			
	- Random Experiment (Sample Space) - Event -			
	Some Illustrations – Algebra of Events – Probability			
	: Mathematical Notion – Probability Function – Laws			
	of Addition of Probabilities - Extension of General			
	Law of Addition of Probabilities – Law of			
	Multiplication or Theorem of Compound Probability			
	- Independent Events - Pairwise Independent Events			
	- Mutually Independent Events - Baye's theorem.			
II	Special Discrete Probability Distributions:	12	CO1,	K1,
	Introduction – Discrete uniform Distribution-		CO2,	K2,
	Bernoulli Distribution : Moments of Bernoulli		CO3,	КЗ,
	Distribution - Binomial Distribution : Moments of		CO4,	K4
	Binomial Distribution - Recurrence Relation for the		CO5	
	Moments of Binomial Distribution - Factorial			
	Moments of Binomial Distribution -Mean Deviation			
	about Mean of Binomial Distribution - Mode of			
	Binomial Distribution – Moment Generating			
	Function of Binomial Distribution – Additive			
	Property of Binomial Distribution			
III	Special Discrete Probability Distributions:	12	CO1,	K1,
	Poisson Distribution: The Poisson Process –		CO2,	K2,
	Moments of the Poisson Distribution - Mode of the		CO3,	КЗ,
	Poisson Distribution – Recurrence Relation for		CO4,	K4
	Moments of the Poisson Distribution - Moment		CO5	
	Generating Function of the Poisson Distribution -			
	Characteristic Function of the Poisson Distribution –			

	Cumulants of the Poisson Distribution – Additive or			
	Reproductive Property of Independent Poisson			
	Variates.	10	G Q 1	
IV	Special Continuous Probability Distributions:	12	CO1,	K1,
	Introduction –Normal Distribution: Normal		CO2,	К2,
	Distribution as a Limiting Form of Binomial		CO3,	КЗ,
	Distribution – Chief Characteristics of the Normal		CO4,	K4
	Distribution – Mode of Normal Distribution –		CO5	
	Median of Normal Distribution – M.G.F. of Normal			
	Distribution – Cumulant Generating Function (c.g.f.)			
	of Normal Distribution - Moments of Normal			
	Distribution – A Linear Combination of Independent			
	Normal Variates - Fitting of Normal Distribution.			
V	Special Continuous Probability Distributions:	12	CO1,	K1,
	Rectangular (or Uniform) Distribution: Moments of		CO2,	K2,
	Rectangular Distribution - M.G.F. of Rectangular		CO3,	КЗ,
	Distribution – Characteristic Function of Rectangular		CO4,	K4
	Distribution - Mean Deviation (about Mean) of		CO5	
	Rectangular Distribution-Gamma Distribution(only			
	definition)– Beta Distributions of first kind :			
	Constants of Beta Distributions of first kind - Beta			
	Distributions of second kind : Constants of Beta			
	Distributions of Second kind.			
VI	Self-Study for Enrichment: (Not included for End	-	CO1,	K1,
	Semester Examinations)		CO2,	К2,
	Extension of Multiplication Law of Probability -		CO3,	КЗ,
	Characteristic Function of Binomial Distribution –		CO4,	K4
	Cumulants of the Binomial Distribution -		CO5	
	Recurrence Relation for Cumulants of Binomial			
	Distribution – Recurrence formula for the			
	Probabilities of Poisson distribution -Log-normal			
	Distribution – Triangular Distribution– Exponential			
	Distribution.			

Text Books

- Gupta, S.C. & Kapoor, V.K. (2018). *Elements of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.
- 2. Gupta, S.C. & Kapoor, V.K. (2014). *Fundamentals of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.
- UNIT-I Chapter 4: Section 4.1 -4.8 (omit 4.7.1)[1]
- UNIT-II Chapter 8: Sections 8.1 to 8.3, 8.4(8.4.1 to 8.4.7) [2]
- UNIT-III Chapter 8: Sections 8.5 (8.5.1 to 8.5.8)[2]
- UNIT- IV Chapter 9: Sections 9.1 and 9.2 (9.2.1 to 9.2.8, 9.2.14)[2]
- UNIT- V Chapter 9: Sections 9.3, 9.5, 9.6 -9.7[2]

Reference Books

- 1. Pillai. R.S.N. Pillai & Bhagavathi. (2008). Statistics, Theory and Practice. S.Chand & Sons.
- 2. Bhishma Rao. G.S.S. (2011). Probability and Statistics. Scitech Publications (India) Pvt Ltd.
- 3. Veerarajan. T. (2010). *Probability, Statistics and Random Processes*. Tata McGraw Hill Education Private Limited.

Web References

- 1. <u>https://www.youtube.com/watch?v=ZKkiCC6uCaU&list=PLpEFfNAthorfHzVYKN</u> <u>RFgtWJp2R1vTZfj</u>
- 2. <u>https://www.youtube.com/watch?v=jmqZG6roVqU</u>
- 3. <u>https://www.youtube.com/watch?v=gHBL5Zau3NE</u>
- 4. <u>https://www.youtube.com/watch?v=3PWKQiLK41M</u>
- 5. https://www.youtube.com/watch?v=dOr0NKyD31Q
- 6. <u>https://www.statisticshowto.com/probability-and-statistics/statistics-</u> <u>definitions/uniform-distribution/</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designer

1. Ms. V. ManiMozhi