CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015 Certified TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

M. Sc. MATHEMATICS AUTONOMOUS SYLLABUS 2022 – 2023 and onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

MISSION

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc MATHEMATICS

PO NO.	On completion of M.Sc Mathematics, the students will be able to
PO 1	Problem Analysis Provide opportunities to develop innovative design skills, including the ability to formulate problems, to think creatively, to synthesize information, and to communicate effectively.
PO 2	Scientific Skills Create and apply advanced techniques and tools to solve the societal environmental issues.
PO 3	Environment and Sustainability Ascertain eco-friendly approach for sustainable development and inculcate scientific temper in the society.
PO 4	Ethics Imbibe ethical and social values aiming towards holistic development of learners.
PO 5	Life long learning Instill critical thinking, communicative knowledge which potentially leads to higher rate of employment and also for higher educational studies.

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc MATHEMATICS

PSO NO.	The Students of M.Sc Mathematics will be able to	POs Addressed
	Make a significant contribution to society's development through mathematical	PO1
PS01	study	PO2 PO3
PSO2	Provide an in-depth and extensive functional understanding of mathematical basics.	PO1
PSO3	Develop the experimental abilities in order to solve scientific and technical	PO1
1505	problems.	PO5
PSO4	Promote the learners and explore the potential in emerging fields	PO4
r504	romote the learners and explore the potential in emerging fields.	PO5
DSO5	Enhance problem-solving, thinking, and creative skills through assignments	PO4
P505	and project work.	PO5

Cauvery College for Women (Autonomous), Trichy-18 PG & Research Department of Mathematics M.Sc Mathematics Learning Outcome Based Curriculum Framework (CBCS-LOCF) For the Candidates admitted from the Academic year 2022-2023 onwards

ste					S	Exam			
me	Course	Course Title	Course Code	t. S. /	edit	ċ	Marks		al
Se				Ins Hrs	Cre	Hr	Int.	Ext.	Tot
	Core Course–I	Algebra-I	22PMA1CC1	6	5	3	25	75	100
	C)								
	Core Course – II	Ordinary Differential	22PMA1CC2	6	5	3	25	75	100
	(CC)	Equations							
Ι	Core Course –III	Integral Equations, Calculus	22PMA1CC3	6	5	3	25	75	100
	(CC)	of Variations and Transforms							
	Core Course - IV	Algebraic Number Theory	22PMA1CC4	6	5	3	25	75	100
	(CC)								
	Discipline Specific	A. Advanced Numerical	22DMA1DSE1A						
	Elective Course-I	Analysis	221 MAIDSEIA						
	(DSE)	B. Mathematical	22PMA1DSE1B	6	3	3	25	75	100
		Modelling		0	5	5	25		
		C. Boundary Value	22PMA1DSE1C						
		Problems							
		Total		30	23	-	-	-	500

15 Days INTERNSHIP during Semester Holidays

ster	Course	Course Title	Course Code	rs. /		J	Exam			
eme				t. HJ	dits		Ma	rks	otal	
Ň				Insi wee	Cre	Hrs	Int.	Ext.	Ι	
	Core Course– V (CC)	Algebra-II	22PMA2CC5	6	5	3	25	75	100	
	Core Course – VI (CC)	Real Analysis	22PMA2CC6	6	5	3	25	75	100	
	Core Course -VII (CC)	Linear Algebra	22PMA2CC7	6	5	3	25	75	100	
	Core Choice Course– I (CCC)	A. Partial Differential Equations	22PMA2CCC1A							
п		B. Mathematical Programming	22PMA2CCC1B	6	4	3	25	75	100	
		C. Difference Equations	22PMA2CCC1C							
	Discipline Specific Elective Course-II (DSE)	A. Computationa l Mathematics Using MATLAB (P)	22PMA2DSE2AP	6						
		B. Mathematical Modelling Using MATLAB (P)	22PMA2DSE2BP		6	6	3	3	40	60
		C. Ordinary Differential Equations and Partial Differential Equations Using MATLAB (P)	22PMA2DSE2CP							
	Internship	Internship	22PMA2INT	-	2	-	-	100	100	
	Extra Credit Course	SWAYAM	As per UGC's Re	comm	endati	on	-			
		Total		30	24	-	-	-	600	

er				s. /			Exa	nm	
lest	Course	Course Title	Course Code	Hr	lits		Mar	·ks	
Sem				Inst. week	Cred	Hrs.	Int	Ext.	Tota
	Core Course– VIII(CC)	Topology	22PMA3CC8	6	5	3	25	75	100
	Core Course – IX (CC)	Discrete Mathematics	22PMA3CC9	6	5	3	25	75	100
	Core Course - X (CC)	Measure and Integration	22PMA3CC10	6	5	3	25	75	100
III	Core Choice Course– II (CCC)	A. Cyber Security	22PGCS3CCC2A	3(T) + 2(P)	1 3	25	76	100	
		B. Introduction to Coding Theory	22PMA3CCC2B	5	4	3	25	15	100
		C. Mechanics	22PMA3CCC2C						
	Discipline Specific Elective Course-III (DSE)	A. Analytical Skills for Competitive Examinations	22PMA3DSE3A		2	2	-	100	
		B. Stochastic Processes	22PMA3DSE3B	4	3	3	25	75	100
		C. Fuzzy Sets and their Applications	22PMA3DSE3C						
	Generic Elective Course	Foundation for Logical	22PMA3GEC1	3	2	3	25	75	100
	-I (GEC)	Thinking							
	Extra Credit Course	SWAYAM	As per UGC						
			Recommendation						
		Total		30	24	-	-	-	600

ŗ	G			rs. /	ts		Exa	ım	7
neste	Course	Course Title	Course Code	t. H week	redi	rs.	Μ	arks	Tota
Sen				Ins	0	Η	Int.	Ext.	
	Core Course-	Complex Analysis	22PMA4CC11	6	5	3	25	75	100
	XI(CC)								
IV	Core Course -	Functional Analysis	22PMA4CC12	6	5	3	25	75	100
	XII(CC)								
	Core Choice Course–	A. Differential	22PMA4CCC3A						
	III (CCC)	Geometry	221 WIA4CCCJA						100
		B. Formal Language	22PMA4CCC3B	6	1	3	25	75	
		and Automata		0	4	5	23	15	
		Theory							
		C. Fluid Dynamics	22PMA4CCC3C						
	Generic Elective	Optimization	22DMA4GEC2	3	2	3	25	75	100
	Course-II (GEC)	Techniques	221 WIA40LC2						
	Project	Project Work	22PMA4PW	9	5	-	-	100	100
	Total			30	21	-	-	-	500
		Grand Total		120	92	-	-	-	2200

S. No	Courses	No. of Courses	No. of Credits	Marks
1.	Core Course– (CC)	12	60	1200
2.	Core Choice Course– (CCC)	3	12	300
3.	Discipline Specific Elective- (DSE)	3	9	300
4.	Generic Elective Course - (GEC)	2	4	200
5.	Project	1	5	100
6.	Internship	1	2	100
	Total	22	92	2200

Courses & Credits for PG and Research Department of Mathematics

Students will go for internship after completing the I Semester exams and the internship will be calculated in the II Semester and credits for internship is 02.

For each semester marks will be for 500(600 for II Semester due to internship)

The internal and external marks for theory and practical papers are as follows:

Subject	Internal	External
Theory	25	75
Practical	40	60

Separate passing minimum is prescribed for Internal and External

For Theory:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks).
- b) The passing minimum for End Semester Examination shall be 40% out of 75 marks (i.e. 30 marks).

c) The passing minimum not less than 50% in the aggregate.

For Practical:

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. 24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project:

Project	: 100 Marks
Dissertation	: 80 Marks
Viva Voce	: 20 Marks

Semester I	Internal Marks: 25	External Marks	: 75	
COURSECODE	COURSE TITLE	CATEGORY	Hrs / WEEK	CREDITS
22PMA1CC1	ALGEBRA- I	CORE	6	5

- Gain expertise and confidence in proving theorems to progress in mathematical studies.
- Acknowledge the students with experience in axiomatic mathematics while keeping in close touch with the computational aspects of the subject.
- Enhance students to understand principles, concepts necessary to formulate, solve and analyze Algebra.

Prerequisite

Basic knowledge of sets, relations and functions.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive
	On successful completion of this work, students will be able to	Level
CO1	Apply the basic concepts of group theory with the help of numerous examples	K3
CO2	Examine in detail about Permutation Groups and Normal Groups and discuss about counting tricks in algebra	K4
CO3	Solve problems related to theorems	K3
CO4	Classify groups of finite order using Sylow's theorems	K4
CO5	Analyze the Field of Quotients of an integral domain	K4

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
CO5	2	2	3	3	2	3	2	2	2	3

"1" – Slight (Low) Correlation \neg "2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

Unit I

Binary Operations – Groups – Subgroups - Permutations I - Permutations II.

Unit II

(18 Hours)

(17 Hours)

(20 Hours)

(17 Hours)

Isomorphism - Direct products - Finitely Generated Abelian Groups - Groups of Cosets- Normal Subgroups and Factor Groups.

Unit III

Series of Groups - Isomorphism Theorems; Proof of the Jordan - Holder Theorem - Sylow Theorems.

Unit IV

Rings - Integral domains - The Field of Quotients of an Integral Domain - Quotient Rings and Ideals.

Unit V

(18 Hours)

Factorization of Polynomials over a Field - Unique Factorization Domains - Euclidean Domains -

Gaussian Integers and Norms.

Unit VI- Self-Study for Enrichment (Not included for End Semester Examinations)

Cyclic Groups – Homomorphisms - Applications of the Sylow Theorem - Some Noncommutative examples - Homomorphism of Rings.

Text Book

1. John B. Fraleigh, (2018(Reprint)), A First Course in Abstract Algebra, Narosa Publishing House, Third edition.

Chapters and Sections

- UNIT-I Chapters 1 to 5[1]
- UNIT-II Chapters 7,8,9,11 and 12[1]
- UNIT-III Chapter 14,15 and 18[1]
- UNIT-IV Chapter 23,24,26 and 28[1]
- UNIT-V Chapter 31 to 34[1]

Reference Books

- 1. David S. Dummit and Richard M. Foote, (2004), *Abstract Algebra*, Wiley and Sons, Third Edition.
- 2. Joseph A. Gallian, (1999), Contemporary Abstract Algebra, Narosa Publishing House, Fourth Edition.
- 3. Herstein. I.N, (1975), Topics in Algebra, John Wiley, Second Edition.

Web References

- 1. <u>https://www.youtube.com/watch?v=g7L_r6zw4-c</u>
- 2. https://www.youtube.com/watch?v=VSB8jisn9xI
- 3. https://www.youtube.com/watch?v=WwndchnEDS4
- 4. https://www.youtube.com/watch?v=xTCxmr4ISU4
- 5. <u>https://www.youtube.com/watch?v=iobTKR4-19o</u>
- 6. <u>https://www.youtube.com/watch?v=NfmJQ1ah4vM</u>
- 7. https://www.youtube.com/watch?v=vrFd-5uEv4k

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment. Course Designer

Dr. K. Kalaiarasi.

Semester I	Internal Marks: 25		External Marks: 75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
	ORDINARY					
22PMA1CC2	DIFFERENTIAL	CORE	6	5		
	EQUATIONS					

- **Recognize** certain basic types of first order ODEs for which exact solutions may be obtained and to apply the corresponding methods of solution
- Qualitative Analysis of Solutions of First Order Autonomous Equations.
- **Analyze** the concepts of existence and uniqueness of solutions.

Prerequisite

Fundamental knowledge of ordinary differential equations in UG.

Course Outcome and Cognitive Level Manning

CO Number	CO Statement	Cognitive
	On successful completion of this work, students will be able to	Level
~~~		
CO1	<b>Define</b> linear, non-linear, homogeneous and autonomous system of ordinary	K1
	differential equations.	
CO2	Understand the Qualitative properties of solutions by Sturm separation and Sturm	K2
	comparison theorems.	
CO3	<b>Diagnose</b> the power series solution for ordinary differential equations such as	K4
	Gauss Hyper Geometric, Bessel's and Legendre equations.	
CO4	<b>Discriminate</b> the Qualitative properties of solutions for Boundary value problems	K4
	by using Sturm theorems.	
CO5	Analyze the Stability nature of Linear and Non-Linear system for various methods.	<b>K</b> 4

### Manning of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	<b>PO1</b>	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	2	3
<b>CO4</b>	3	3	2	3	3	3	3	3	2	3
<b>CO5</b>	3	3	3	3	3	3	3	3	2	3

"1" – Slight (Low) Correlation  $\neg$  "2" – Moderate (Medium) Correlation  $\neg$ 

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

# Syllabus

### **UNIT I**

The General Solution of the Homogeneous Equation – The Use of a Known Solution to Find Another – The Method of Variation of Parameters – Power Series Solutions and Special Functions: Introduction: A Review of Power Series - Series Solutions of First Order Equations - Second Order Linear Equations. Ordinary Points.

### **UNIT II**

#### (18 Hours)

(18 Hours)

Regular Singular Points - Gauss's Hypergeometric Equation - The Point at Infinity. Legendre Polynomials - Properties of Legendre Polynomials - Bessel Functions. The Gamma Function, Properties of **Bessel Functions.** 

### UNIT III

(18 Hours) Linear Systems - Homogeneous Linear Systems with Constant Coefficients - The Existence and Uniqueness of Solutions: The Method of Successive Approximations - Picard's Theorem.

### UNIT IV

Qualitative Properties of Solutions: Oscillations and the Strum Separation Theorem - The Sturm Comparison Theorem – Eigen Values, Eigen Functions and the Vibrating String.

#### (18 Hours)

### UNIT V

### (18 Hours)

Nonlinear Equations: Autonomous Systems. The Phase Plane and Its Phenomena – Types of Critical Points. Stability – Critical Points and Stability for Linear Systems – Stability by Liapunov's Direct Method - Simple Critical Points of Nonlinear Systems.

### UNIT VI - Self- Study for Enrichment(Not included for End Semester Examinations)

The Homogeneous Equation with Constant Coefficients - Regular Singular Points (Continued) -

Systems. The Second Order Linear Equation - Sturm Liouville Problems -Nonlinear Mechanics, Conservative systems.

### **Text Book**

George F. Simmons (2003). Differential Equations with Applications and Historical Notes, Second Edition. Tata McGraw-Hill Editions.

### **Chapters and Sections**

UNIT – I	Chapter 3	Sections 15, 16, 19
	Chapter 5	Sections 26 to 28
UNIT – II	Chapter 5	Sections 29, 31, 32
	Chapter 8	Sections 44 to 47
UNIT – III	Chapter 10	Sections 55, 56
	Chapter 13	Sections 68, 69
UNIT – IV	Chapter 4	Sections 24, 25
	Chapter 7	Sections 40
UNIT –V	Chapter 11	Sections 58 to 62

### **Reference Books**

- 1. Raisinghania M.D. (2006), Ordinary and Partial Differential Equations, 1st Edition, S.Chand & Co.
- **2.** Coddington E.A. and Levinson N. (2002), Theory of Ordinary Differential Equations, Mc- Graw Hill Publishing Company, NewYork.
- Chicone, Carmen. (2006), A Ordinary Differential Equations With Applications, 2nd Edition, Spring Verlag, NewYork.

### Web References

1.https://www.youtube.com/watch?v=gd1FYn86P0c 2.https://www.youtube.com/watch?v=607b9yyhH7k 3.https://www.youtube.com/watch?v=HAb9JbBD2ig 4.https://www.youtube.com/watch?v=kj-qTWhH5N4 5.https://www.youtube.com/watch?v=CV81OjuHUS8 6.https://www.youtube.com/watch?v=0TN7hGoSPMw 7.https://www.youtube.com/watch?v=IWm6Coa3_bQ 8.https://www.youtube.com/watch?v=1HUnrokDN0U 9.https://www.youtube.com/watch?v=1HUnrokDN0U

### Pedagogy

Chalk and Talk method, Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. G. Janaki

Semester I	Internal Marks: 25		External Marks: 75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
22PMA1CC3	INTEGRAL EQUATIONS, CALCULUS OF VARIATIONS AND TRANSFORMS	CORE	6	5		

- To introduce the concept of calculus of variations and integral equations and their applications.
- To learn the different types of transforms and their properties.
- To give an experience in the implementation of Mathematical concepts like integral transforms, integral equations and calculus of variations in various field of Engineering.

### Prerequisite

Basic Knowledge of Integral Calculus and Fourier Series

#### **Course Outcomes Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On successful completion of this work, students will be able to	Cognitive Level
CO1	Apply the concepts of calculus of variations to find the maxima and minima of quantities defined as integrals containing unknown functions.	K3
CO2	Classify various kinds of Fourier sine and cosine transforms with their properties and simple problems.	К3
CO3	Explain the concept of Fourier transform, Hankel transform and its inverse transform.	K3
CO4	Recognize and solve particular cases of Fredholm and Volterra integral equations and variational problem	K4
CO5	Evaluate the integral equations by the method of successive approximations.	K5

### Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	2	3
CO4	3	3	2	2	3	3	3	2	2	2
CO5	2	2	3	3	2	3	2	2	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

### Syllabus

#### UNIT I

#### Calculus of variations and applications: Maxima and Minima – The simplest case – Illustrative examples - Natural boundary conditions and transition conditions – The Variational notation – The More general case – constraints and Lagrange multipliers – variable end points – Sturm-Liouville problems. UNIT – II (18 Hours)

Fourier transforms: Dirichlet's conditions – Fourier series – Fourier's Integral formula – Fourier transform or complex Fourier transform – Inversion theorem for complex Fourier transform – Fourier sine transform - Inversion formula for Fourier sine transform - Fourier cosine transform - Inversion formula for Fourier sine transform – Change of scale property – Shifting Property – Modulation Theorem – Multiple Fourier transforms - Convolution - The convolution or Falting theorem for Fourier transforms - Parseval's identity for transforms – Relationship between Fourier and Laplace transforms – Fourier transform of the derivatives of a function – Problems related to integral equations.

### UNIT III

#### (18 Hours)

(18 Hours)

Hankel Transforms :Definition – Inverse formula for the Hankel transform – Some important results for Bessel function – Linearity property – Hankel Transform of the derivatives of the function – Hankel Transform of differential operators.

### UNIT IV

Definition, Regularity Conditions – Special Kind of Kernels – Eigen values and Eigen functions – Convolution Integral – The Inner or Scalar Product of Two Functions – Notation – Integral Equations with Separable Kernals: Reduction to a System of Algebraic Equations – Examples– Fredholm Alternative – Examples.

### UNIT V

#### (18 Hours)

Method of Successive Approximations: Iterative Scheme – Examples – Volterra Integral Equation – Examples – Some Results about the Resolvent Kernel - Classical Fredholm Theory: The Method of Solution of Fredholm – Fredholm's First Theorem – Examples – Fredholm's Second Theorem.

UNIT VI - Self-Study for Enrichment(Not included for End Semester Examinations)

Hamilton's Principle - Finite Fourier transforms- Parseval's Theorem- An Approximate Method – Fredholm Integral Equation of the First Kind - Fredholm's Third Theorem.

### Text books

- 1. Francis.B. Hildebrand,(1972), Methods of Applied Mathematics, Prentice Hall of India Pvt Ltd, New Delhi.
- 2. Vasishtha.A.R. and Gupta.R.K,(2002), Integral Transforms, Krishna Prakashan Media Pvt Ltd
- 3. Ram.P.Kanwal,(1971), Linear Integral Equations, Academic Press.

### **Chapters and Sections**

Unit I	Chapter 2	Sections 2.1 to 2.8 [1]
Unit II	Chapter 6	Sections 6.1 to 6.20[2]
Unit III	Chapter 9	Sections 9.1 to 9.6[2]
Unit IV	Chapter 1	Sections 1.1 to 1.7[3]
	Chapter 2	Sections 2.1 to 2.4[3]
Unit V	Chapter 3	Sections 3.1 to 3.5[3]
	Chapter 4	Sections 4.1 to 4.4[3]

### **Reference Books**

- **1.** Gupta,A.S.(2006), Calculus of Variations with Applications, Prentice Hall of India Private Limited, New Delhi.
- **2.** Raisinghania,M.D. (2007), Integral Equations and Boundary Value Problems, S.Chand & Company Ltd, New Delhi.
- 3. Gupta.P.P and Sunjay Gupta,(2003), Integral Transforms, Kedarnath Ram Nath, Meerut.

### (18 Hours)

### Web References

- 1. <u>https://youtu.be/70lYJs2xL6Q</u>
- 2. https://youtu.be/HlwYQqUdrQs
- 3. https://youtu.be/6HeQc7CSkZs
- 4. <u>https://youtu.be/UKHBWzoOKsY</u>
- 5. https://youtu.be/3OCYjT5h23w
- 6. https://youtu.be/pAwvErIGIV8
- 7. https://youtu.be/HH9QH692AZE

### Pedagogy

Chalk and talk, Power point presentation, Discussion, Assignment, Quiz, Seminar.

### **Course Designers**

- 1. Dr. S.Sasikala.
- 2. Dr.R.Radha.

Semester I	Internal Marks: 25	External Marks: 75			
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
CODE					
22PMA1CC4	ALGEBRAIC NUMBER THEORY	CORE	6	5	

- Explore fundamental concepts of divisibility, Congruences and primes.
- Analyze the quadratic Residues, The Mobius Inversion formula, Diophantine equations and their problems.
- **Apply** the ideas of Pythagorean triangle and The Chinese remainder theorem to solve problems.

### Prerequisite

Theory of Numbers, Abstract Algebra

### **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On successful completion of this work, students will be able to	Cognitive Level
CO1	Apply the concepts of divisibility, congruences, primes, primitive roots, quadratic residues, greatest integer functions and linear equations.	K3
CO2	Explore the concepts of arithmetic functions, prime modulus and congruences of Degree two.	K3
CO3	Relate the ideas of Chinese remainder theorem, quadratic reciprocity and The Mobius Inversion formula.	K3
CO4	Determine the solutions of congruences, techniques of numerical calculations, Jacobi symbol, recurrence functions and simultaneous linear equations.	K4
CO5	Examine the conceptual understanding in Pythagorean triangles, Legendre Symbol and related problems.	K4

### Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	2	3	2	3	2	2	2	2	2	3
CO3	3	3	2	3	3	3	2	2	2	3
CO4	3	3	3	3	3	3	3	2	2	3
CO5	3	3	3	3	3	3	3	2	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

# Syllabus

### UNIT I

### **Divisibility and Congruences**

Introduction – Divisibility – The Binomial Theorem – Congruences – Solutions of Congruences – The Chinese Remainder Theorem.

### UNIT II

### Congruences

Techniques of Numerical Calculation — Prime Power Moduli – Prime Modulus – Congruences of Degree Two, Prime Modulus – Public Key Cryptography.

### **UNIT III**

### **Quadratic Reciprocity and Quadratic Forms**

Quadratic Residues - Quadratic Reciprocity - The Jacobi Symbol - Binary Quadratic Forms -

# (18 Hours)

(18 Hours)

(18 Hours)

Equivalence and Reduction of Binary Quadratic Forms - Sums of Two Squares.

### UNIT IV

### **Some Functions of Number Theory**

Greatest Integer Function – Arithmetic Functions – The Mobius Inversion Formula.

### UNIT V

### (18 Hours)

(18 Hours)

### Some Diophantine Equations

The Equation ax + by = c – Simultaneous Linear Equations – Pythagorean Triangles.

### UNIT VI - Self-Study for Enrichment (Not included for End Semester Examinations)

Primes - Primitive Roots and Power Residues - Positive Definite Binary Quadratic Forms - Recurrence Functions - Assorted Examples.

### **Text Books**

Ivan Niven, Herbert S. Zuckerman & Hugh L. Montgomery (2016) Reprint, An Introduction to the Theory of Numbers, (Fifth Edition, Reprint 2016). Wiley Publishers.

### Chapters and Sections

Chapter 1	Sections 1.1, 1,2 & 1.4
Chapter 2	Sections 2.1 to 2.3
Chapter 2	Sections 2.4 to 2.7 & 2.9
Chapter 3	Sections 3.1 to 3.6
Chapter 4	Sections 4.1 to 4.3
Chapter 5	Sections 5.1 to 5.3
	Chapter 1 Chapter 2 Chapter 2 Chapter 3 Chapter 4 Chapter 5

### **Reference Books**

- 1. David M. Burton (2012), *Elementary Number Theory ( Sixth Edition)*, Tata McGraw Hill Education Private Limited, New Delhi.
- 2. Telang S. G. (2005), *Number Theory* (Reprint 2001), Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Melvyn B. Nathanson (2005), *Methods in Number Theory*(Reprint 2006), Springer-Verlag, New York, Inc.

### Web References

- 1. https://www.youtube.com/watch?v=ChG_7jeNRHo
- 2. <u>https://www.youtube.com/watch?v=e8DtzQkjOMQ</u>
- 3. <u>https://www.youtube.com/watch?v=3W91U-aNclQ</u>
- 4. <u>https://www.youtube.com/watch?v=bg6CksAkZ-k</u>
- 5. <u>https://www.youtube.com/watch?v=4dVTlX4bwP0</u>
- 6. <u>https://www.youtube.com/watch?v=khfIH1H6iUg</u>
- 7. https://www.youtube.com/watch?v=BC2BdenKsYs

### Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. S. Vidhya.

Semester I	Internal Marks: 25		<b>External Marks: 75</b>	
<b>COURSE CODE</b>	COURSE TITLE	CATEGORY	HRS /WEEK	CREDITS
22PMA1DSE1A	ADVANCED	DSICIPLINE	6	3
	NUMERICAL	SPECIFIC		
	ANALYSIS	ELECTIVE		

- To **know** the theory behind various numerical methods.
- To **apply** these methods to solve mathematical problems.
- To **train** the students to develop analytical thinking and the study of stability analysis.

#### Prerequisite

A reasonable background in linear algebra, numerical analysis, partial differential equations, and finite difference methods.

### **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On successful completion of this work, students will be able to	Cognitive Level
CO1	Apply various methods to solve transcendental and polynomial equations	К3
CO2	Use the concepts of interpolation analyze Eigen value problem with Techniques for Mathematical Problems arising in various fields	K4
CO3	Classify the various techniques of interpolation and approximation	K3
CO4	Compute the numerical differentiation problems	K3
CO5	Apply the knowledge of various methods to solve numerical integration problems	K3

#### Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	<b>PO1</b>	PO2	PO3	PO4	PO5
CO1	2	3	3	2	3	2	3	2	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	2	3	2	3	3	3	2	2	3
<b>CO4</b>	2	2	2	2	3	2	2	2	2	3
CO5	3	3	3	3	3	3	3	3	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

### Syllabus

### UNIT I

### **Transcendental and polynomial equations**

Rate of convergence – Polynomial equations: Descartes' Rule of Signs - Iterative Methods: Birge-Vieta method - Bairstow's method.

### UNIT II

### System of Linear Algebraic equations and Eigen Value Problems

Error Analysis for Direct methods – Iteration methods - Eigen values and Eigen vectors – Jacobi method

for symmetric matrices - Power method.

### UNIT III

### (18 Hours)

# (18 Hours)

(17 Hours)

### Interpolation and Approximation

Hermite Interpolation - Piecewise and Spline Interpolation.

### UNIT IV

### Differentiation

Numerical Differentiation – Optimum choice of Step length – Extrapolation methods.

### UNIT V

### Integration

Numerical Integration - Methods based on undetermined coefficients: Newton- Cotes methods: Trapezoidal Method - Simpson's Method - Gauss Legendre Integration Methods - Lobatto Integration Methods. **UNIT VI - Self -Study for Enrichment(Not included for End Semester Examinations)** 

Direct Method - Graeffe's root squaring method- Gauss Seidel Iteration method - Bivariate Interpolation: Lagrange Bivariate interpolation - Partial Differentiation - Gauss-Chebyshev Integration Methods. **Text Book** 

Jain. M. K, Iyengar. S. R. K. and Jain. R. K. (Sixth Edition), Numerical Methods for Scientific and

Engineering Computation, New Age International (P) Limited Publishers, New Delhi.

### **Chapters and Sections**

UNIT-I	Chapter 2	Sections 2.5 and 2.9(Page No. 83 - 93)
UNIT-II	Chapter 3	Sections 3.3 – 3.5, 3.7, 3.11
UNIT-III	Chapter 4	Sections 4.5 and 4.6
UNIT- IV	Chapter 5	Sections 5.2 - 5.4
UNIT- V	Chapter 5	Sections 5.6
		(Page No. 348) and 5.8(Page No. 356-365, 380-382)

### **Reference Books**

- Jain. M. K, (1983), Numerical Solution of Differential Equations (2nd Edition), New Age International Pvt Ltd.,
- Samuel. D. Conte and Carl. DeBoor, (1988), *Elementary Numerical Analysis*(3rd Edition), McGraw-Hill International.
- 3. Kendall E. Atkinson, (1989), An Introduction to Numerical Analysis(2nd Edition), John Wiley & Sons.

### Web References

- 1. https://www.youtube.com/watch?v=hTVjuH6J_C8
- 2. <u>https://www.youtube.com/watch?v=EMPyjetvaDg</u>
- 3. <u>https://www.youtube.com/watch?v=YkrSgTBznek</u>
- 4. <u>https://www.youtube.com/watch?v=-fE3I-usIKk</u>
- 5. <u>https://www.youtube.com/watch?v=gyyKvonahXk.</u>

### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designers**

- 1. Ms. R. Soundaria
- 2. Dr. P.Sudha

### (17 Hours)

### (20 Hours)

Semester I	Internal Marks: 25		<b>External Marks:</b>	75
COURSE CODE	COURSE TITLE	CATEGORY	HRS /WEEK	CREDITS
22PMA1DSE1B	MATHEMATICAL MODELLING	DISCIPLINE SPECIFIC ELECTIVE	6	3

- **Analyze** the different mathematical models through Ordinary differential equation and Differential Equations.
- **Understand** the implementation of graph theoretical models.
- Summarize and implementation the kinds of Difference equations.

### Prerequisite

Classification of ordinary differential equations.

### **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On successful completion of this work, students will be able to	Cognitive Level
CO1	Classify the models through Ordinary Differential equations.	K3
CO2	Evaluate the systems of Ordinary Differential equations for various models.	K4
CO3	Examine the Planetary motions through Ordinary Differential equations of second order.	K4
<b>CO4</b>	Explain the basic concepts of Difference equation.	K4
C05	Compute various types of models through Difference equation.	K3

### Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
CO5	2	2	3	3	2	3	2	2	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

### Syllabus

UNIT I

### (18 Hours)

### Mathematical Modelling through Ordinary Differential Equations of First order

Mathematical Modelling Through Differential Equations- Linear Growth and Decay Models - Non-

Linear Growth and Decay Models - Compartment Models - Mathematical Modelling in Dynamics Through

Ordinary Differential Equations of First Order.

### (18 Hours)

## Mathematical Modelling through Systems of Ordinary Differential Equations of First Order

Mathematical Modelling in Population Dynamics – Mathematical Modelling of Epidemics Through

Systems of Ordinary Differential Equations of First Order – Compartment Models Through Systems of Ordinary

Differential Equations – Mathematical Modelling in Medicine, Arms Race, Battles and International Trade in

Terms of Systems of Ordinary Differential Equations – Mathematical Modelling in Dynamics Through Systems

of Ordinary Differential Equations of First Order.

# UNIT III

# Mathematical Modelling Through Ordinary Differential Equations of Second Order

Mathematical Modelling in Planetary Motions – Mathematical Modelling in Circular Motion and Motion

 $of \ Satellites-Mathematical \ Modelling \ Through \ Linear \ Differential \ Equations \ of \ Second \ Order.$ 

UNIT IV

### Mathematical Modelling Through Difference Equations

The Need for Mathematical Modelling Through Differential Equations: Some Simple Models – Basic

Theory of Linear Difference Equations with Constant Coefficients - Mathematical Modelling Through

Differential Equations in Economics and Finance– Mathematical Modelling Through Differential Equations in

Probability Theory.

### UNIT V

### Mathematical Modelling through Graphs

Situations that can be Modelled Through Graphs - Mathematical Models in Terms of Directed Graphs-

Mathematical Models in Terms of Signed Graphs-Mathematical Models in Terms of Weighted Digraphs.

### UNIT VI - Self-Study for Enrichment(Not included for End Semester Examinations)

Mathematical Modellingof Geometrical problems Through Ordinary Differential Equations of First Order - Mathematical Modelling in Economics Through Systems of Ordinary Differential Equations of First Order - Miscellaneous Mathematical Models Through Systems of Ordinary Differential Equations of Second Order - Mathematical Modelling Through Differential Equations in Population Dynamics and Genetics -Mathematical Modelling in Terms of Unoriented Graphs.

### **Text Book**

J N Kapur, (Reprint 2001). *Mathematical Modelling*. New Age International (P) Limited, Publishers, New Delhi.

### **Chapters and Sections**

UNIT-I	Chapter	2 Sections 2.1 to 2.5
UNIT-II	Chapter 3	Sections 3.1 to 3.3 & 3.6
UNIT-III	Chapter 4	Sections 4.1 to 4.3
UNIT- IV	Chapter 5	Sections 5.1 to 5.3&5.5
	Chapter 7	Sections 7.1 to 7.4
UNIT- V	Chapter 15	Sections 15.1 to 15.3.6 [2]
	Chapter 16	Sections 16.2 to16.2.5, 16.5, 16.5.1 to 16.5.3 [2].

### UNIT II

### (20 Hours)

(17 Hours)

## (17 Hours)

#### **Reference Books**

- 1. Bimal K.Mishra & Dipak K.Satpathi (First Edition, Reprint 2009). *Mathematical Modeling Applications, Issues and Analysis(1st Edition).* Ane Books Pvt. Ltd.
- 2. Edward A. Bender. An Introduction to Mathematical Modelling(Reprint 2000). Dover Publications.
- 3. Rutherford A. *Mathematical Modelling Techniques*(Revised Edition 2012).Dover Publications. **Web References** 
  - 1. <u>https://www.youtube.com/watch?v=3Yfsh1SnGIw</u>
  - 2. https://www.youtube.com/watch?v=EdtwK8KSwOo
  - 3. https://www.youtube.com/watch?v=zczt5GhkylY
  - 4. <u>https://www.youtube.com/watch?v=-wVCKOvceok</u>
  - 5. <u>https://www.youtube.com/watch?v=BZwp8gAxvUc</u>

### Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment and Smart Classroom.

### **Course Designer**

Dr R. Buvaneswari.

Semester I	Internal Marks: 25	ExternalMarks:75		
<b>COURSE CODE</b>	COURSE TITLE	HRS /WEEK	CREDITS	
		DISCIPLINE		
22DMA 1DSE1C	PROBLEMS	SPECIFIC	6	3
22PMAIDSEIC		ELECTIVE		

- Gain expertise and confidence in proving theorems to progress in mathematical studies.
- Analyze the implementation of boundary value problem through various models.
- **Summarize** the various aspects of boundary value problem.

#### Prerequisite

• Exposure on Fourier series and Differential Equations.

### **Course Outcomes**

<b>Course Outco</b>	Course Outcome and Cognitive Level Mapping							
СО	CO Statement	Cognitive						
Number	On successful completion of this work, students will be able to	Level						
CO1	Apply real world scenarios in order to solve the problems using multiple approaches.	К3						
CO2	Classify Boundary value problems and learn their distinguishing qualitative properties.	К3						
CO3	Relate the applications of Laplace and Poisson Equations	K3						
<b>CO4</b>	Determine the understanding of Fourier Bessel Series	K4						
C05	Analyze Dirichlet Problems and its solutions in various Regions.	K4						

#### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	<b>PO1</b>	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
CO5	2	2	3	3	2	3	2	2	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

### Syllabus

#### UNIT I

One-sided Derivatives- An Integration Formula – Preliminary Theory –

A Fourier Theorem- Discussion of the Theorem.

### UNIT II

Formal and Rigorous Solutions – The Vibrating String, Initially Displaced – Discussion of the Solution – Prescribed Initial Velocity – Non homogeneous Differential Equations – Elastic Bar-Temperatures in a Bar.

### UNIT III

A Dirichlet Problem – Fourier Series in Two Variable – An Application of Fourier Integrals – Temperatures u(x,t) in an Unlimited Medium

Fourier-Bessel Series-Temperatures in a Long Cylinder-Heat Transfer at the Surface of the Cylinder.

### (17 Hours)

### (18 Hours)

### (_____)

(18 Hours)

#### **UNIT IV**

### (17 Hours)

Dirichlet Problems in Spherical Regions - Steady Temperature in a Hemisphere.

### UNIT V

### (20 Hours)

Cauchy Criterion for Uniform Convergence – Abel's Test for Uniform Convergence – Uniqueness of Solutions of the Heat Equation – Example – Solutions of Laplaces's or Poisson's Equation.

### UNIT VI - Self-Study for Enrichment(Not included for End Semester Examinations)

Other Forms of Fourier Series – The Orthonormal Trigonometric Functions - Other Boundary Conditions - Observations and Further Examples - Vibration of a circular Membrane - Other Orthogonal Sets - An Application.

### Text Book

Ruel V Churchill. (1963). Fourier Series and Boundary Value Problems (Second Edition). McGraw-Hill Book Company.

#### **Chapters and Sections**

_		
UNIT-I	Chapter 4	Sections 38 to 42
UNIT-II	Chapter 7	Sections 55 to 61
UNIT-III	Chapter 7	Sections 63 to 66
	Chapter 8	Sections 78 to 80
UNIT-IV	Chapter 9	Sections 89 to 90
UNIT-V	Chapter10	Sections 92 to 96

### **Reference Books**

- **1.** Raisinghania, M.D.(2014). Ordinary and Partial Differential Equations(1st Edition). S.Chand & Company Pvt.Ltd.
- **2.** George F Simmons, (2003). Differential Equations with Applications and Historical Notes(2nd Edition). Tata McGraw-Hill Publishing Company.
- **3.** Sankara Rao, K. (2019). Introduction to Partial Differential Equations(3rd Edition). Prentice-Hall of India.

### Web References

- 1. https://www.youtube.com/watch?v=m8aIO-GQkXE
- 2. https://www.youtube.com/watch?v=AgyeJEO2a-k
- 3. https://www.youtube.com/watch?v=O_HgMWx4a5w
- 4. https://www.youtube.com/watch?v=1tDkXMDbvDg&t=119s
- 5. https://www.youtube.com/watch?v=USOmOW-IN3I

### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Ms. P. Geethanjali.

Semester II	Internal Marks: 2	External Marks:75		
<b>COURSE CODE</b>	<b>COURSE TITLE</b>	CATEGORY	Hrs /Week	CREDITS
22PMA2CC5	ALGEBRA – II	CORE	6	5

- Learn the fundamentals in Galois theory
- Expertise and confidence in proving theorems to progress in Galois theory
- Familiarize the concepts of Galois group
- Prerequisite

Basic knowledge of algebra.

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able	Level
	То	
C01	Analyse the important concepts of Galois theory and identify through various examples	K1, K2, K3
CO2	Predict the notions and their connections of Galois theory	K3
CO3	Examine the proof of solvability by Galois theory	K4
CO4	Evaluate clear cut idea in Galois theory extensions and illustrate through examples	K5
CO5	Learn and conclude Galois theory correspondence theorem of algebra	K5

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	2	2	2
CO2	3	3	3	2	2	3	3	3	2	2
CO3	3	3	3	3	3	3	3	2	3	3
CO4	2	2	3	3	3	2	2	3	3	3
CO5	2	2	3	3	3	2	3	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

## Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
			CO1,	K1,
	Prime Ideals and Maximal Ideals - Irreducible		CO2,	K2,
Ι	Polynomials.	18	CO3,	K3,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
			CO2,	K2,
II	Classical Formulas - Splitting Fields.	18	CO3,	K3,
			CO4,	K4,
			CO5	K5
	The Galois Group - Roots of Unity - Solvability by		CO1,	K1,
III	Radicals.	18	CO2,	K2,
			CO3,	K3,

			CO4,	K4,
			CO5	K5
			CO1,	K1,
			CO2,	K2,
IV	Independence of Characters - Galois Extensions.	18	CO3,	K3,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
	The Fundamental Theorem of Calois Theory	18	CO2,	K2,
V	Applications Galois's Great Theorem		CO3,	K3,
	Applications – Galois's Great Theorem.		CO4,	K4,
			CO5	K5
VI	Self-Study for Enrichment (Not included for End Semester Examinations) Rings - Domains and Fields - Homomorphism and Ideals - Quotients Rings- Polynomial Rings over Fields.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Text Bo	ok			

Joseph Rotman (2006), Galois Theory, 2nd Edition, Springer Verlag.

Chapters and Pages					
UNIT I	Pages 31- 43				
UNIT II	Pages 44-58				
UNIT III	Pages 59-75				
UNIT IV	Pages 76-82				
UNIT V	Pages 83-95				

### **Reference Books**

- 1. David S. Dummit and Richard M. Foote (Reprint 2017), *Abstract Algebra*, Wiley and Sons, Third Edition
- 2. John B. Fraleigh (2018), A First Course in Abstract Algebra, Narosa Publishing House, Seventh edition
- 3. I. N. Herstein (2006), Topics in Algebra, John Wiley, Second Edition

### Web References

- 1. https://nrich.maths.org/1422
- 2. https://www.math3ma.com/blog/what-is-galois-theory-anyway
- 3. <u>https://people.math.harvard.edu/~elkies/M250.01/galois_topix.html</u>
- 4. https://www.maths.ed.ac.uk/~tl/gt/gt.pdf
- 5. <u>https://mathoverflow.net/questions/34125/is-galois-theory-necessary-in-a-basic-graduate-algebra-</u> course

### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. K. Kalaiarasi

Semester II	Internal Marks: 2	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA2CC6	REAL ANALYSIS	CORE	6	5

- **Identify** the elements and importance of real numbers.
- **Provide** students with the specialist knowledge necessary for basic concepts in Real Analysis.
- Apply the proof techniques in analysis to be well prepared for the advanced courses.

### Prerequisite

Basic set theory and Calculus

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.	K2
CO2	Construct the important concepts of real analysis.	K3
CO3	Ascertain the concepts of basic topology, continuity, differentiation, The Riemann-Stieltjes Integral, sequences and series of functions, functions of several variables.	K4
CO4	Explain various mathematical proofs of basic results in real analysis.	K5
CO5	Develop the abstract ideas and various methods in mathematical analysis that can be applied to important practical problems.	K6

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	2	3
CO2	3	2	3	3	3	3	2	3	2	3
CO3	3	3	3	3	3	3	2	3	3	3
CO4	3	2	3	3	2	3	2	2	2	3
CO5	3	3	3	3	2	3	2	3	3	3

"1" – Slight (Low) Correlation  $\neg$  "2" – Moderate (Medium) Correlation  $\neg$ 

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

### Syllabus

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
			CO1,	K2,
	Basis Topology:	18	CO2,	K3,
Ι	Finite, Countable and Uncountable Sets – Metric		CO3,	K4,
	Spaces – Compact Sets – Connected Sets.		CO4,	K5,
			CO5	K6
	Continuity and Differentiation:		CO1,	K2,
II	Limits of Functions – Continuous Functions –	18	CO2,	КЗ,
	Continuity and Compactness – Continuity and		CO3,	K4,

	Connectedness – Discontinuities – Monotonic Functions – The Derivative of a Real Function – Mean value Theorems – The Continuity of Derivatives – L' Hospital's Rule – Derivatives of Higher Order – Taylor's Theorem.		CO4, CO5	K5, K6
ш	<b>The Riemann-Stieltjes Integral:</b> Definition and Existence of the Integral – Properties of the Integral – Integration and Differentiation.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
IV	Sequences and Series of Functions: Discussion of Main Problem – Uniform Convergence – Uniform Convergence and Continuity – Uniform Convergence and Integration – Uniform Convergence and Differentiation – The Stone- Weierstrass Theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
v	<b>Functions of Several Variables</b> Differentiation – The Contraction Principle – The Inverse Function Theorem _ The Implicit Function Theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Perfect Sets – Infinite Limits and Limits at Infinity – Integration of Vector-valued Functions – Equicontinuous Families of Functions - Linear Transformations.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6

### **Text Books**

Walter Rudin (1986). Principles of Mathematical Analysis (Third Edition). McGraw-Hill Book Company.

### **Chapters and Sections**

Reference Books			
UNIT- V	Chapter 9: Sections 9.10 – 9.29		
UNIT- IV	Chapter 7: Sections 7.1 – 7.18, 7.26 – 7.33		
UNIT-III	Chapter 6: Sections $6.1 - 6.22$		
	Chapter 5: Sections $5.1 - 5.15$		
UNIT-II	Chapter 4: Sections 4.1 – 4.31		
UNIT-I	Chapter 2: Sections 2.1 – 2.42, 2.45 – 2.47		

- 1. Robert G. Bartle and Donald R. Sherbert. (2019). *Introduction to Real Analysis (Fourth Edition)*. Wiley India Pvt. Limited.
- 2. Tom M. Apostol. (2002). Mathematical Analysis (Second Edition). Narosa Publishing House.
- 3. H.L. Royden. (2003). *Real Analysis (Third Edition, Ninth Reprint)*. PHI Learning Private Limited, New Delhi.

### Web References

- 1. https://youtu.be/mfoVRabIpQI
- 2. https://tinyurl.com/c756hc6k
- 3. <u>https://youtu.be/6mNGn8dTnJw</u>
- 4. <u>https://youtu.be/xIwg_w2quRE</u>
- 5. <u>https://youtu.be/yLbgdL9HAeg</u>
- 6. <u>https://tinyurl.com/mux7d53w</u>
- 7. https://youtu.be/8VTG6EsyJh4

### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. S. Vidhya

Semester II	Internal Marks: 25	External 1	Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA2CC7	LINEAR ALGEBRA	CORE	6	5

- Acquire knowledge related to basic concepts.
- **Develop** rational thinking patterns in terms of problem solving in competitive exam.
- Emphasis knowledge of the various aspects of Linear Algebra.

### Prerequisite

Basic Knowledge of algebra and vector space.

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
CO1	Remember and recall the basic concepts of vector space	K1
CO2	Illustrate the various techniques of problem solving in respective stream	K2
CO3	Apply different terminologies of linear algebra	К3
CO4	Classify the various properties in transformation	K4
CO5	Interpret the problems involved in vector spaces	K5

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	2	3	2	3	2	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	2	3	2	3	3	3	2	2	3
CO4	2	2	2	2	3	2	2	2	2	3
CO5	3	3	3	3	3	3	3	3	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

### Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIV E LEVEL
	Matrices:		CO1,	K1,
	Systems of Linear Equations – Matrices and Elementary		CO2,	K2,
Ι	Row Operations – Row reduced Echelon Matrices –	18	CO3,	K3,
	Invertible Matrices – Bases and Dimension.		CO4,	K4,
			CO5	K5
	Linear Transformations:		CO1,	K1,
II	Linear Transformations - The Algebra of Linear	10	CO2,	K2,
	Transformations – Isomorphism of Vector Spaces –	10	CO3,	K3,
	Representation of Transformations by Matrices – Linear		CO4,	K4,

	Functionals – The Transpose of a Linear Transformation.		CO5	K5
Ш	<ul> <li>Polynomials:</li> <li>Algebras - The Algebra of Polynomials –Polynomial Ideals</li> <li>– The Prime Factorization of a Polynomial .</li> <li>Determinants:</li> <li>Commutative rings – Determinant functions.</li> </ul>	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	<b>Determinants:</b> Permutations and the Uniqueness of Determinants — Introduction - Characteristic values – Annihilating Polynomials.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	<b>Elementary Canonical Forms:</b> Invariant Subspaces –Direct – Sum Decompositions – Invariant Direct Sums – The Primary Decomposition Theorem.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self -Study for Enrichment: (Not included for End Semester Examination) Matrix Multiplication - The Double Dual - Lagrange Interpolation - Additional Properties of Determinants - Simultaneous Triangulation and Simultaneous Diagonalization.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

### **Text Book**

Kenneth Hoffman and Ray Alden Kunze (1975). *Linear Algebra*, Second Edition, Prentice Hall of India Private Limited, New Delhi.

### **Chapters and Sections**

Chapt	er 1: Sections $1.2 - 1.4$ , $1.6$
Chapter 2:	Sections 2.3
Chapter 3:	Sections 3.1 – 3.5, 3.7
Chapter 4:	Sections 4.1, 4.2, 4.4, 4.5
Chapter 5:	Sections $5.1 - 5.2$
Chapter 5:	Sections 5.3
Chapter 6:	Sections $6.1 - 6.3$
Chapter 6:	Sections 6.4, 6.6 – 6.8
	Chapter 2: Chapter 3: Chapter 3: Chapter 4: Chapter 5: Chapter 5: Chapter 6: Chapter 6:

#### **Reference Books**

- 1. Kumaresan S(2004). Linear Algebra: A Geometric Approach, Prentice Hall of India Ltd.
- 2. Rao A. R, Bhimashankaram P(2000). Linear Algebra, Second Edition, Tata McGraw Hill.
- 3. Edgar Goodaire G(2014). *Linear Algebra*, Pure & Applied World Scientific, Cambridge University Press India Ltd.

### Web References

- 1. <u>https://youtu.be/Pc2dWW3aSrk</u>
- 2. https://youtu.be/shs8lWDOBHO
- 3. https://youtu.be/nPOooyrM5is
- 4. <u>https://youtu.be/uJNQPgYjlQc</u>
- 5. <u>https://youtu.be/6PEKr7vWsrw</u>
- 6. <u>https://ksuweb.kennesaw.edu</u>

### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. P.Shalini

Semester II	Internal Marks: 25	Exte	ernalMarks	s:75
COURSE	COURSE TITLE	CATEGORY	Hrs	CREDITS
CODE			/Week	
22PMA2CCC1A	PARTIAL DIFFERENTIAL	CORE	6	4
	EQUATIONS	CHOICE		

- **Recognize** certain basic types of first and second order PDEs and an in-depth knowledge of solving them by various methods.
- Analyze the Characteristics and Compatibility of PDE's.
- Qualitative Analysis of the solutions of Boundary value Problems.

Prerequisite

Fundamental knowledge of Partial differential equations in UG.

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
C01	<b>Interpret</b> the solutions of hyperbolic, linear and second order partial differential equations, Exterior, Interior and boundary value problems using various Methods.	K2
	<b>Develop</b> the various type of first and second order equations, Interior and Exterior value problems and <b>Determine</b> the higher order equations in	
CO2	physics, Characteristics of Equations in Three Variables, Linear Hyperbolic Equations and Elementary Solutions of Laplace's Equation.	K3
CO3	<b>Diagnose</b> the orthogonally, compatibility and characteristics of the partial differential equations with constant and variable coefficients, method of Integral transforms and Families of Equipotential Surfaces.	К3
CO4	<b>Discriminate</b> the solutions of first, second order and hyperbolic equations, Integral Surfaces Passing through a Given Curve, Surfaces Orthogonal to a Given System of Surfaces, Characteristics of Equations in Three Variables, The Solution of Linear Hyperbolic Equations, Separation of Variables	K4
	Ascertain the concepts of Laplace equation to find the solution of boundary value problems, Special Types of First-Order Equations, Linear Partial Differential Equations with Constant Coefficients,	
CO5	Equations with Variable Coefficients, the Method of Integral Transforms, Families of Equipotential Surfaces.	K4

Mappi	Mapping of CO with PO and PSO									
COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation  $\neg$  "2" – Moderate (Medium) Correlation  $\neg$  "3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

Syllabus				
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	<b>Partial Differential Equations of The First Order:</b> Partial Differential Equations - Origins of First-order Partial Differential Equations - Cauchy's Problem for First-order Equations - Linear Equations of the First Order - Integral Surfaces Passing through a Given Curve - Surfaces Orthogonal to a Given System of Surfaces.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
п	<b>Partial Differential Equations of The First Order:</b> Cauchy's Method of Characteristics - Compatible Systems of First-order Equations – Charpit's Method - Special Types of First-Order Equations - Jacobi's Method.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
III	Partial Differential Equations of the SecondOrder:The Origin of Second-order Equations – Second-orderEquations in Physics – Higher-order Equations inPhysics - Linear Partial Differential Equations withConstant Coefficients - Equations with VariableCoefficients.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
IV	Partial Differential Equations of the SecondOrder:Characteristics of Equations in Three Variables - TheSolution of Linear Hyperbolic Equations - Separationof Variables - The Method of Integral Transforms.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
V	Laplace's Equation: Elementary Solutions of Laplace's Equation - Families of Equipotential Surfaces - Boundary Value Problems - Separation of Variables.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Nonlinear Partial Differential Equations of the First Order - Solutions Satisfying Given Conditions - Characteristic Curves of Second-Order Equations – Nonlinear Equations of the Second Order– Problems with Axial Symmetry.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4

### **Text Book**

Ian N. Sneddon (2006), *Elements of Partial Differential Equations*, Dover Publication – INC. Mineola, Newyork.

# **Chapters and Sections**

UNIT- I	Chapter 2:	Sections 1 to 6
UNIT- II	Chapter 2:	Sections 8 to 11, 13
UNIT- III	Chapter 3:	Sections 1 to 5
UNIT- IV	Chapter 3:	Sections 7 to 10
UNIT- V	Chapter 4:	Sections 2 to 5

#### **Reference Books**

- 1. M.D.Raisinghania (2001), *Advanced Differential Equations*, Eighth Edition, S.Chand and Company Ltd., NewDelhi.
- 2. T.Amarnath (2003), *Elementary Course in Partial Differential Equations*, Second Edition, Narosa Publishing House, New Delhi.
- **3.** Sauvigny, Friedrich (2006), A Partial Differential Equations 2: Functional Analytic Methods, Springer, Arizona.

#### Web References

- 1. https://people.bath.ac.uk/mir20/images/odenotes.pdf
- 2. https://pages.pomona.edu/~ajr04747/Spring2014/Math182/Notes/Math182Spring2014Notes.pdf/
- 3. https://www.youtube.com/watch?v=VBn1diQCykQ/
- 4. https://www.youtube.com/watch?v=f0FeWyloHrs/
- 5. https://nptel.ac.in/courses/111106139/

#### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. G. Janaki

Semester II	Internal Marks: 2	External Marks:75			
COURSE CODE	<b>COURSE TITLE</b>	CATEGORY	Hrs /Week	CREDITS	
22PMA2CCC1B	MATHEMATICAL	CORE CHOICE	6	4	
	PROGRAMMING				

- Ability to **Understand** and **Analyze** managerial problems in industry so that they are able to use resources (capitals, materials, staffing, and machines) more effectively.
- **Knowledge** of formulating mathematical models for quantitative analysis of managerial problems in industry.
- Allows a quantitative technique or a scientific approach for making better decisions for operations under the control.

### Prerequisite

Basic Knowledge of Operations Research.

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recognize the importance and value of Operations Research and mathematical modeling in solving practical problems in industry	K1, K2
CO2	Know how to use variables for formulating complex mathematical models in management science, industrial engineering and Transportation science and in real life.	К3
CO3	Analyze a managerial decision problem and formulate into a mathematical model	K4
CO4	To design, improve and operate complex systems in the best possible way	K4, K5
CO5	Determine the solution of NonLinear Programming based on Various Method.	К5

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	<b>PO1</b>	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	2	3
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	2	3	3	3	2	3	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.
# Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Advanced Linear Programming:		CO1,	K1,
	From Extreme Points to Basic Solutions -		CO2,	K2,
Ι	Generalized Simplex Tableau in Matrix form -	17	CO3,	КЗ,
	Development of the Optimality and Feasibility		CO4,	K4,
	Conditions - Revised Simplex Algorithm.		CO5	K5
	Integer Linear Programming:		CO1	<b>K</b> 1
	Integer Programming Algorithms – Cutting		CO1,	K1, K2
П	Plane Algorithm.	18	$CO_2$ ,	K2, K3
11	DeterministicDynamic Programming:	10	CO3,	К3, КЛ
	Recursive Nature of Dynamic Programming(DP)		CO4, CO5	K5
	Computations.		005	IX.J
	Simulation Modeling :		CO1,	K1,
	Monte Carlo Simulation – Types of		CO2,	K2,
III	Simulation – Sampling from ProbabilityDistribution.	18	CO3,	K3,
			CO4,	K4,
			CO5	K5
	Classical Optimization Theory:		CO1,	K1,
	Unconstrained Problems – Necessary and		CO2,	K2,
IV	Sufficient Conditions – The Newton – Raphson	18	CO3,	K3,
	Method – Constrained Problems – Equality		CO4,	K4,
	Constraints (Jacobi Method).		CO5	K5
	Non Linear Programming Algorithms:		CO1,	K1,
	Unconstrained Algorithms – Direct Search		CO2,	K2,
V	Method – Gradient Method - Constrained	19	CO3,	K3,
	Algorithms – Quadratic Programming.		CO4,	K4,
			CO5	K5
	Self -Study for Enrichment:			
	(Not included for End Semester Examinations)		CO1,	K1,
	Duality – Matrix Definition of the Dual Problem –		CO2,	K2,
VI	Optimal Dual Solution – Forward and Backward		CO3,	K3,
	Recursion – Generation of Random Numbers –		CO4,	K4,
	Equality Constraints (Lagrangean Method) –		CO5	K5
	Chance-Constrained Programming.			

# Text Book

Hamdy A.Taha, Nineth Edition, (2014), *Operations Research*, Dorling Kindersley (India) Pvt. Ltd.

# **Chapters and Sections**

UNIT-I	Chapt	er 7: Sections 1.1, 1.2, 2.1 - 2.2 (Page No. 299 - 313)
UNIT-II	Chapter 8:	Sections 2, 2.2 (Page No. 355, 364 - 373),
	Chapter 11:	Sections1 (Page No. 461 - 464)
UNIT-III	Chapter 17:	Sections 1, 2, 3.2 (Page No. 681 – 686, 688 - 694)
UNIT- IV	Chapter 18:	Sections 1, 1.1, 1.2, 2, 2.1(Page No. 713 - 726)
UNIT- V	Chapter 19:	Sections 1, 1.1, 1.2, 2, 2.2 (Page No. 737 – 744, 753 – 758)

### **Reference Books**

- 1. KantiSwarup, P.K. Gupta, ManMohan, Nineteenth Edition (2017), *Operations Research*, Sultan Chand and Sons Publishers.
- 2. J.K. Sharma, Fourth Edition (2009), *Operations Research Theory and Applications*, Macmillan India Limited.
- 3. S.S. Rao, Second Edition (1985), Optimization Theory and Applications, New Age International Ltd.

### Web References

- 1. <u>https://www.youtube.com/watch?v=ii_oSKROeRI</u>
- 2. https://www.youtube.com/watch?v=NSrIb7mKtwg
- 3. https://faculty.ksu.edu.sa/sites/default/files/index.pdf
- 4. <u>https://www.youtube.com/watch?v=eo2tOPV3AoE</u>
- 5. <u>https://www.youtube.com/watch?v=9ESUw4azhKE</u>

### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. E. Litta.

Semester II Internal Marks: 25			ExternalMarks:75		
COURSE CODE COURSE TITLE CATEGORY		HRS /WEEK	CREDITS		
22PMA2CCC1C	DIFFERENCE EQUATIONS	CORE CHOICE	6	4	

- Analyze the linear difference equations of higher order.
- Understand the implementation of nonlinear difference equations..
- Summarize the results of oscillation for linear difference equations with systems of variables..

### Prerequisite

Classification of linear difference equations.

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall and Classify the models through linear difference equations of high- order	K1, K2
CO2	Interpret the systems of two or more dependent variables for various models.	K2
CO3	Solve the Planetary motions through the study of a linear difference or differential equations to examination of an associated complex function	К3
CO4	Analyze the basic concepts of Difference equations.	K4
CO5	Determine various types of models through the solutions oscillate around zero or eventually positive or eventually negative and also oscillation theory for self-adjoint equations	K5

### Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
CO5	2	2	3	3	2	3	2	2	2	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation – "3" – Substantial (High) Correlation – "-" indicates there is no correlation.

# Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Linear Difference Equations of Higher Order Difference Calculus: The power Shift, Factorial Polynomials and The Antidifference Operator - General Theory of Linear Difference Equations - Linear Homogeneous Equations with Constant Coefficients Nonhomogeneous Equations: Method of Undetermined coefficients : The Method of Variation of Constants (Parameters)	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Π	<b>System of Linear Difference Equations</b> Autonomous (Time –Invariant) Systems : The Discrete Analogue of the Putzer Algorithm, The Development of the Algorithm for A ⁿ – the Basic Theory <b>The Jordan form:</b> Autonomous (Time –Invariant) Systems Revisited : Diagonalizable Matrices, The Jordan Form and Block-Diagonal Matrices.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	<b>The Z-Transform Method and Volterra Difference</b> <b>Equations</b> Definition and Examples : Properties of the Z-Transform – The Inverse Z-transform and Solutions of Difference Equations : The Power Series Method, The Partial Fractions Method and The Inversion Integral Method <b>Volterra Difference Equations of convolution types:</b> The Scalar Case.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	<b>Oscillation Theory</b> Three-Term Difference Equations – Self-Adjoint Second- Order Equations.	17	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Asymptotic Behavior of Difference Equations Tools and Approximation – Poincare's theorem : Infinite Products and Perron's Example – Asymptotically Diagonal Systems – High- Order Difference Equations	17	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Limiting behavior of solutions – Linear Periodic System - Volterra Systems - Nonlinear Difference Equations - Second-Order Difference Equations : A Generalization of the Poincare Perron Theorem.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

**Text Books** Saber N Elaydi, Third Edition, (2004), *An Introduction to Difference Equations*, Springer Verlag, New York.

### **Chapters and Sections**

UNIT-I	Chapter	2 Section 2.1 - 2.4
UNIT-II	Chapter 3	Sections 3.1 - 3.3
UNIT-III	Chapter 6	Sections 6.1 - 6.3
UNIT- IV	Chapter 7	Sections 7.1 & 7.2 (Page No. 313 - 320)
UNIT- V	Chapter 8	Sections 8.1 - 8.4

### **Reference Books**

- 1. Ravi P.Agarwal and Kanishka Perera, Reprint, (2006), *Proceedings of the Conference on Differential and Difference Equations and Applications*, Hindawi Publishing Corporation.
- 2. Ravi P.Agarwal, Second Edition, (2000), *Difference Equations and Inequalites*, Marcel Dekker, Inc., New York.
- 3. Klaus Neusser, Reprint, (2021), Difference Equations for Economists RePEc/ IDEAS.

### Web References

- 1. <u>https://www.youtube.com/watch?v=zw8xM5GHvZQ</u>
- 2. <u>https://www.youtube.com/watch?v=MtHpbGUIGaA</u>
- 3. <u>https://www.youtube.com/watch?v=ESKx8PEJCB4</u>
- 4. <u>https://www.youtube.com/watch?v=_Xub0zCmlXk</u>
- 5. <u>https://www.youtube.com/watch?v=IKtROKsWVR4</u>
- 6. https://eprints.kfupm.edu.sa/id/eprint/9906/1/9906.pdf

### Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment and Smart Classroom.

### **Course Designer**

Dr R. Buvaneswari.

Semester II	Internal Marks: 40	Ex	xternalMarks:60	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA2DSE2AP	COMPUTATIONAL	DISCIPLINE		
	MATHEMATICS USING	SPECIFIC	6	3
	MATLAB(P)	ELECTIVE		

- To Provide Software that can be used to explore and experiment with Mathematical Constructions.
- Flexible for users to solve the various system of equations.
- To attain a high level of user support.

### Prerequisite

• Basic knowledge of Higher Mathematics

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember the concepts of Algebra, Geometry, Numerical Analysis, Calculus, etc.	K1
CO2	Understand the calculation by reading documented source code	K2
CO3	Relate the mathematical thinking that is applicable to daily life	K3
CO4	Associate technological tools for graphical visualization	K4
CO5	Develop skills with core elements of MATLAB and gain an appreciation of social scientific work	K6

### Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	3
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	3	2	3	2	3	2	3	2	2
CO5	2	2	2	2	2	2	2	2	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

### LIST OF PROGRAMS

- 1. Mathematical operations
- 2. Finding GCD and LCM
- 3. Finding roots and solving the system of equations
- 4. Matrix Operations
- 5. Decision Making
- 6. Loop Types
- 7. Vector Operations
- 8. Working with Arrays
- 9. Plotting 2D Graphs
- 10. Plotting 3D Graphs
- 11. Importing and Exporting data in Excel
- 12. Integration
- 13. Differentiation and Finding Maxima and Minima
- 14. Manipulating strings
- 15. Laplace Transform and Fourier Transform
- Web References
  - 1. https://www.mathworks.com/products/matlab.html
  - 2. https://www.mathworks.com/help/matlab/ref/plot.html
  - 3. https://www.mathworks.com/help/stateflow/ug/operations-for-vectors-and-matrices.html
  - 4. <u>https://www.tutorialspoint.com/matlab/matlab_matrics.htm</u>
  - 5. https://www.javatpoint.com/matlab-numerical-integration

#### Pedagogy

Power point presentations and Assignment.

#### **Course Designers**

- 1. Dr. S. Sasikala
- 2. Ms. R. Soundaria.

Semester II	Internal Marks: 40	External	Aarks:60	
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /	CREDITS
			WEEK	
22PMA2DSE2BP	MATHEMATICAL MODELLING	DISCIPLINE	6	3
	USING MATLAB(P)	SPECIFIC		
		ELECTIVE		

- Analyze the concepts and use the necessary to the real-life problems using MATLAB.
- Apply the technical knowledge to interpret and solve the problems using MATLAB.
- **Explore** the ideas of MATLAB in Mathematical modelling.

### Prerequisite

Basic knowledge of Mathematical Modelling and MATLAB.

### **Course Outcomes**

**Course Outcome and Cognitive Level Mapping** 

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand the importance of Mathematical Modelling in the real world using MATLAB.	K2
CO2	Apply Mathematical concepts to identify the appropriate mathematics to realize a solution using MATLAB.	K3
CO3	Make use of formulas, familiar with memory and file management in MATLAB.	K4
CO4	Determine various types of models through Difference equation .	K5
CO5	Formulate, Analyse and simulate mathematical models using MATLAB.	K6

### Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	2	2	2
CO2	3	2	3	3	3	3	3	2	2	2
CO3	3	2	3	3	3	3	3	2	2	2
<b>CO4</b>	3	2	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	2

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

### LIST OF PROGRAMS

- "-" indicates there is no correlation.
- 1) Lagrange 's Formula for Area of a Rectangle.
- 2) Simple interest and Compound interest.
- 3) Integral equations.
- 4) Calculus of variations in functionals involving two and three independent variables.
- 5) Difference Equation of a System.
- 6) MATLAB programming in dynamic programming.
- 7) Delay differential equations.
- 8) Linear programming in MATLAB.
- 9) Mixed-Integer linear programming.

- 10) Application of Non-linear programming.
- 11) Simulating simple circuit.
- 12) Programming a simple markov model.
- 13) Design Optimization.
- 14) MATLAB solution of a diffusion equation.
- 15) Commodities trading with MATLAB.

### Web References

- 1. <u>https://www.youtube.com/watch?v=Y93V9wOWETs</u>
- 2. <u>https://www.youtube.com/watch?v=ryxh5CoihwE</u>
- 3. <u>https://www.youtube.com/watch?v=K6yjDI4hzKo</u>
- 4. <u>https://www.youtube.com/watch?v=LpVv306NSnE</u>
- 5. <u>https://www.youtube.com/watch?v=z4aMBaTPW3I</u>
- 6. <u>https://www.youtube.com/watch?v=TCWrD3cZG9s</u>
- 7. <u>https://www.youtube.com/watch?v=bJy_QJTQxQA</u>
- 8. <u>https://www.mathworks.com/videos/mixed-integer-linear-programming-in-matlab-91541.html</u>
- 9. <u>https://www.youtube.com/watch?v=qTJDNXRfcsc</u>
- 10. https://www.youtube.com/watch?v=yLlQ1dzAsl8
- 11. <u>https://www.youtube.com/watch?v=wr35tzLMMfw</u>
- 12. https://www.mathworks.com/videos/design-optimization-with-matlab-1601644975662.html
- 13. <u>https://www.youtube.com/watch?v=S3DXGvrdx1w</u>
- 14. <u>https://www.youtube.com/watch?v=m6bkXNEKE7E</u>
- 15. https://www.mathworks.com/videos/modeling-an-insulin-infusion-pump-87684.html

### Pedagogy

Power point presentations, Live Demo, Hands on training.

### **Course Designer**

Dr. C. Saranya

Semester II	Internal Marks:40	External Mar		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS	CREDITS
			/	
			WEEK	
22PMA2DSE2CP	ORDINARY DIFFERENTIAL	DISCIPLINE	6	3
	EQUATIONS AND PARTIAL	SPECIFIC		
	DIFFERENTIAL EQUATIONS	ELECTIVE		
	USING MATLAB (P)			

- To identify different ordinary and partial differential equation problems and reformulate them in a way that is appropriate for using MATLAB.
- Use functions from the programming language library for efficient calculations and visualization.
- Solve problems systematically and implement the solution in MATLAB.

### Prerequisite

Fundamental knowledge of ordinary and partial differential equations.

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
CO1	Describe the use of fundamental data structures	K3
CO2	Apply MATLAB effectively to analyze and visualize data	K4
CO3	Solve scientific and mathematical problems	K4
CO4	Apply basic functions for ordinary and partial differential equations	K3
CO5	Compute programs in MATLAB	K5

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	2	2	2	3	2	2	3
CO2	3	2	3	2	3	2	3	3	3	3
CO3	3	3	3	2	3	2	3	3	3	2
CO4	3	3	2	3	3	3	2	3	3	3
CO5	3	3	2	3	3	3	2	3	3	3

"1"-Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"- Substantial (High)Correlation

"-" indicates there is no correlation.

### LIST OF PROGRAMS

- 1. Computing the solutions of First Order Differential Equations.
- 2. Determine the solutions to Initial Value Problems.
- 3. Plotting the solutions of First Order Differential Equations.
- 4. Plotting the solution of the second-order equations.
- 5. Computing the Solutions of the heat equations.
- 6. Finding the solutions of the Poisson equations.
- 7. Determine the solutions of Laplace Equations by Direct Method.
- 8. Computing the solutions of Laplace Equations by Iterative Method.
- 9. Solving the nonlinear system of Partial Differential Equations.
- 10. Plotting for the single Partial Differential Equations with the initial conditions.

### Web References

- 1. https://in.mathworks.com/help/matlab/math/partial-differential-equations.html
- 2. https://www.math.tamu.edu/reu/comp/matode.pdf
- 3. https://www.math.tamu.edu/~phoward/m401/pdemat.pdf
- 4. <u>https://www.youtube.com/watch?v=-DmTK868J4A</u>
- 5. https://www.youtube.com/watch?v=rwC7YU2WUf4

### Pedagogy

Power point presentations, Live Demo, Hands on training.

### **Course Designers**

- 1. Dr. G. Janaki
- 2. Ms. A. Gowri Shankari.

Semester III	Internal Marks: 2	Iarks: 25 External Marks:75				
<b>COURSE CODE</b>	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
22PMA3CC8	TOPOLOGY	CORE	6	5		

- **Define** the notion of topological spaces and characterize the properties of convergence, continuity, connectedness and compactness of the spaces.
- **Explore** the fundamental concepts of Product topology and box topology.
- Apply the idea of construction of the continuous real valued functions on normal spaces.

### Prerequisite

•

Basic Knowledge of Real Analysis

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe the basic concepts of topological spaces, continuous functions, connectedness, compactness, countability and separation axioms.	K2
CO2	Apply the topological concepts in various fields.	K3
CO3	Ascertain the notions of topological concepts, continuous functions, connectedness, compactness, countability and separation axioms.	K4
CO4	Evaluate the concepts of topological spaces, continuous functions, connectedness, compactness, countability and separation axioms.	K5
CO5	Develop the ideas involving topological spaces, continuous functions, connected ness, compactness, countability and separations axioms in different proofs.	K6

# Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	3
CO3	3	3	3	3	3	3	2	2	3	3
CO4	3	3	3	3	3	3	2	2	3	3
CO5	3	3	3	3	3	3	2	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

# Syllabus

				COGNITI
UNIT	CONTENT	HOURS	COs	VE
				LEVEL
	Tonological Spaces		CO1,	K2,
	Topological Spaces - Basis for a Topology - The Order		CO2,	K3,
Ι	Topology - The Product Topology on X x X - The	18	CO3,	K4,
	Subspace Topology - Closed Sets and Limit Points		CO4,	K5,
	Subspace Topology - Closed Sets and Emilt Tomits.		CO5	K6
			CO1,	K2,
	Continuous Functions:		CO2,	K3,
II	Continuous Functions - The Product Topology - The	18	CO3,	K4,
	Metric Topology – The Metric Topology (continued).		CO4,	K5,
			CO5	K6
			CO1,	K2,
	Connectedness:		CO2,	K3,
III	Connected Spaces - Connected Subspaces of the Real	18	CO3,	K4,
	Line - Components and Local Connectedness.		CO4,	K5,
			CO5	K6
			CO1,	K2,
	Compactness:	18	CO2,	K3,
IV	Compact Spaces - Compact Subspaces of the Real Line		CO3,	K4,
	- Limit Point Compactness.		CO4,	K5,
			CO5	K6
	Countability and Separation Axioms:		CO1,	K2,
	The Countability Axioms - The Separation Axioms -		CO2,	K3,
V	Normal Spaces - The Urysohn Lemma - The Urysohn	18	CO3,	K4,
	Metrization Theorem - The Tietze Extension Theorem -		CO4,	K5,
	The Tychonoff Theorem.		CO5	K6
	Self Study for Enrichment		CO1,	K2,
	(Not included for End Semester Examinations)		CO2,	K3,
VI	Topological Groups - The Quotient Topology -	-	CO3,	K4,
	Nets - Local Compactness - Imbeddings of Manifolds		CO4,	K5,
	11003 Local Compactices – infocuentes of Mainolus.		CO5	K6

# Text Book

James R. Munkres (2013). *Topology (Second Edition)*. PHI Learning Private Limited, New Delhi.

Chapters ar	nd Sections	
UNIT-I	Chapter 2:	Sections 12 - 17
UNIT-II	Chapter 2:	Sections 18 - 21
UNIT-III	Chapter 3:	Sections 23 - 25
UNIT- IV	Chapter 3:	Sections 26 - 28
UNIT- V	Chapter 4:	Sections 30 – 35
	Chapter 5:	Section 37

#### **Reference Books**

- 1. Mangesh G. Murdeshwar. (1999). *General Topology (Second Edition)*. New Age International (P) Limited, New Delhi.
- George F. Simmons. (2016). Introduction to Topology and Modern Analysis (26th Reprint). McGraw Hill Education (India) Private Limited, New Delhi.
- 3. Stephen Willard. (1998). General Topology. Dover Publications, INC, Mineola, New York.

### Web References

- 1. https://youtu.be/jHQ7qEPkKkw
- 2. https://youtu.be/6-J75PtYC5E
- 3. <u>https://tinyurl.com/yk65k76h</u>
- 4. <u>https://youtu.be/VDifg7aTXzg</u>
- 5. <u>https://youtu.be/bAkevWcBsxs</u>
- 6. https://youtu.be/CGADr19iWSo
- 7. https://tinyurl.com/32cbv45m

### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. S. Vidhya

Semester - III	Internal Marks: 25	:75		
COURSECODE	COURSETITLE	CATEGORY	Hours / Week	CREDITS
22PMA3CC9	DISCRETE MATHEMATICS	CORE	6	5

- **Develop** the mathematical concepts and technique which should serve as a preparation for more advanced quantitative courses.
- Analyze the method of logical reasoning to solve variety of problems.
- Apply mathematically correct terminology and notation.

### Prerequisites

- Familiarity of concepts of statements logic and truth tables, sets, functions and relations.
- Counting principles, permutations and combinations.

### **Course Outcomes**

<b>Course Outc</b>	ome and Cognitive Level Mapping	
CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand basic concepts in formal languages and computability, permutations, combinations, relations and functions, finite state machines, Boolean algebras.	K2
CO2	Classify algorithms based on the concepts of discrete Mathematics.	К3
CO3	Ascertain the notions of discrete Mathematics.	K4
CO4	Evaluate the conceptsof discrete mathematics in problem solving.	K5
CO5	Deduce mathematical ideas in computability, permutations, combinations, relations and functions, finite state machines, Boolean algebras.	K5

### Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	<b>PO1</b>	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation  $\neg$ 

"3" – Substantial (High) Correlation  $\neg$ 

"2" – Moderate (Medium) Correlation  $\neg$ "-" indicates there is no correlation.

### Syllabus

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
	COMPUTABILITY AND FORMAL		CO1,	K1,
	LANGUAGES:		CO2,	K2,
Ι	Introduction-Russell's Paradox and Non computability-	18	CO3,	K3,
	Languages-Phrase Structure Grammars- Types of		CO4,	K4,
	Grammars and Languages.		CO5	K5

П	PERMUTATIONS,COMBINATIONSANDDISCRETE PROBABILITY:Introduction-The Rules of Sum and Product –Permutations –Combinations –Generations ofPermutations and Combinations -Discrete Probability– Conditional Probability.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	<b>RELATIONS AND FUNCTIONS:</b> Introduction – Relational Model for Data Bases – Properties of Binary Relations – Equivalence Relations and Partitions – Partial Ordering Relations and Lattices – Chains and Antichains- A job - Scheduling Problem.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	<b>FINITE STATE MACHINES:</b> Introduction – Finite State Machines – Finite State Machines as Models of Physical Systems – Equivalent Machines – Finite State Machines as Language Recognizers.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	<b>BOOLEAN ALGEBRAS:</b> Lattices and Algebraic System – Principle of Duality – Basic properties of Algebraic Systems defined by Lattices – Distributive and Complimented Lattices- Boolean Lattices and Boolean Algebras- Uniqueness of Finite Boolean Algebras - Boolean Functions and Boolean Expressions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Ordered sets - Information and Mutual Information - Functions and the Pigeonhole Principle - Finite State Languages and Type-3 Languages - Propositional Calculus	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

### Text Book

C.L.Liu, (2000), *Elements of Discrete Mathematics*(*Second Edition*), Tata McGraw-Hill Publishing Company Limited.

#### Limited.

### **Chapters and Sections**

UNIT-I	Chapt	er 2:	Sections 2.1, 2.2, 2.4-2.6.
UNIT-II	Chapter 3:	Sectio	ons 3.1-3.7
UNIT-III	Chapter 4:	Sectio	ons 4.1- 4.7
UNIT-IV	Chapter 7:	Sectio	ons 7.1 – 7.5
UNIT-V	Chapter 12:	Sectio	ons 12.1-12.7

#### **Reference Books**

- 1. J.P.Tremblay, R.Manohar, (2011), Discrete Mathematical, Structures with Applications to Computer Science, Tata McGraw Hill.
- 2. Ralph P. Grimaldi, B. V. Ramana(2006), Discrete and Combinatorial Mathematics, Pearson Education,.
- 3. Kenneth H. Rosen, (2008), *Discrete Mathematics & its Applications with combinatorics and graph theory*, Tata McGraw Hill Company Limited, New Delhi.

### Web References

- 1. https://gyires.inf.unideb.hu/GyBITT/14/ch02s03.html
- 2. <u>https://www.youtube.com/watch?v=_rSBC86Tdkw</u>
- 3. https://www.youtube.com/watch?v=0HiMb-yf-nI
- 4. https://www.youtube.com/watch?v=XJnIdRXUi7A
- 5. <u>https://www.youtube.com/watch?v=wbBY2tTqXDA</u>
- 6. https://www.youtube.com/watch?v=Qa6csfkK7_I
- 7. https://plato.stanford.edu/entries/russell-paradox/
- 8. https://youtu.be/WW-NPtIzHwk

# Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. P. Saranya.

Semester III	Internal Marks:25	E	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS	
22PMA3CC10	MEASURE AND INTEGRATION	CORE	6	5	

- Gain the knowledge to construct Lebesgue measure and its properties.
- Compute Lebesgue integrals by convergence theorems and Fubini's theorem.
- Familiarize the concepts of Measure theory.

### Prerequisite

Basic knowledge in Real Analysis

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe fundamental concepts of Measure and Integration through examples.	K2
CO2	Predict the important notions and their connections of Measure theory.	K3
CO3	Ascertain the concepts of Measure in real line, abstract spaces, product spaces, integration of functions of a real variables and convergence	K4
CO4	Evaluate mathematical proofs of results in Measure and Integration.	K5
CO5	Examine the methods of analysis that can be applied to real world problems.	K5

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	2	3
CO2	3	2	3	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	2	2
CO4	3	2	2	3	3	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

# Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Measure On the Real Line : Lebesgue Outer Measure – Measurable Sets – Regularity – Measurable Functions – Borel and Lebesgue Measurability	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
Π	Integration of Functions of a Real variable : Integration of Non-negative Functions – The General Integral – Riemann and Lebesgue Integrals.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	Abstract Measure Spaces : Measures and outer measures – Extension of a Measure – Uniqueness of the Extension – Completion of a Measure	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
IV	Inequalities and the <i>L</i> ^p spaces : The <i>L</i> ^p Spaces – Convex Functions. Convergence : Convergence in Measure – Almost Uniform Convergence.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
V	Signed Measures and their Derivatives : Signed Measures and the Hahn Decomposition – The Jordan decomposition Measure and Integration in a Product Space : Measurability in a Product Space – The product measure and Fubini's theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
VI	Self-Study for Enrichment (Not included for End Semester Examination) Hausdorff Measures on the Real line – Integration of Series – Measure spaces – Integration with respect to a Measure – The Radon-Nikodym theorem – Lebesgue Measure in Euclidean space.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

# Text Book

G.De Barra, (2003). Measure Theory and Integration, New Age International (P) Limited.

# **Chapters and Sections**

UNIT–I	Chapter 2:	Sections 2.1 to 2.5
UNIT II	Chapter 3:	Sections 3.1, 3.2 and 3.4
UNIT-III	Chapter 5:	Sections 5.1 to 5.4
UNIT-IV	Chapter 6:	Sections 6.1, 6.2
	Chapter 7:	Sections 7.1, 7.2
UNIT-V	Chapter 8:	Sections 8.1, 8.2
	Chapter 10:	Sections 10.1, 10.2

### **Reference Books**

- 1. Munroe. M.K. (1971). Measure and Integration, Addison Wesley Publishing Company.
- 2. Jain, P.K, Gupta, V.P. (2003). *Lebesgue Measure and Integration*, New Age International Pvt Limited Publishers New Delhi.
- 3. Richard L. Wheeden and Antoni Zygmund (1977). *Measure and Integral: An Introduction to Real Analysis*, Marcel Dekker Inc.
- 4. Inder, K. Rana (1997). An Introduction to Measure and Integration, Narosa Publishing House, New Delhi.

### Web References

- 1. <u>https://www.youtube.com/watch?v=TG67nsccqeQ</u>
- 2. <u>https://www.youtube.com/watch?v=PGPZ0P1PJfw</u>
- 3. <u>https://www.youtube.com/watch?v=qAYX9Koo87o</u>
- 4. <u>https://www.youtube.com/watch?v=eu-6_wpTE-A</u>
- 5. <u>https://link.springer.com/book/10.1007/978-3-540-34514-5</u>
- 6. http://www.math.chalmers.se/~borell/MeasureTheory.pdf

### Pedagogy

Assignment, Seminar, Lecture, Quiz, Group discussion, Brain storming, e-content.

### **Course Designer**

Dr. V. Geetha

Semester : III	Internal Mar	·ks:25	Extern	al Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22PGCS3CCC2A	CYBER SECURITY	CORE CHOICE	3(T) + 2(P)	4

- To develop skills in students that can help them plan, implement, and monitor cyber securitymechanisms to ensure the protection of information technology assets.
- To expose students to governance, regulatory, legal, economic, environmental, social, and ethical contexts of cyber security.
- To expose students to the responsible use of online social media networks.
- To systematically educate the necessity to understand the impact of cyber-crimes and threats withsolutions in a global and societal context.
- To select suitable ethical principles, commit to professional responsibilities and human values, and contribute value and wealth for the benefit of society

### Prerequisite

Basic Knowledge of Cyber Security

### **Course Outcomes and Cognitive Level Mapping**

CO Number	CO Statement	Cognitive Level
CO1	Understand the cyber security threat landscape	K1,K2
CO2	Develop a deeper understanding and familiarity with various types, cyber crimes, vulnerabilities, and remediesthereto.	K2, K3
CO3	Analyse and evaluate existing legal frameworks and laws on cyber security.	K4, k5
CO4	Analyse and evaluate the digital payment system security and remedial measures.	K4, K5
CO5	Analyse and evaluate the cyber security risks, plan suitable security controls	K4, K5

### Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	P0 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	2	3	3	3	3	2
CO4	3	3	3	3	2	3	3	3	3	2
CO5	3	3	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation

"3" - Substantial (High) Correlation

"2" – Moderate (Medium)Correlation "-" indicates there is no correlation

# SyllabusTheory

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Overview of Cyber Security: Cyber security increasing threat landscape, -Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism, Protection of end user machine, Critical IT and National Critical Infrastructure, Cyber warfare, Case Studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Cyber Crimes: Cyber Crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cyber-squatting, Pharming, Cyber espionage, Cryptojacking, Darknet- illegal trades, drug trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams, misinformation, fake news cyber crime against persons –cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Cyber Law: Cyber Crime and legal landscape around the world, IT Act, 2000 and its amendments. Limitations of IT Act, 2000. Cyber Crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies- AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Data Privacy and Data Security: Defining data, meta-data, big data, non-personal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data Protection Regulations(GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA). Social media- data privacy and security issues.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Cyber security Management, Compliance and Governance: Cyber security Plan-cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

VI	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Case Studies: Largest Cyber Attacks : Yahoo Data		CO3,	K3,
	Breach, Equifax Data Breach, WannaCry Malware Attack,		CO4,	K4,
	Simple Locker.		CO5	K5

### **Reference Books**

- 1. Vivek Sood, (2017). Cyber Law Simplified. McGraw Hill Education
- 2. Sumit Belapure and Nina Godbole, (2011). *Computer Forensics and Legal Perspectives*. Wiley India Pvt. Ltd.
- 3. Dorothy F. Denning, (1998). Information Warfare and Security. Addison Wesley.
- 4. Henry A. Oliver, (2015). *Security in the Digital Age: Social Media Security Threats and Vulnerabilities*. Create Space Independent Publishing Platform.
- 5. Natraj Venkataramanan and Ashwin Shriram, (2016). *Data Privacy Principles and Practice*. 1st Edition, CRC Press.
- 6. W.Krag Brothy, (2008). *Information Security Governance, Guidance for Information Security Managers*. 1st Edition, Wiley Publication.
- 7. Martin Weiss, Michael G.Solomon, (2015). *Auditing IT Infrastructures for Compliance*. 2nd Edition, Jones & Bartlett Learning.

### Web References

- 1. https://www.tutorialspoint.com/principles-of-information-system-security
- 2. https://www.geeksforgeeks.org/principle-or-information-system-secutiry/
- 3. https://www.techtarget.com/searchsecurity/definition/cybersecurity
- 4. https://www.ukessays.com/essays/computer-science/analysis-of-the-yahoo-data-breaches.php
- 5. https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
- 6. https://www.techtarget.com/searchsecurity/definition/WannaCry-ransomware
- 7. https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

### Practicals:

### **List of Exercises** (Not included for End Semester Examinations)

- 1. Platforms for reporting cyber crimes.
- 2. Checklist for reporting cyber crimes online
- 3. Setting privacy settings on social media platforms.
- 4. Do's and Don'ts for posting content on Social media platforms.
- 5. Registering complaints on a Social media platform.
- 6. Prepare password policy for computer and mobile device.
- 7. List out security controls for computer and implement technical security controls in the personal computer.
- 8. List out security controls for mobile phone and implement technical security controls in the personal mobile phone.
- 9. Log into computer system as an administrator and check the security policies in the system.

### Web References

- 1. https://cybercrime.gov.in/
- 2. https://cybercrime.gov.in/webform/crime_onlinesafetytips.aspx
- 3. https://www.digitalvidya.com/blog/social-media-dos-and-donts/
- 4. https://www.medianama.com/2023/02/223-platform-grievance-appellate-committees-social- media/
- 5. https://www.ibm.com/topics/security-controls
- 6. https://docs.oracle.com/cd/E19683-01/817-0365/concept-2/index.html

### Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment.

### **Course Designer**

From UGC SYLLABUS

Semester III	Internal Marks: 25	Exte	ernal Marks:75	5
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA3CCC2B	INTRODUCTION TO CODING THEORY	CORE CHOICE	5	4

- Apply the coding theory to code an information using linear codes and cyclic codes.
- Acquire the knowledge of decoding the codes received and retrieve the original information.
- Find various bounds for various types of codes.

### Prerequisite

Basic Knowledge in Algebra.

### **Course Outcomes**

# **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
C01	Explain the concept of coding.	K2
CO2	Classify the Communication Channels and give the datas in a required format.	К3
CO3	Determine the bounds on various coding.	K4
CO4	Examine some methodologies for the coding and decoding in an effective manner.	K4
CO5	Compare the notions of distinct codes and represent the data in a easy way.	K5

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2	3	2	2	2	3
CO2	2	2	3	2	2	2	2	2	2	3
CO3	3	2	3	2	2	3	2	2	3	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	2	2	2	3	3	2	3	3	2	2

"1" – Slight (Low) Correlation  $\neg$ 

"2" – Moderate (Medium) Correlation  $\neg$ 

"3" – Substantial (High) Correlation  $\neg$ 

"-" indicates there is no correlation.

Syllabus

				COGNITI
UNIT	CONTENT	HOURS	COs	VE
				LEVEL
	From dataction correction and decoding		CO1,	K1,
	Communication Channels, Maximum likelihood		CO2,	K2,
Ι	decoding Hamming distance Nearest	18	CO3,	K3,
	neighbor/minimum distance decoding		CO4,	K4,
			CO5	K5
	<b>Finite Fields</b> . Fields- Polynomial rings-Structure of finite		CO1,	K1,
	fields-Minimal Polynomials		CO2,	K2,
II	<b>Linear Codes:</b> Vector spaces over finite fields. Linear	18	CO3,	K3,
	codes_Hamming weight_bases for linear codes		CO4,	K4,
	codes-framming weight-bases for mical codes.		CO5	K5
	Linear Codes: Equivalence of linear codes-Encoding		CO1,	K1,
	with linear code-Decoding of linear codes: Cosets-	18	CO2,	K2,
III	Nearest neighbor decoding for linear codes. Bounds in		CO3,	K3,
	coding theory: The main coding theory problem– Lower		CO4,	K4,
	bounds-Hamming bound and perfect codes.		CO5	K5
			CO1,	K1,
	Bounds in coding theory: Singleton bound and MDS	18	CO2,	K2,
IV	codes-Plotkin bound-Nonlinear codes-griesmer bound.		CO3,	K3,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
	Construction of cyclic codes: Definition-Generator		CO2,	K2,
V	polynomials-generator and parity check matrices-	18	CO3,	K3,
	Decoding of cyclic codes.		CO4,	K4,
			CO5	K5
	Self Study for Enrichment:		CO1,	K1,
	(Not included for End Semester Examination)		CO2,	K2,
VI	Distance of a Code – Generator Matrix and parity-check	-	CO3,	K3,
	matrix- Syndrome decoding- Linear Programming		CO4,	K4,
	bound – Brust-error-correcting codes.		CO5	K5

# Text Book

San Ling Chaoping Xing.(2004), Coding Theory: A First Course, The Cambridge University Press,

United States of America.

# **Chapters and Sections**

UNIT-I	Chapter 2	Sections 2.1-2.4
UNII-II	Chapter 3 Chapter 4	Sections 3.1-3.4 Sections 4.1-4.4
UNIT-III	Chapter 4	Sections 4.5-4.8
UNIT- IV	Chapter 5 Chapter 5	Sections 5.1- 5.3 Sections 5.4 – 5.7
UNIT- V	Chapter 7	Sections 7.1 to 7.4.

### **Reference Books**

- 1. Lint Van J. H (2004). A Introduction to Coding Theory, Springer- Verlag, Berlin.
- Mary J Jones and Gareth A Jones(2004). *The Information and Coding Theory*, Springer- Verlag, Berlin.
- 3. Woungang I, Misra S & Misra S. C(2010). *Selected Topics in Information and Coding Theory*, Prentice Hall of India, New Delhi.

### Web References

- 1. <u>https://www.youtube.com/watch?v=5wDVsXrDFoQ</u>
- 2. <u>https://www.youtube.com/watch?v=NULv-dp-UzQ</u>
- 3. <u>https://www.youtube.com/watch?v=_cdSLHfRN_o</u>
- 4. https://u.cs.biu.ac.il/~lindell/89-662/coding_theory-lecture-notes.pdf
- 5. <u>https://users.math.msu.edu/users/halljo/classes/codenotes/Topstuff.pdf</u>

### Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

### **Course Designer**

Dr. S. Saridha

Semester III	Internal Marks: 2	External Marks:75		
<b>COURSE CODE</b>	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA3CCC2C	MECHANICS	CORE	5	4
		CHOICE		

- State the basic concepts of Lagrangian and Hamiltonian approaches to classical mechanics.
- **Explore** different applications of these concepts in mechanics.
- Analyze the methods of solving central force problems.

### Prerequisite

Mechanics and differential equations at UG level.

### **Course Outcomes**

### **Course Outcome and Cognitive Level Mapping**

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe the fundamental concepts of Mechanics.	K2
CO2	Interpret and illustrate the knowledge of core principles in mechanics.	K3
CO3	Ascertain the analytical techniques for solving some partial differential equations that frequently occur in applications.	K4
CO4	Test for the importance of concepts such as generalized coordinates and constrained motion.	K4
CO5	Build up an understanding of kinetic and potential energies of a system, the Lagrangian and Hamiltonian functions of systems will be set up in order to arrive at the equations of motion and to realize the reduction of a two-body problem to a one-body problem in a central force system.	K6

# Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	3
CO3	3	3	3	3	3	3	2	2	3	3
CO4	3	3	3	3	3	3	2	2	3	3
CO5	3	3	3	3	3	3	2	2	3	3

"1" – Slight (Low) Correlation  $\neg$  "2" – Moderate (Medium) Correlation  $\neg$ 

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

# Syllabus

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
Ι	<b>SURVEY OF THE ELEMENTARY PRINCIPLES</b> Mechanics of a Particle– Mechanics of a System of Particles – Constraints– D'Alembert's Principle and Lagrange's Equations – Velocity-Dependent Potentials and the Dissipation Function.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
Π	VARIATIONALPRINCIPLESANDLAGRANGE'S EQUATIONSHamilton's Principle – Some Techniques of the Calculus of Variations – Derivation of Lagrange's Equations from Hamilton's Principle – Advantages of a Variational Principle Formulation – Conservation Theorems and Symmetry Properties – Energy Function and the Conservation of Energy.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
III	<b>THE CENTRAL FORCE PROBLEM</b> Reduction to the Equivalent One-Body Problem– The Equations of Motion and First Integrals – The Equivalent One-Dimensional Problem and Classification of Orbits – The Virial Theorem.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
IV	<b>THE CENTRAL FORCE PROBLEM</b> The Differential Equation for the Orbit and Integrable Power-Law Potentials – Conditions for Closed Orbits (Bertrand's Theorem) – The Kepler Problem: Inverse Square Law of Force – The Motion in Time in the Kepler Problem – The Laplace-Runge-Lenz vector.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
v	<b>THE HAMILTON EQUATIONS OF MOTION</b> Legendre Transformations and the Hamilton Equations of Motion– Cyclic Coordinates and the Conservation Theorems – Routh's Procedure – Derivation of Hamilton's Equations from a Variational Principle – The Principle of Least Action.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Simple Applications of the Lagrangian Formulation– Extending Hamilton's Principle to systems with constraints– Scattering in a Central Force Field– Transformation of the Scattering Problem to Laboratory Coordinates – The Hamiltonian Formulation of Relativistic Mechanics.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6

### **Text Book**

Herbert Goldstein, Charles P.Poole, John Safko (2011). *Classical Mechanics (Third Edition)*. Darling Kindersley, India.

### **Chapters and Sections**

Chapter 1	Sections 1.1 – 1.5
Chapter 2	Sections 2.1 – 2.3, 2.5 – 2.7
Chapter 3	Sections $3.1 - 3.4$
Chapter 3	Sections 3.5 – 3.9
Chapter 8	Sections 8.1 – 8.3, 8.5, 8.6
	Chapter 1 Chapter 2 Chapter 3 Chapter 3 Chapter 8

### **Reference Books**

- 1. S.K.Sinha (2009). Classical Mechanics. Narosa Publishing House, New Delhi.
- 2. J.C.Upadhaya (2003). Classical Mechanics. Himalaya Publishing House, New Delhi.
- 3. D.Greenwood(1985). Classical Dynamics. Prentice hall of India, New Delhi.

### Web References

- 1. https://youtu.be/-9g3bqbZHCI
- 2. <u>https://youtu.be/ONese_4PSeM</u>
- 3. <u>https://youtu.be/OWTaGzLeRpE</u>
- 4. https://youtu.be/Wrr4d2De5IE
- 5. <u>https://youtu.be/wejAz4hIVUI</u>
- 6. <u>https://youtu.be/2DvvSvUj_Qg</u>
- 7. <u>https://sites.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf</u>

### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

### **Course Designer**

Dr. C.Saranya

Semester III	Internal Marks	:-	ExternalMarks:100		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22PMA3DSE3A	ANALYTICAL SKILLS FOR COMPETITIVE EXAMINATIONS	DISCIPLINE SPECIFIC ELECTIVE	4	3	

- **Analyse** the concepts concerned with linear and algebraic properties that are preserved under continuous deformations of objects.
- **Enhance** the students to develop analytical thinking and the study of continuity and connectivity
- Motivate the advance treatment of theory at a fairly understandable level.

### Prerequisite

Basic Knowledge of algebra and vector spaces.

### **Course Outcomes**

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO 1	Remember the basic concepts and objective of algebra and vector spaces.	K1
CO 2	Illustrate the properties of algebra and vector spaces to find the solution.	K2
<b>CO 3</b>	Apply different terminologies of algebra and linear algebra	K3
<b>CO 4</b>	Classify the various properties in algebra and transformation	K4
CO 5	Interpret the problems involved in algebra and vector spaces	K5

### Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation

Syllahus

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Permutations – Combinations - Pigeon-hole Principle - Inclusion-Exclusion Principle – Derengements - Fundamental Theorem of	12	CO1, CO2,	K1, K2,
	Arithmetic - Divisibility in Z – Congruences - Chinese Remainder Theorem - Euler's Ø- Function - Primitive Roots.		CO3, CO4, CO5	K3, K4, K5
Ш	Vector Spaces – Subspaces – Linear dependence – Basis – Dimension – Algebra of linear transformations.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

III	Algebra of matrices – Rank and Determinant of matrices – Linear equations - Eigenvalues - Eigenvectors – Cayley –Hamilton theorem.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Matrix representation of linear transformations – Change of basis - Canonical forms – Diagonal forms – Triangular forms –Jordan forms.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Inner product spaces – Ortho normal basis – Quadratic forms –Reduction and Classification of Quadratic forms.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) The Double Dual - Lagrange Interpolation – Modules – Direct-Sum Decomposition Theorem – Operators on Inner Product Spaces.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

### **Text Books**

- [1] Joseph A. Gallian, (1999), Contemporary Abstract Algebra, Narosa Publishing House, Fourth Edition.
- [2] David M. Burton (2012), Elementary Number Theory (Sixth Edition), Tata McGraw Hill Education Private Limited, New Delhi.
- [3] Kumaresan.S (2000), Linear Algebra: A Geometric Approach , Prentice hall.
- [4] Seymour Lipschutz (2001), Marc Lipson, Schaum's outlines- Linear Algebra ,Mcgraw Hill Education, Third Edition.
- [5] Krishnamurthy, Mainra V P and Arora JL (1976), Introduction to linear Algebra, East West Press, New Delhi.
- [6] Vasistha. A. R, Linear Algebra (2006), Krishna Prakashan media (P).
- [7] Stephen. H, Friedberg (2004), Linear Algebra, Prentice Hall of India Pvt Ltd.

### **Reference Books**

- [1] Telang S. G. (2005), Number Theory (Reprint 2001), Tata McGraw Hill Education Private Limited, New Delhi.
- [2] David S. Dummit and Richard M. Foote, (2004), Abstract Algebra, Wiley and Sons, Third Edition.
- [3] Kenneth Hoffman and R. Kunze (1984): Linear Algebra, Phi Learning Private Limited, 2nd Edition.

# Web References

- 1. https://www.google.com/search?q=csir+net+mathematical+science+solved+question+papers&tbm= vid&ei=FeE0ZI7uILqOseMP_oSWyAw&start=10&sa=N&ved=2ahUKEwjOzIv8_aDAhU6R2wG HX6CBckQ8tMDegQIFhAE&biw=1366&bih=600&dpr=1#fpstate=ive&vld=cid:ee12b87c,vid:6iC mTnhgM0Y.
- 2. https://www.google.com/search?q=csir+net+mathematical+science+solved+linear+algebra+questio n+papers&biw=1366&bih=600&tbm=vid&ei=UeI0ZOmOLuWcseMP_IXwA4&ved=0ahUKEwipS _6DAhVITmwGHfzHBeg4FBDh1QMIDQ&uact=5&oq=csir+net+mathematical+science+solved+lii near+algebra+question+papers&gs_lcp=Cg1nd3Mtd2l6LXZpZGVvEAM6BAgAEB46CAgAEIoFE IYDOgYIABAeEA06CgghEKABEMMEEAo6CAghEKABEMMEOgQIIRAKULwGWM0tYLY6 aABwAHgAgAGAA4gBsheSAQgwLjEyLjIuMpgBAKABAcABAQ&sclient=gws-wizvideo#fpstate=ive&vld=cid:dffaef48,vid:ItF4GBWtdwQ
- 3. https://www.google.com/search?q=csir+net+mathematical+science+solved+linear+algebra+questio n+papers&biw=1366&bih=600&tbm=vid&ei=UeI0ZOmOLuWcseMP_IXwA4&ved=0ahUKEwipS 6DAhVITmwGHfzHBeg4FBDh1QMIDQ&uact=5&oq=csir+net+mathematical+science+solved+li near+algebra+question+papers&gs_lcp=Cg1nd3Mtd2l6LXZpZGVvEAM6BAgAEB46CAgAEIoFE IYDOgYIABAeEA06CgghEKABEMMEEAo6CAghEKABEMMEOgQIIRAKULwGWM0tYLY6 aABwAHgAgAGAA4gBsheSAQgwLjEyLjIuMpgBAKABAcABAQ&sclient=gws-wizvideo#fpstate=ive&vld=cid:20257e30,vid:okGkqdNAyuQ
- 4. https://www.youtube.com/watch?v=bbQ0uPTLZzo
- 5. https://www.youtube.com/watch?v=3KqG8Mc6C40
- 6. https://www.youtube.com/watch?v=RoYIu6LbSnI
- 7. https://www.youtube.com/watch?v=rgxyxcTwvuo
- 8. <u>https://www.youtube.com/watch?v=y_57UcnWHfU</u>
- 9. https://www.cuemath.com/numbers/the-fundamental-theorem-of-arithmetic/
- 10. <u>https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/euler-s-totient-function-phi-function</u>

### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignments.

### **Course Designer**

Ms. V. ManiMozhi

Semester III Internal Marks:25			External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS	
22PMA3DSE3B	STOCHASTIC PROCESSES	DISCIPLINE SPECIFIC ELECTIVE	4	3	

- Acquire the basic concepts of stochastic processes and their applications.
- Understand the fundamental of renewal processes.
- **Explore** fundamental concepts in queuing theory.

### Prerequisite

Basic knowledge in Probability

### **Course Outcomes**

<b>Course Outc</b>	come and Cognitive Level Mapping	
СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember and recall the basic concept of probability	K1
CO2	Interpret the various states space and chains of the Stochastic Processes.	K2
CO3	Analyze the different techniques of Stochastic Processes.	K3
CO4	Classify the solution of mathematical problems using various techniques	K4
CO5	Examine the solution of various state space.	K4

# Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	2	2
CO4	3	2	2	3	3	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

### "3" – Substantial (High) Correlation $\neg$ "-" indicates there is no correlation.

### Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	<ul> <li>Stochastic Processes: Some Notions : Introduction- Specification of Stochastic processes –</li> <li>Stationary processes</li> <li>Markov Chains: Definitions and examples – Higher Transition Probabilities – Generalization of Independent Bernoulli Trials: Sequence of Chain – Dependent Trials.</li> </ul>	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

п	Markov chains: Classification of States and Chains – Determination of Higher Transition Probabilities – Stability of a Markov System – Graph Theoretic Approach – Markov Chain with Denumerable Number of States- Reducible Chains – Markov Chains with Continuous State Space.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
ш	Markov Processes with Discrete State Space : Poisson Process and its Extensions – Poisson Process -Poisson Process and Related Distributions – Generalisations of Poisson Process- Birth and Death Process	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	<b>Renewal processes and Theory</b> : Renewal Process – Renewal Processes in Continuous Time – Renewal Equation – Stopping time: Wald's Equation – Renewal Theorems.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Stochastic Processes in Queueing and Reliability – Queueing Systems: General Concepts – The Queueing Model M/M/1: Steady State Behaviour – Transient Behaviour of M/M/1 Model – Non-Markovian Queueing Models.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self-Study for Enrichment (Not included for End Semester Examination) Martingales – Non-Homogeneous chain– Markov Processes with Discrete State Space (Continuous Time Markov Chains) – Delayed and Equilibrium Renewal Processes – The Model GI/M/1.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

### **Text Book**

J. Medhi (1984), Stochastic Processes, New Age International (P) Limited, Publishers, New Delhi–Second Edition.

### **Chapters and Sections**

- **UNIT I** Chapter 2: Section 2.1 2.3
  - Chapter 3: Section 3.1 3.3
- **UNIT II** Chapter 3: Section 3.4 3.9 and 3.11
- UNIT III Chapter 4: Section 4.1 4.4
- **UNIT IV** Chapter 6: Section 6.1 6.5
- **UNIT V** Chapter 10: Section 10.1–10.3 and 10.7

### **Reference Books**

- 1. B.R.Bhat, Stochastic Models Analysis and Applications ,New Age International(P) Limited Publishers, New Delhi,2004
- 2. Biswas, Suddhendu, Stochastic Processes in Demography and Applications, New Central Book Agency Calcutta, 2006.
- 3. T.Veerarajan, Probability, Statistics and Random Processes, Tata McGraw Hill Education Private Limited, New Delhi,2010 .

### Web References

- 1. <u>https://www.google.com/url?q=https%3A%2F%2Fmpaldridge.github.io%2Fmath27</u> <u>50%2FP04.html&sa=D&sntz=1&usg=AOvVaw1alFxYapjLEFq-K2MNhQjT</u>
- 2. https://images.app.goo.gl/8tiFh5mvAGGamRV86
- 3. <u>https://www.google.com/url?q=https%3A%2F%2For.stackexchange.com%2Fquestions%2</u> <u>F4882%2Fhow-do-derive-the-steady-state-probabilities-m-m-1-k-queueing-</u> system&sa=D&sntz=1&usg=AOvVaw3OpFUoK7nMmoVMCKeClnlU
- 4. https://youtu.be/i3AkTO9HLXo
- 5. https://youtu.be/sb4jo4P4ZLI
- 6. https://youtu.be/L1fK3p5U4x0
- 7. <u>https://youtu.be/xGkpXk-AnWU</u>
- 8. https://youtu.be/AOcCMi7SPqM

### Pedagogy

Assignment, Seminar, Group discussion, Brain storming, e-content.

### **Course Designer**

Dr. S. Sasikala
Semester III	Internal Marks: 2	5 E	ExternalMarks:75		
<b>COURSE CODE</b>	COURSETITLE	CATEGORY	Hrs	CREDITS	
			/WEEk		
22PMA3DSE3C	FUZZY SETS AND	<b>Discipline Specific</b>	4	3	
	THEIR APPLICATIONS	<b>Elective Course</b>			

- Introduce the concept of fuzzy set theory and study its application in real problems.
- Acquire knowledge of the uncertainty environment through the fuzzy logic that incorporates imprecision and subjectivity.
- **Provide** a good outline of a model formulation and solution process.

### Prerequisite

Basic Knowledge of Algebra, Logic and Graph Theory.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Identify and Explain the basic concepts of Fuzzy sets and its properties	K1,K2
CO2	Classify the operations on Fuzzy sets	K3,K4
CO3	Explain and Relate Fuzzy sets and its Graphs	K3,K4
CO4	Distinguish clear and accurate results to assess the concepts of Fuzzy inference systems	K4,K5,K6
CO5	Develop and Define Fuzzy concepts to compute Design procedure for Fuzzy expert systems	K5,K6

## Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	1	1	3	3	2	2	1
CO2	3	3	2	2	1	3	3	2	2	2
CO3	2	3	3	3	2	3	3	3	2	2
CO4	1	2	2	3	3	3	3	2	3	3
CO5	1	2	3	3	3	3	3	2	2	3

"1" – Slight (Low) Correlation  $\neg$ 

"2" – Moderate (Medium) Correlation  $\neg$ 

"3" – Substantial (High) Correlation  $\neg$ 

"-" indicates there is no correlation.

## Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	<ul> <li>FUZZY SETS : Sets - Operation of Sets - Characteristics of Crisp Set -Definition of Fuzzy Set</li> <li>-Expanding Concepts of Fuzzy Set - Standard Operation of Fuzzy Set</li> <li>THE OPERATION OF FUZZY SET : Standard Operations of Fuzzy Set Fuzzy Complement -</li> </ul>	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	Fuzzy Union - Fuzzy Intersection - Other Operations In Fuzzy Set - T-norms and T-conorms			
П	<b>FUZZY RELATION AND COMPOSITION :</b> Crisp Relation - Properties of Relation on a Single Set - Fuzzy Relation - Extension of Fuzzy Set <b>FUZZY GRAPH AND RELATION:</b> Fuzzy Graph -Characteristics of Fuzzy Relation -Classification of Fuzzy Relation -Other Fuzzy Relations	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Ш	<b>FUZZY NUMBER:</b> Concept of Fuzzy Number - Operation of Fuzzy Number -Triangular Fuzzy Number -Other Types of Fuzzy Number <b>FUZZY FUNCTION:</b> Kinds of Fuzzy Function - Fuzzy Extrema of Function -Integration and Differentiation of Fuzzy Function	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	PROBABILITY AND UNCERTAINTY : Probability and Possibility -Fuzzy Event -Uncertainty -Measure of Fuzziness FUZZY LOGIC : Classical Logic -Fuzzy Logic - Linguistic Variable - Fuzzy Truth Qualifier - Representation of Fuzzy Rule	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	<ul> <li>FUZZY INFERENCE: Composition of Rules - Fuzzy Rules and Implication - Inference Mechanism</li> <li>Inference Methods</li> <li>FUZZY CONTROL AND FUZZY EXPERT</li> <li>SYSTEMS -Fuzzy Logic Controller -Fuzzification</li> <li>Interface Component - Knowledge Base Component</li> <li>- Inference (Decision Making Logic) -</li> <li>Defuzzification -Design Procedure of Fuzzy Logic</li> <li>Controller - Application Example of FLC Design -</li> <li>Fuzzy Expert Systems</li> </ul>	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examination) Fusion of fuzzy system and neural networks - Neural Networks - Fusion With Neural Networks -Fusion of fuzzy system and genetic algorithms - Genetic Algorithms -Fusion With Genetic Algorithms	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

**Text Book** 

Kwang H. Lee (2005), First Course on Fuzzy Theory and Applications, Springer

# **Chapters and Sections**

UNIT-I	Chapter I & II	Sections: 1.1 – 1.6 & 2.1 – 2.6
UNIT-II	Chapter III & IV	Sections: 3.1 – 3.4 & 4.1 – 4.4
UNIT-III	Chapter V & VI	Sections: 5.1 – 5.4 & 6.1 & 6.3
UNIT- IV	Chapter VII & VIII	Sections: 7.1 – 7.4 & 8.1 – 8.5
UNIT- V	Chapter IX & X	Sections: 9.1 – 9.4 & 10.1 – 10.8

#### **Reference Books**

- Zimmermann H.J. (2006). *Fuzzy Set Theory and its Applications*. Fourth Edition. Springer(India) Private Limited.
- 2. Klir G. J. and Yuan B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice-Hall of India.
- 3. Ganesh M. (2006). Introduction to Fuzzy Sets and Fuzzy Logic. Prentice-Hall of India.

## Web References

- 1. https://www.tutorialspoint.com/fuzzy_logic/fuzzy_logic_introduction.htm
- 2. https://nitsri.ac.in/Department/Computer%20Science%20&%20Engineering/FuzzyLogic.pdf
- 3. http://site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf
- 4. https://codecrucks.com/fuzzy-inference-system-concepts-foundation/
- 5. http://fuzzy.cs.ovgu.de/wiki/uploads/Lehre.FS0910/fs0910lecture07.pdf

### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designer**

Dr. K. Kalaiarasi

Semester III	Internal Marks: 25		ExternalMa	arks:75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA3GEC1	FOUNDATION FOR LOGICAL THINKING	GENERIC ELECTIVE	3	2

- **Explain** many short tricks to solve mathematical problems easily.
- **Apply** the knowledge to **interpret** and **solve** the problems.
- **Predict** elite knowledge in verbal reasoning.

### Prerequisite

Knowledge of basic mathematics

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the knowledge of the various techniques of quantitative aptitude and reasoning.	K1, K2
CO2	Apply the concepts in solving mathematical problems to succeed in various competitive examinations.	K3
CO3	Examine various types of Problems using arithmetic and reasoning test.	К3
CO4	Apply the concept obtained in the course to solve the problems.	K3
CO5	Analyse real-life problems and find solutions.	K4

## Mapping of CO with PO and PSO

COs	PSO1	PSO2	SO3	SO4	SO5	D1	D2	03	D4	<b>D5</b>
CO1	3	3	3	2	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Arithmetical Ability:	9	CO1,	K1
	Surds and indices - Logarithms – Alligation or Mixture		CO2,	K2,
			CO3,	K3,
			CO4,	K4
			CO5	
II	Probability – Heights and Distances – Odd Man Out	9	CO1,	K1
	and Series		CO2,	K2,
			CO3,	K3,
			CO4,	K4
			CO5	
III	Data Interpretation:	9	CO1,	K1,
	Bar Graphs - Pie Chart - Line Graphs.		CO2,	K2,
			CO3,	K3,
			CO4,	K4
			CO5	
IV	Reasoning Test:	9	CO1,	K1,
	Relationship –Direction Sense Test - Problems based		CO2,	K2,
	on Alphabet.		CO3,	КЗ,
			CO4,	K4
			CO5	
V	Logical Reasoning	9	CO1,	K1,
			CO2,	K2,
			CO3,	КЗ,
			CO4,	K4
			CO5	
VI	Self-Study for Enrichment: (Not included for End	-	CO1,	K1,
	Semester Examinations)		CO2,	K2,
	Arithmetical Ability: Permutation and Combination-		CO3,	K3,
	Clocks – Calendar.		CO4,	K4
	Verbal Reasoning: Analogy- Classification.		CO5	

## **Text Books**

- R.S.Aggarwal (Reprint 2017), *Quantitative Aptitude for Competitive Examinations (Fully Solved)*, S.Chand and Company Ltd., New Delhi.
- 2. Dr. Lal, Jain and Dr. K. C. Vashisthu (2018), UGC NET/JRF/ SET Teaching & Research Aptitude, Upkar Prakashan, Agra.

## **Chapters and Sections**

- UNIT-I Section I (9, 10, 21) [1]
- UNIT-II Section I (31, 34, 35) [1]
- UNIT-III Section II (37, 38, 39) [1]
- UNIT- IV Section I (1, 5, 7) [2]
- UNIT- V Section II [2]

#### **Reference Books**

- Dinesh Khattar (2016), Pearson Guide to Quantitative Aptitude for Competitive Examinations, Pearson Publication, 3rd Edition.
- 2. Lal, Jain and Vashisthu .K .C (2018), UGC NET/JRF/SET Teaching Research Aptitude.
- Abhijit Guha (2014), *Quantitative Aptitude for Competitive Examinations*, Mcgraw Hill Education Private Limited, New Delhi, 5th Edition.

### Web References

- 1. https://www.indiabix.com/aptitude/questions-and-answers/
- 2. <u>https://www.youtube.com/watch?v=lFHjNbSmsCE</u>
- 3. <u>https://www.sawaal.com/aptitude-reasoning/quantitative-aptitude-arithmetic-ability-questions-and-answers.html</u>
- 4. <u>https://www.youtube.com/watch?v=xRLNYich5Ls</u>
- 5. <u>https://www.youtube.com/watch?v=qwHJtfEUCgE</u>
- 6. <u>https://www.youtube.com/watch?v=g0_1ZhueCcE</u>
- 7. <u>https://www.indiabix.com/logical-reasoning/questions-and-answers/</u>
- 8. <u>https://byjus.com/govt-exams/logical-reasoning/</u>

## Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

## **Course Designer**

Ms. V. ManiMozhi

Semester IV	Internal Marks: 25	External Marks:75				
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
CODE						
22PMA4CC11	COMPLEX ANALYSIS	CORE	6	5		

- **Define** analytic functions, linear transformations, Harmonic functions and power series.
- **Explore** the fundamental concepts of Cauchy's theorem, Cauchy's integral formula and the calculus of residues.
- Apply the idea of removable singularities, zeros and poles in various fields.

## Prerequisite

Fundamental concepts in Real Analysis

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

СО	CO Statement				
Number	On the successful completion of the course, students will be ableto	Level			
CO1	Explain the fundamental concepts of conformality, Analyticfunctions, complex integration and series.	K2			
CO2	Apply the various concepts of complex integration in differentfields.	K3			
CO3	Ascertain the notion of complex integration, series, conformalityand linear transformations.	K4			
CO4	Evaluate the problems in complex integration using variousconcepts.	K5			
CO5	Develop the basic concepts of complex integration, conformality, series in various fields.	K6			

## Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	3	3
CO2	3	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3	2	3	3
CO4	3	3	3	3	3	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Conformality and Linear Transformations:		CO1,	K2,
T	Anna and decid comments. Analytic Franciscus in	10	CO2,	КЗ,
1	Arcs and closed curves – Analytic Functions in Decional Conformal Manning Length and Area. The	18	CO3,	K4,
	Lincon Crown The Cross Potion Symmetry		CO4,	K5,
	Linear Group – The Cross Ratio – Symmetry.		CO5	K6
	Fundamental Theorems and Cauchy's Integral			
	Formula:		CO1	к2
	Line Integrals Rectifiable Arcs Line Integrals as		$CO^{2}$	K2, K3
п	Euler Integrals – Rectiliable Arcs – Line Integrals as	18	CO2,	К3, К4
	Cauchy's Theorem in a Disk. The Index of a Point	10	CO4	K1, K5
	with Respect to a Closed Curve – The Integral Formula		CO5	К5, Кб
	- Higher Derivatives		000	
	Local Properties of Analytical Functions:		CO1,	K2,
		10	CO2,	КЗ,
111	Removable Singularities. Taylor's Theorem – Zeros	18	CO3,	K4,
	and Poles – The Local Mapping – The Maximum		CO4,	K5,
	Principle.		CO5	K6
	The General Form of Cauchy's Theorem and The			
	Calculus of Residues:		CO1	K2
	Chains and Cuales Simple Connectivity		CO1,	K2, K3
IV	Homology The General Statement of Cauchy's	18	CO2,	К3, К4
	Theorem Proof of Cauchy's Theorem Locally Exact		CO4	K4, K5
	Differentials _ The Residue Theorem _ The Argument		CO5	K6
	Principle – Evaluation of Definite Integrals		005	iii o
	Timespie Dvalaation of Definite Integrais.			
	Harmonic Functions and Power Series Expansions:		CO1	КЭ
	Definition and Desis Droportion. The Mass value		CO1,	K2, K3
V	Definition and Basic Properties – The Mean-value	18	CO2,	К3, КЛ
v	The Deflection Dringing Weignstress's Theorem –	10	CO3,	K4, K5
	The Reflection Principle – weierstrass's Theorem – The Taylor Series		CO4, CO5	K5, K6
	1 aytor Series – The Laurent Series.			
	Self Study for Enrichment:		CO1,	K2,
x 7 x	(Not included for End Semester Examinations)		CO2,	КЗ,
VI	Elementary Point Set Topology – Oriented	-	CO3,	K4,
	Circles - Families of Circles - Multiply Connected		CO4,	K5,
	Regions.		CO5	K6

#### Text Book

Lars V. Ahlfors. (1979). *Complex Analysis* (Third Edition). McGraw-Hill International Editions.

#### **Chapters and Sections**

UNIT-I	Chapter 3: Sections $2.1 - 2.4$ , $3.1 - 3.3$
UNIT-II	Chapter 4: Sections $1.1 - 1.5$ , $2.1 - 2.3$
UNIT-III	Chapter 4: Sections $3.1 - 3.4$
UNIT- IV	Chapter 4: Sections 4.1 – 4.6, 5.1 – 5.3
UNIT- V	Chapter 4: Sections $6.1 - 6.5$
	Chapter 5: Sections $1.1 - 1.3$

#### **Reference Books**

- Serge Lang. (2005). *Complex Analysis* (Fourth Edition, First Indian Reprint). Springer International Edition.
- Ponnusamy S. (2007). Foundations of Complex Analysis (Second Edition, First Reprint). Narosa Publishing House Pvt. Ltd.
- John B. Conway. (2002). Functions of One Complex Variable (Second Edition, Sixteenth Reprint). Narosa Publishing House.

### Web References

- 1. https://youtu.be/3rOjkI9G8TO
- 2. https://tinyurl.com/45me9mx6
- 3. https://tinyurl.com/yrmka7d9
- 4. <u>https://youtu.be/OCnFnBtlg-c</u>
- 5. <u>https://tinyurl.com/3mthbnsp</u>
- 6. <u>https://tinyurl.com/52v5mmpw</u>
- 7. https://tinyurl.com/58p5c888

#### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designer**

Dr. S. Vidhya

Semester IV	Internal Marks: 25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA4CC12	FUNCTIONAL ANALYSIS	CORE COURSE	6	5

- **Explore** Banach spaces, Hilbert spaces and their properties.
- **Compose** clear, accurate proof of Hahn Banach Theorem, Open Mapping Theorem using continuous linear transformation and Conjugate of an operator.
- **Analyze** the structure of Commutative Banach Algebras to prove the Gelfand Neumarktheorem.

## Prerequisite

Topology and Linear algebra at PG level.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able	Level
	to	
CO1	Explain Banach spaces, Hilbert spaces, Banach algebras,	
	commutative banach algebra and interpret their properties with	K2
	other type of spaces.	
CO2	Apply the analytical techniques and theoretical knowledge in	K3
	Banach spaces, Hilbert spaces, Banach algebras, commutative	
	banach algebras.	
CO3	Construct banach algebras, Commutative banach algebra	K4
	through banach spaces and determine orthonormal sets in	
	Hilbert spaces.	
CO4	Analyze the properties of the operators defined on these spaces.	K4
CO5	Attain knowledge and experience of working with many pure	K5
	mathematical problems.	

## Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	3	2	2	2	3	2	2	2	3
CO4	2	2	2	2	2	3	2	2	2	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation  $\neg$  "2" – Moderate (Medium) Correlation  $\neg$ 

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITI VE
				LEVEL
Ι	<b>BANACH SPACES</b> The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem – The natural imbedding of N in N** – The open mapping theorem – The conjugate of an operator.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
Π	HILBERT SPACES The definition and some simple properties – Orthogonal complements – Orthonormal sets – The conjugate space H*.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	HILBERT SPACES The adjoint of an operator – Self-adjoint operators – Normal and unitary operators – Projections.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
IV	GENERALPRELIMINARIESONBANACHALGEBRASThe definition and some examples – Regular andsingular elements – Topological divisors of zero – Thespectrum – The formula for the spectral radius – Theradical and semi-simplicity.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
V	THE STRUCTUREOFCOMMUTATIVEBANACH ALGEBRASThe Gelfand mapping – Applications of theformula $r(x) = \lim_{n \to \infty}  x^n ^{\frac{1}{n}}$ – Involutions in BanachAlgebras – The Gelfand-Neumark theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Euclidean and unitary spaces – Weak topologies– Linear spaces – Determinants and the spectrum of an operator – Commutative C*-algebras.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

## **Text Book**

George F. Simmons (2016). Introduction to Topology and Modern Analysis(26th reprint). Mcgraw Hill Education (India) Private Limited, New Delhi.

#### **Chapters and Sections**

UNIT-I	Chapter 9	Sections 46-51
UNIT-II	Chapter 10	Sections 52-55
UNIT-III	Chapter 10	Sections 56 – 59
UNIT- IV	Chapter 12	Sections 64-69
UNIT- V	Chapter 13	Sections 70 – 73

#### **Reference Books**

- Walter Rudin (2008). Functional Analysis (Fourth Reprint). Tata Mcgraw-Hill Publishing Company Limited, New Delhi.
- B.V. Limaye (2002). *Functional Analysis (Second Edition)*. New Age International (P) Limited Publishers, New Delhi.
- K.Yosida (2005). Functional Analysis (Second Indian Reprint). Springer-Verlag, Newyork.

## Web References

- 1. https://youtu.be/imYOJOgUx7Y
- 2. https://youtu.be/EGii1lz7XHA
- 3. <u>https://youtu.be/MfZz1k9rlUc</u>
- 4. https://youtu.be/0LnL9kE-6us
- 5. https://youtu.be/zOPEABKzBpc
- 6. https://youtu.be/kiUTXw3_jds
- 7. https://59clc.files.wordpress.com/2012/08/functional-analysis- -rudin-2th.pdf
- 8. <u>https://people.math.ethz.ch/~salamon/PREPRINTS/funcana.pdf</u>
- 9. <u>https://zlib.pub/book/introduction-to-topology-and-modern-analysis-</u> <u>7jh9srua6920</u>

## Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

## **Course Designer**

Dr. C.Saranya

Semester IV	Internal Mar	ks: 25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22PMA4CCC3A	DIFFERENTIAL GEOMETRY	CORE CHOICE COURSE	6	4	

- **Introduce** space curves and its characterizations.
- **Study** properties of curves on surfaces.
- Understand the concepts of Geodesics and canonical Geodesics equations.

### Prerequisite

Knowledge of basic concepts of Vectors and Differentiation.

## **Course Outcomes**

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand the concepts of a space curve, Geodesics, developables, helihoids and umbilics.	K2
CO2	Compute its curvature and torsion, surface of revolution, Existence theorems and lines of curvature.	K2
CO3	Acquire the knowledge of curves on a surface, Geodesic curvature and lines of curvature	K3
CO4	Determine the second fundamental form and developable associated with curves on surfaces, Hilbert's Lemma and classify differential geometry of several surfaces.	K3
CO5	Interpret the concepts of geodesics and its normal properties, differential geometry of surfaces and also familiar with Gauss Bonnet Theorem.	K4

## Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	1	3	3	1	2
CO2	3	3	2	1	3	1	3	3	2	2
CO3	3	3	2	2	3	1	3	3	2	2
CO4	3	3	2	2	3	1	3	3	2	2
CO5	3	3	2	2	3	1	3	3	2	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	The Theory of Space Curves	18	CO1	K1
1	Definitions – Arc length – Tangent normal and	10	CO2	K2
	binormal – Curvature and torsion of a curve given as the		CO3.	K3.
	intersection of two surfaces – Contact between curves and		CO4,	K4
	surfaces – Tangent surface, involutes and evolutes –		CO5	
	Helices.			
II	The Metric	18	CO1,	K1
	Definition of a surface – Curves on a surface –		CO2,	K2,
	Surfaces of revolution – Helicoids – Metric – Direction		CO3,	КЗ,
	coefficients – Families of curves – Isometric		CO4,	K4
	correspondence.		CO5	
III	Geodesics	18	CO1,	K1,
	Geodesics – Canonical geodesic equations –		CO2,	K2,
	Normal property of geodesics – Existence theorems –		CO3,	КЗ,
	Geodesic parallels – Geodesic curvature – Gauss-Bonnet		CO4,	K4
	Theorem		CO5	
IV	The Second Fundamental Form: Local Non-Intrinsic	18	CO1,	K1,
	Properties of a Surface		CO2,	K2,
	The Second fundamental form – Principal		CO3,	K3,
	curvatures – Lines of curvature – Developables –		CO4,	K4
N/	Developables associated with space curves.	10	C05	IZ 1
V	Differential Geometry of surfaces in the large	18	CO1,	KI,
	Lithert's Lemma Compact surfaces of constant Coussion		$CO_2$	KZ, $V2$
	or moon curveture. Complete surfaces		CO3,	KJ, KA
	of mean curvature – Complete surfaces.		C04,	K4
VI	Self-Study for Enrichment: (Not included for End	_	C01	K1
V 1	Semester Examinations)		$CO^2$	K1, K2
	Intrinsic equations fundamental existence theorem for		CO3	K3
	space curves – Intrinsic properties - Gaussian curvature –		CO4	K4
	Surfaces of constant curvature - Developables associated		CO5	111
	with curves on surfaces- Characterization of complete			
	surfaces.			

## **Text Books**

T.J. Willmore (2017), An Introduction to Differential Geometry (21st Impression), Oxford University Press, New Delhi.

#### **Chapters and Sections**

UNIT-I	Chapter I:	Sections: 2 - 7 & 9
UNIT-II	Chapter II:	Sections: 1 - 8
UNIT-III	Chapter II:	Sections: 10 - 16
UNIT- IV	Chapter III:	Sections: 1 - 5
UNIT- V	Chapter IV:	Sections: 2 - 5

#### **Reference Books**

- 1. D. Somasundaram (2010), *Differential Geometry*, A First Course (Third Reprint), Narosa Publishing House, New Delhi.
- 2. Christian Bar (2011), *Elementary Differential Geometry* (First South Asian Edition), Cambridge University Press, New York.
- 3. J.A. Thorpe (2004), *Elementary Topics in Differential Geometry* (First Indian Reprint), , Springer-Verlag, New York.

## Web References

- 9. https://www.youtube.com/watch?v=4fB0VfKZRXM
- 10. <u>https://youtu.be/1HUpNAS81PY?list=PLIIjB45xT85DWUiFYYGqJVtfnkUFWkKtP</u>
- 11. <u>https://youtu.be/J-RgiQca6Q8?list=PLIljB45xT85DWUiFYYGqJVtfnkUFWkKtP</u>
- 12. https://youtu.be/drOldszOT7I?list=PLIIjB45xT85DWUiFYYGqJVtfnkUFWkKtP
- 13. <u>https://youtu.be/QXrqsz5zD2I</u>
- 14. https://youtu.be/zADj0k0waFY
- 15. https://people.math.ethz.ch/~salamon/PREPRINTS/diffgeo.pdf

## Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

## **Course Designer**

Ms. A. Gowri Shankari

Semester IV	Internal Marks: 25	]	External Ma	rks: 75
COURSECODE	COURSE TITLE	CATEGORY	HOURS /	CREDITS
			WEEK	
	FORMAL LANGUAGE	CORE		
22PMA4CCC3B	AND AUTOMATA	CHOICE	6	4
	THEORY	COURSE – III		

- **Explore** the nuances of Automata and Grammar.
- Analyze the applications of these techniques in Computer science.
- Apply the ideas for constructing the Regular Expressions.

### Prerequisite

Familiarity in concepts of Discrete Mathematics.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the basic concepts of automata, regular expressions, regular sets, grammars and compilers.	К2
CO2	Interpret the fundamental ideas in formal languages, automata, compilers and regular sets.	К2
CO3	Relate the concepts of deterministic and nondeterministic Finite Automata, grammars, regular expressions with pushdown automata, compilers and regular sets.	К3
CO4	Determine the implementation of automata languages, regular expressions, regular sets in compilers.	К4
CO5	Deduce mathematical notions in computability of regular expressions, automata, grammars, and regular sets and compilers.	К5

## Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3
"	1 1 01 1	( <b>T</b> )	0 1.0		(())			$\mathbf{A} = \mathbf{A}$	•	

"1" – Slight (Low) Correlation –
"2" – Moderate (Medium) Correlation –
"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

Syllabı	15			
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	<b>FINITE AUTOMATA:</b> Finite state systems – Basic definitions – Nondeterministic finite automata – Finite automata with $\varepsilon$ – moves.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
II	<b>REGULAR EXPRESSIONS AND CONTEXT-FREE</b> <b>GRAMMARS:</b> Regular expressions - Motivation and introduction – Context-free grammars – Derivation trees – Chomsky normal form – Greibach normal form.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	<b>PROPERTIES OF REGULAR SETS:</b> The pumping lemma for regular sets - Closure properties of regular sets - Decision algorithms for regular sets - The Myhill-Nerode theorem and minimization of finite automata.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
IV	<b>PUSHDOWN AUTOMATA:</b> Informal description - Definitions - Pushdown automata and context-free languages.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
V	INTRODUCTION TO COMPILERS: Compilers and translators – Why we need translators? - The structure of compiler - Lexical analysis - Syntax analysis - Intermediate code generation – Optimization - Code generation - Book keeping - Error handling - Compiler writing tools - Getting Started.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Strings, alphabets and languages - Graphs and trees - Applications of finite automata –From regular expression to finite automata - Minimizing the number of states of a DFA.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

## **Text Books**

- John E. Hopcroft and Jeffery D. Ullman (1979), *Introduction to Automata theory, Languages and Computation*, Narosa Publishing House Pvt. Ltd
   Alfred V. Aho and Jeffrey D. Ullman, (2002), *Principles of Compiler Design (Twentyfifth Reprint)*, Narosa Publishing House.

### **Chapters and Sections**

UNIT-I	Chapter 2[1]: Sections 2.1 - 2.4
UNIT-II	Chapter 2[1]: Sections 2.5
	Chapter 4[1]: Sections 4.1 - 4.3, 4.5, 4.6
UNIT-III	Chapter 3[1]: Sections $3.1 - 3.4$
UNIT-IV	Chapter 5[1]: Sections $5.1 - 5.3$
UNIT-V	Chapter 1[2]: Sections 1.1 – 1.12

## **Reference Books**

- 1. Iyengar N Ch S. N., Chandrasekaran V.M, Venkatesh K. A, Arunachalam P.S.(2005), *Discrete Mathematics(Third Reprint)*, Vikas Publishing House Pvt Ltd.
- 2. Dhamdhere (2008), Compiler Construction, (Reprint five time), Macmillan India Ltd.
- 3. Alfred V. Aho Ravi Sethi Jeffrey D. Ullman (2007), *Compilers Principles, Techniques, and Tools*, Pearson Education.

## Web References

- 1. https://www.vssut.ac.in/lecture_notes/lecture1423726104.pdf
- 2. https://www.iitg.ac.in/dgoswami/Flat-Notes.pdf
- 3. <u>https://www.youtube.com/watch?v=ntrF_KxHn18&pp=ygUacHVzaGRvd24gYXV0b21hdGEgZ</u> <u>XhhbXBsZXM%3D</u>
- 4. <u>https://www.youtube.com/watch?v=4nx8LEGy9kI&pp=ygUlbGV4aWNhbCBhbmFseXNpcyBkZ</u> WZpbml0aW9uICBleGFtcGxlcw%3D%3D
- 5. <u>https://www.youtube.com/watch?v=H0Mf4FE2wiU&pp=ygUoUmVndWxhciBFeHByZXNzaW9</u> ucyBkZWZpbml0aW9uICBleGFtcGxlcw%3D%3D

### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designer**

Dr. S. Saridha

Semester IV	Internal Marks: 25	External Marks: 75			
COURSECODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS	
22PMA4CCC3C	FLUID DYNAMICS	CORE CHOICE COURSE	6	4	

- Understand the dynamics of real fluids.
- Familiarize with the properties of fluids and the applications of fluid dynamics.
- Apply the concept of fluid measurement, types of flows and dimensional analysis.

## Prerequisite

Basic concepts in Dynamics.

**Course Outcomes** 

## **Course Outcome and Cognitive Level Mapping**

CO Number	<b>CO Statement</b> On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand the measuring techniques of temperature, heat flux, pressure, velocity, force.and flow rate.	K2
CO2	Apply governing equations for particular flow fields with applications and analyse potential flows and execute concept of conformal transformation for flow over bodies.	К3
CO3	Compute the Navier - Stokes equations of Motion of a Viscous Fluid and analyse the Kinematics of fluids, two dimensional and three-dimensional flows through various techniques	К3
CO4	Examine viscous flows through various systems and apply various intrusive and non-intrusive techniques to measure flow and fluid properties.	K4
CO5	Evaluate the knowledge of experimental fluid dynamics and analyze of fluid motion.	K5

## Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	2	2	3
CO2	3	3	2	1	3	3	3	2	3	2
CO3	3	3	2	2	3	2	3	2	3	2
CO4	3	3	2	2	3	2	2	3	3	3
CO5	3	3	2	2	3	3	3	3	3	2

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no Correlation.

# Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	<ul> <li>Kinematics of Fluids in Motion:</li> <li>Real Fluids and Ideal Fluids – Velocity of a Fluid at a point – Streamlines and Path lines; Steady and Unsteady Flows – The Velocity potential – The Vorticity vector – Local and Particle Rates of Change – The Equation of continuity – Worked examples – Acceleration of a Fluid – Conditions at a rigid boundary</li> <li>Equations of Motion of a Fluid: <ul> <li>Pressure at a point in a Fluid at Rest – Pressure at a point in a Moving Fluid – Conditions at a Boundary of Two Inviscid Immiscible Fluids – Euler's equations of motion – Bernoulli's equation – Worked examples.</li> </ul> </li> </ul>	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	Equations of Motion of a Fluid: Discussion of the case of steady motion under conservative body forces – Some potential theorems – Some Flows Involving Axial Symmetry – Some special two- Dimensional Flows – Impulsive Motion Some Three-Dimensional Flows: Sources, Sinks and Doublets – Images in a Rigid Infinite Plane – Images in solid spheres – Axi-Symmetric Flows; Stokes's stream function.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Some Two-Dimensional Flows: Meaning of a Two-Dimensional Flow – Use of cylindrical Polar coordinates – The stream function – The Complex Potential for Two-Dimensional, Irrotational, Incompressible Flow – Complex velocity potentials for Standard Two- Dimensional Flows – Some worked examples – Two- Dimensional Image systems – The Milne-Thomson circle theorem – The Theorem of Blasius.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Some Two-Dimensional Flows: The use of conformal Transformation – The Schwarz- Christoffel Transformation	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

	Viscous Flow: Stress components in a Real fluid – Relations between Cartesian components of stress – Translational Motion of Fluid Element – The Rate of Strain Quadric and Principal Stresses – Some Further properties of the Rate of Strain Quadric – Stress Analysis in Fluid Motion – Relations			
	Between stress and rate of strain – The coefficient of viscosity and Laminar Flow			
V	Viscous Flow: Some solvable problems in Viscous Flow – Steady Viscous Flow in Tubes of Uniform cross section – Diffusion of Vorticity – Energy Dissipation due to Viscosity – Steady Flow past a Fixed Sphere Dimensional Analysis; Reynolds Number.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) General analysis of fluid motion –Some Further Aspects of Vortex Motion - Some Special Forms of the Stream Function for Axi-Symmetric Irrotational Motions – Vortex Rows - – The Navier-Stokes equations of Motion of a Viscous Fluid - Prandtl's Boundary Layer.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

## Text Book

F. Chorlton (2004), Text Book of Fluid Dynamics, CBS Publishers & Distributors Pvt. Ltd., New Delhi.

## **Chapters and Sections**

UNIT-I	Chapter 2:	Sections 2.1 - 2.10
	Chapter 3:	Sections 3.1 - 3.6
UNIT-II	Chapter 3:	Sections 3.7 - 3.11
	Chapter 4:	Sections 4.2 - 4.5 (omit 4.5.1)
UNIT-III	Chapter 5:	Sections $5.1 - 5.9$
UNIT-IV	Chapter 5:	Sections 5.10 – 5.11
	Chapter 8:	` Sections 8.1 − 8.8
UNIT-V	Chapter 8:	Sections 8.10 – 8.15

#### **Reference Books**

- [1] Dr. M.D. Raisinghania (2013), *Fluid Dynamics with Complete Hydrodynamics and Boundary Layer Theory*, S. Chand & Company Pvt. Ltd. (Online PDF)
- [2] Hyoung Woo Oh (2012), Advanced Fluid Dynamics. (Online PDF)
- [3] J.H. Ferziger & M. Peric (2005), *Computational methods for fluid Dynamics* (Third Edition), Springer Verlag.

## Web References

- 1. <u>https://www.youtube.com/watch?v=zzdWqBnwkys</u>
- 2. <u>https://tinvurl.com/vunrr3eb</u>
- 3. <u>https://www.youtube.com/watch?v=I4NZANfyzMs&list=PL1UZBJqzzy--</u> <u>lKFA0xRcsgVsdqctF2r2p&index=2</u>
- 4. <u>https://tinyurl.com/bdf2bwv3</u>
- 5. <u>https://www.youtube.com/watch?v=wlPXZrP9vR8&list=PLCoE5wxWtHFYiVGswvsWR</u> <u>aHjv18vxZzE2</u>
- 6. <u>file:///C:/Users/user/Downloads/toaz.info-fluid-dynamics-by-chorlton-</u> <u>pr_5ce01488c289a4a10ce5d30a8198cc16.pdf</u>

#### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designer**

Dr. G. Janaki

Semester IV	Internal Marks: 25		External Marks	s:75	
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
CODE					
	OPTIMIZATION	GENERIC	2	2	
22FMA4GEC2	TECHNIQUES	ELECTIVE	5	2	

- Understand the various features of Operations research.
- Analyze the optimum solutions using Operations research.
- **Explore** the concepts of Operations research in real life problems.

## Prerequisite

Basic computational knowledge.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be ableto	Level
C01	Illustrate the various notions in the respective streams.	K2
CO2	Identify the different terminologies of Operations research	K3
CO3	Analyze the solutions of mathematical problem using specific techniques.	K4
<b>CO</b> 4	Simplify the optimum solutions of a mathematical problem.	K5
CO5	Construct various mathematical problem of Sequencing.	

## Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	2	3	3	3	2	3
CO2	3	2	3	3	2	3	3	3	3	2
CO3	3	2	3	3	2	3	2	3	2	2
CO4	3	2	2	2	2	3	3	2	3	2
CO5	3	2	3	2	2	3	3	3	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	LinearProgrammingProblem–Mathematical FormulationIntroduction-LinearProgrammingProblem-MathematicalFormulation of theProblem-IllustrationonMathematicalFormulation of LPPsGraphicalSolution and ExtensionIntroduction-GraphicalMethod - Some Exceptional Cases-Solution	9	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
П	LinearProgrammingProblemGraphical Solution and ExtensionGeneralLinearProgrammingProblem-Canonical and Standard Forms of LPP.LinearLinearProgrammingProblemSolutionFundamentalProperties ofSolutions - The computationalProcedure.	9	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
III	<b>Transportation Problem:</b> The Transportation Table – Solution of a Transportation Problem - Finding an initial basic feasible solution - Transportation algorithm (MODI method) - Some exceptional Cases.	9	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
IV	Assignment Problem: Introduction - Solution methods of assignment problem – Special Cases in Assignment Problem.	9	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
V	Sequencing Problem: Introduction – Problem of Sequencing – Basic Terms Used in Sequencing – Processing <i>n</i> Jobs through Two Machines – Processing <i>n</i> Jobs through <i>k</i> Machines.	9	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examinations)Some Exceptional Cases(Graphical Solution) - Use of Artificial Variables – Degeneracy in Transportation Problem – The Traveling Salesman Problem - Processing 2 Jobs through k Machines.		CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6

#### Text Book

Kanti Swarup, P.K. Gupta, Manmohan. (2008). Operations research, Sultan Chand & sons

#### **Chapters and Sections**

UNIT-I	Chapter 2: Sections $2.1 - 2.4$
	Chapter 3: Sections 3.1 - 3.3.
UNIT-II	Chapter 3: Sections 3.4 - 3.5.
	Chapter 4: Sections $4.1 - 4.3$
UNIT- III	Chapter 10: Sections 10.5, 10.8, 10.9, 10.13, 10.15.
UNIT- IV	Chapter 11: Sections 11.1, 11.3, 11.4
UNIT- V	Chapter 12: Sections 12.1 – 12.5.

#### **Reference Books**

- Hamdy A.Taha. (2017). Operations Research An Introduction Pearson India Education services PVT Ltd
- 2. Premkumar Gupta. (2004). *Operations Research*. S.Chand & Company Ltd, New Delhi..
- 3. Chandrasekhara Rao.K, Shanti Lata Mishra. (2008). *Real Operations Research,* Narosa Publishing House PVT Ltd, New Delhi

#### Web References

- 1. <u>https://youtube.com/@introductiontooperationsre4975?si=s4hUaj5nLi331rrz</u>
- 2. https://youtube.com/@iit?si=X62o-o3CvMdgXQpg
- 3. <u>https://youtube.com/@introductiontooperationsre4975?si=s4hUaj5nLi331rrz</u>
- 4. <u>https://youtube.com/@iit?si=X62o-o3CvMdgXQpq</u>
- 5. <u>https://youtube.com/@kauserwise?si=tdP_lvoCD12LgHos</u>

### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designer**

Dr. E. Litta.