CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) Nationally Accredited with 'A' Grade by NAAC

ISO 9001:2015 Certified
TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

M. Sc. MATHEMATICS

AUTONOMOUS SYLLABUS
2022-2023 and onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

MISSION

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc MATHEMATICS

PO NO.	On completion of M.Sc Mathematics, the students will be able to
PO 1	Problem Analysis Provide opportunities to develop innovative design skills, including the ability to formulate problems, to think creatively, to synthesize information, and to communicate effectively.
PO 2	Scientific Skills Create and apply advanced techniques and tools to solve the societal environmental issues.
PO 3	Environment and Sustainability Ascertain eco-friendly approach for sustainable development and inculcate scientific temper in the society.
PO 4	Ethics Imbibe ethical and social values aiming towards holistic development of learners.
PO 5	Life long learning Instill critical thinking, communicative knowledge which potentially leads to higher rate of employment and also for higher educational studies.

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc MATHEMATICS

PSO NO.	The Students of M.Sc Mathematics will be able to	POs Addressed
PSO1	Make a significant contribution to society's development through mathematical study	PO1 PO2 PO3
	Provide an in-depth and extensive functional understanding of mathematical basics.	PO1
PSO3	Develop the experimental abilities in order to solve scientific and technical problems.	PO1 PO5
PSO4	Promote the learners and explore the potential in emerging fields.	PO4 PO5
PSO5	Enhance problem-solving, thinking, and creative skills through assignments and project work.	PO4 PO5

Cauvery College for Women（Autonomous），Trichy－18
PG \＆Research Department of Mathematics
M．Sc Mathematics
Learning Outcome Based Curriculum Framework（CBCS－LOCF）
For the Candidates admitted from the Academic year 2022－2023 onwards

－	Course	Course Title	Course Code				Ma		\％
\％				品		年	Int．	Ext．	0
I	Core Course－I	Algebra－I	22PMA1CC1	6	5	3	25	75	100
	$\begin{aligned} & \text { Core Course - II } \\ & \text { (CC) } \end{aligned}$	Ordinary Differential Equations	22PMA1CC2	6	5	3	25	75	100
	$\begin{aligned} & \text { Core Course -III } \\ & \text { (CC) } \end{aligned}$	Integral Equations，Calculus of Variations and Transforms	22PMA1CC3	6	5	3	25	75	100
	$\begin{aligned} & \text { Core Course - IV } \\ & \text { (CC) } \end{aligned}$	Algebraic Number Theory	22PMA1CC4	6	5	3	25	75	100
	Discipline Specific Elective Course－I （DSE）	A．Advanced Numerical Analysis	22PMA1DSE1A						
		B．Mathematical Modelling	22PMA1DSE1B	6	3	3	25	75	100
		C．Boundary Value Problems	22PMA1DSE1C						
	Total			30	23	－	－	－	500

15 Days INTERNSHIP during Semester Holidays

\％	Course	Course Title	Course Code			Exam			晋
						Marks			
						色 In	Int．	Ext．	
II	Core Course－V（CC）	Algebra－II	22PMA2CC5	6	5	3	25	75	100
	Core Course－VI（CC）	Real Analysis	22PMA2CC6	6	5	3	25	75	100
	Core Course－VII（CC）	Linear Algebra	22PMA2CC7	6	5	3	25	75	100
	$\begin{aligned} & \text { Core Choice Course- I } \\ & \text { (CCC) } \end{aligned}$	A．Partial Differential Equations	22PMA2CCC1A	6	4	3	25	75	100
		B．Mathematical Programming	22PMA2CCC1B						
		C．Difference Equations	22PMA2CCC1C						
	Elective Course－II（DSE）	A． Computationa 1 Mathematics Using MATLAB（P）	22PMA2DSE2AP	6	3	340		60	100
		B． Mathematical Modelling Using MATLAB（P）	22PMA2DSE2BP						
		C．Ordinary Differential Equations and Partial Differential Equations Using MATLAB（P）	22PMA2DSE2CP						
	Internship	Internship	22PMA2INT	－	2	－	－	100	100
	Extra Credit Course	SWAYAM	As per UGC＇s Recommendation						
	Total			30	24	－	－	－	600

$\begin{array}{\|l\|l} \substack{⿹ 勹 巳 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \end{array}$	Course	Course Title	Course Code		\|	Exam			
							Marks		
						$\dot{\Delta}$	Int	Ext．	
III	Core Course－VIII（CC）	Topology	22PMA3CC8	6	5	3	25	75	100
	Core Course－IX（CC）	Discrete Mathematics	22PMA3CC9	6	5	3	25	75	100
	Core Course－X（CC）	Measure and Integration	22PMA3CC10	6	5	3	25	75	100
	Core Choice Course－II （CCC）	A．Cyber Security	22PGCS3CCC2A	$\begin{gathered} 3(\mathrm{~T}) \\ + \\ 2(\mathrm{P}) \end{gathered}$	4	3	25	75	100
		B．Introduction to Coding Theory	22PMA3CCC2B	5					
		C．Mechanics	22PMA3CCC2C						
	Discipline Specific Elective Course－III （DSE）	A．Analytical Skills for Competitive Examinations	22PMA3DSE3A	4	3	2	－	100	100
		B．Stochastic Processes	22PMA3DSE3B			3	25	75	
		C．Fuzzy Sets and their Applications	22PMA3DSE3C						
	Generic Elective Course I (GEC)	Foundation for Logical Thinking	22PMA3GEC1	3	2	3	25	75	100
	Extra Credit Course	SWAYAM	As per UGC Recommendation						
	Total			30	24	－	－	－	600

	Course	Course Title	Course Code			Exam			
						$\dot{\underline{i n}}$	Marks		
							Int．	Ext．	
	Core Course－ $\mathrm{XI}(\mathrm{CC})$	Complex Analysis	22PMA4CC11	6	5	3	25	75	100
IV	Core Course－ XII（CC）	Functional Analysis	22PMA4CC12	6	5	3	25	75	100
	Core Choice Course－ III（CCC）	A．Differential Geometry	22PMA4CCC3A						
		B．Formal Language and Automata Theory	22PMA4CCC3B	6	4	3	25	75	100
		C．Fluid Dynamics	22PMA4CCC3C						
	Generic Elective Course－II（GEC）	Optimization Techniques	22PMA4GEC2	3	2	3	25	75	100
	Project	Project Work	22PMA4PW	9	5	－	－	100	100
	Total			30	21	－	－	－	500
	Grand Total			120	92	－	－	－	2200

Courses \& Credits for PG and Research Department of Mathematics

S. No	Courses	No. of Courses	No. of Credits	Marks
1.	Core Course- (CC)	12	60	1200
2.	Core Choice Course- (CCC)	3	12	300
3.	Discipline Specific Elective- (DSE)	3	9	300
4.	Generic Elective Course - (GEC)	2	4	200
5.	Project	1	5	100
6.	Internship	1	2	100
	Total	22	92	2200

Students will go for internship after completing the I Semester exams and the internship will be calculated in the II Semester and credits for internship is 02 .
For each semester marks will be for 500(600 for II Semester due to internship)
The internal and external marks for theory and practical papers are as follows:

Subject	Internal	External
Theory	25	75
Practical	40	60

Separate passing minimum is prescribed for Internal and External

For Theory:

a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks).
b) The passing minimum for End Semester Examination shall be 40% out of 75 marks (i.e. 30 marks).
c) The passing minimum not less than 50% in the aggregate.

For Practical:

a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. 24 marks)
c) The passing minimum not less than 50% in the aggregate.

For Project:

Project
Dissertation : 80 Marks
Viva Voce : 20 Marks

Semester I	Internal Marks: 25		External Marks: 75	
COURSECODE	COURSE TITLE	CATEGORY	Hrs / WEEK	CREDITS
22PMA1CC1	ALGEBRA- I	CORE	6	5

Course Objectives

- Gain expertise and confidence in proving theorems to progress in mathematical studies.
- Acknowledge the students with experience in axiomatic mathematics while keeping in close touch with the computational aspects of the subject.
- Enhance students to understand principles, concepts necessary to formulate, solve and analyze Algebra.

Prerequisite

Basic knowledge of sets, relations and functions.
Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of this work, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Apply the basic concepts of group theory with the help of numerous examples	K 3
$\mathbf{C O 2}$	Examine in detail about Permutation Groups and Normal Groups and discuss about counting tricks in algebra	K 4
$\mathbf{C O 3}$	Solve problems related to theorems	K 3
$\mathbf{C O 4}$	Classify groups of finite order using Sylow's theorems	K 4
$\mathbf{C O 5}$	Analyze the Field of Quotients of an integral domain	K 4

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
$\mathbf{C O 2}$	2	3	3	2	2	2	3	2	2	3
$\mathbf{C O 3}$	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
$\mathbf{C O 5}$	2	2	3	3	2	3	2	2	2	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

Unit I
(17 Hours)
Binary Operations - Groups - Subgroups - Permutations I - Permutations II.
Unit II
(18 Hours)
Isomorphism - Direct products - Finitely Generated Abelian Groups - Groups of Cosets- Normal Subgroups and Factor Groups.

Unit III
(17 Hours)
Series of Groups - Isomorphism Theorems; Proof of the Jordan - Holder Theorem - Sylow Theorems.

Unit IV

(20 Hours)
Rings - Integral domains - The Field of Quotients of an Integral Domain - Quotient Rings and Ideals.

Gaussian Integers and Norms.
Unit VI- Self-Study for Enrichment (Not included for End Semester Examinations)
Cyclic Groups - Homomorphisms - Applications of the Sylow Theorem - Some Noncommutative examples - Homomorphism of Rings.

Text Book

1. John B. Fraleigh,(2018(Reprint)), A First Course in Abstract Algebra, Narosa Publishing House, Third edition.

Chapters and Sections

UNIT-I Chapters 1 to 5[1]
UNIT-II Chapters 7,8,9,11 and 12[1]
UNIT-III Chapter 14,15 and 18[1]
UNIT-IV Chapter 23,24,26 and 28[1]
UNIT-V Chapter 31 to 34[1]

Reference Books

1. David S. Dummit and Richard M. Foote, (2004), Abstract Algebra, Wiley and Sons, Third Edition.
2. Joseph A. Gallian, (1999), Contemporary Abstract Algebra, Narosa Publishing House, Fourth Edition.
3. Herstein. I.N, (1975), Topics in Algebra, John Wiley, Second Edition.

Web References

1. https://www.youtube.com/watch?v=g7L_r6zw4-c
2. https://www.youtube.com/watch? $\mathrm{v}=$ VSB8jisn9xI
3. https://www.youtube.com/watch? $\mathrm{v}=$ =WwndchnEDS4
4. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{xTCxmr4ISU4}$
5. https://www.youtube.com/watch?v=iobTKR4-190
6. https://www.youtube.com/watch?v=NfmJQ1ah4vM
7. https://www.youtube.com/watch?v=vrFd-5uEv4k

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. K. Kalaiarasi.

Semester I	Internal Marks: 25		External Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA1CC2	ORDINARY DIFFERENTIAL EQUATIONS	CORE	6	5

Course Objectives

- Recognize certain basic types of first order ODEs for which exact solutions may be obtained and to apply the corresponding methods of solution
- Qualitative Analysis of Solutions of First Order Autonomous Equations.
- Analyze the concepts of existence and uniqueness of solutions.

Prerequisite

Fundamental knowledge of ordinary differential equations in UG.
Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of this work, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Define linear, non-linear, homogeneous and autonomous system of ordinary differential equations.	K1
$\mathbf{C O 2}$	Understand the Qualitative properties of solutions by Sturm separation and Sturm comparison theorems.	K2
$\mathbf{C O 3}$	Diagnose the power series solution for ordinary differential equations such as Gauss Hyper Geometric, Bessel's and Legendre equations.	K4
$\mathbf{C O 4}$	Discriminate the Qualitative properties of solutions for Boundary value problems by using Sturm theorems.	$\mathbf{K 4}$
$\mathbf{C O 5}$	Analyze the Stability nature of Linear and Non-Linear system for various methods.	$\mathbf{K 4}$

Mapping of CO with POs and PSOs

Syllabus

UNIT I
(18 Hours)
The General Solution of the Homogeneous Equation - The Use of a Known Solution to Find Another The Method of Variation of Parameters - Power Series Solutions and Special Functions: Introduction: A Review of Power Series - Series Solutions of First Order Equations - Second Order Linear Equations. Ordinary Points.
UNIT II

(18 Hours)

Regular Singular Points - Gauss's Hypergeometric Equation - The Point at Infinity. Legendre Polynomials - Properties of Legendre Polynomials - Bessel Functions. The Gamma Function, Properties of Bessel Functions.

UNIT III

(18 Hours)
Linear Systems - Homogeneous Linear Systems with Constant Coefficients - The Existence and Uniqueness of Solutions: The Method of Successive Approximations - Picard's Theorem.

Qualitative Properties of Solutions: Oscillations and the Strum Separation Theorem - The Sturm Comparison Theorem - Eigen Values, Eigen Functions and the Vibrating String.

Nonlinear Equations: Autonomous Systems. The Phase Plane and Its Phenomena - Types of Critical Points. Stability - Critical Points and Stability for Linear Systems - Stability by Liapunov's Direct Method Simple Critical Points of Nonlinear Systems.

UNIT VI - Self- Study for Enrichment(Not included for End Semester Examinations) The Homogeneous Equation with Constant Coefficients - Regular Singular Points (Continued) Systems. The Second Order Linear Equation - Sturm Liouville Problems -Nonlinear Mechanics, Conservative systems.

Text Book

George F. Simmons (2003). Differential Equations with Applications and Historical Notes, Second Edition. Tata
McGraw- Hill Editions.

Chapters and Sections

UNIT - I	Chapter 3	Sections 15, 16, 19
	Chapter 5	Sections 26 to 28
UNIT - II	Chapter 5	Sections 29, 31, 32
	Chapter 8	Sections 44 to 47
UNIT - III	Chapter 10	Sections 55, 56
	Chapter 13	Sections 68, 69
UNIT - IV	Chapter 4	Sections 24, 25
	Chapter 7	Sections 40
UNIT -V	Chapter 11	Sections 58 to 62

Reference Books

1. Raisinghania M.D. (2006), Ordinary and Partial Differential Equations, $1^{\text {st }}$ Edition, S.Chand \& Co.
2. Coddington E.A. and Levinson N. (2002), Theory of Ordinary Differential Equations, Mc- Graw Hill Publishing Company, NewYork.
3. Chicone, Carmen. (2006), A Ordinary Differential Equations With Applications, $2^{\text {nd }}$ Edition, Spring Verlag, NewYork.

Web References

1.https://www.youtube.com/watch? $\mathrm{v}=\mathrm{gd} 1 \mathrm{FYn86P0} \mathbf{c}$
2.https://www.youtube.com/watch?v=607b9yyhH7k
3.https://www.youtube.com/watch? $\mathrm{v}=\mathrm{HAb9JbBD} 2 \mathrm{ig}$
4.https://www.youtube.com/watch?v=kj-qTWhH5N4
5.https://www.youtube.com/watch? $\mathrm{v}=$ CV81OjuHUS8
6.https://www.youtube.com/watch?v=oTN7hGoSPMw
7.https://www.youtube.com/watch? $\mathrm{v}=\mathrm{IWm6Coa3}$ _bQ
8.https://www.youtube.com/watch? $\mathrm{v}=1 \mathrm{HUnrokDN0U}$
9.https://www.youtube.com/watch? $\mathrm{v}=1 \mathrm{HUnrokDN0U}$

Pedagogy

Chalk and Talk method, Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Semester I	Internal Marks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA1CC3	INTEGRAL EQUATIONS, CALCULUS OF VARIATIONS AND TRANSFORMS	CORE	6	5

Course Objectives

- To introduce the concept of calculus of variations and integral equations and their applications.
- To learn the different types of transforms and their properties.
- To give an experience in the implementation of Mathematical concepts like integral transforms, integral equations and calculus of variations in various field of Engineering.

Prerequisite

Basic Knowledge of Integral Calculus and Fourier Series

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of this work, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Apply the concepts of calculus of variations to find the maxima and minima of quantities defined as integrals containing unknown functions.	K 3
$\mathbf{C O 2}$	Classify various kinds of Fourier sine and cosine transforms with their properties and simple problems.	K 3
$\mathbf{C O 3}$	Explain the concept of Fourier transform, Hankel transform and its inverse transform.	K 3
$\mathbf{C O 4}$	Recognize and solve particular cases of Fredholm and Volterra integral equations and variational problem	K 4
$\mathbf{C O 5}$	Evaluate the integral equations by the method of successive approximations.	K 5

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	2	3
CO4	3	3	2	2	3	3	3	2	2	2
CO5	2	2	3	3	2	3	2	2	2	3

[^0]" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT I

(18 Hours)
Calculus of variations and applications: Maxima and Minima - The simplest case - Illustrative examples - Natural boundary conditions and transition conditions - The Variational notation - The More general case constraints and Lagrange multipliers - variable end points - Sturm-Liouville problems.

UNIT - II

(18 Hours)
Fourier transforms: Dirichlet's conditions - Fourier series - Fourier's Integral formula - Fourier transform or complex Fourier transform - Inversion theorem for complex Fourier transform - Fourier sine transform - Inversion formula for Fourier sine transform - Fourier cosine transform - Inversion formula for Fourier cosine transform - Linearity property of Fourier transform - Change of scale property - Shifting Property - Modulation Theorem - Multiple Fourier transforms - Convolution - The convolution or Falting theorem for Fourier transforms - Parseval's identity for transforms - Relationship between Fourier and Laplace transforms - Fourier transform of the derivatives of a function - Problems related to integral equations.

UNIT III

(18 Hours)
Hankel Transforms :Definition - Inverse formula for the Hankel transform - Some important results for Bessel function - Linearity property - Hankel Transform of the derivatives of the function - Hankel Transform of differential operators.

UNIT IV

(18 Hours)
Definition, Regularity Conditions - Special Kind of Kernels - Eigen values and Eigen functions Convolution Integral - The Inner or Scalar Product of Two Functions - Notation - Integral Equations with Separable Kernals: Reduction to a System of Algebraic Equations - Examples- Fredholm Alternative Examples.
UNIT V

(18 Hours)

Method of Successive Approximations: Iterative Scheme - Examples - Volterra Integral Equation Examples - Some Results about the Resolvent Kernel - Classical Fredholm Theory: The Method of Solution of Fredholm - Fredholm's First Theorem - Examples - Fredholm's Second Theorem.
UNIT VI - Self-Study for Enrichment(Not included for End Semester Examinations)
Hamilton's Principle - Finite Fourier transforms- Parseval's Theorem- An Approximate Method - Fredholm Integral Equation of the First Kind - Fredholm's Third Theorem.

Text books

1. Francis.B. Hildebrand,(1972), Methods of Applied Mathematics, Prentice - Hall of India Pvt Ltd, New Delhi.
2. Vasishtha.A.R. and Gupta.R.K,(2002), Integral Transforms, Krishna Prakashan Media Pvt Ltd
3. Ram.P.Kanwal,(1971), Linear Integral Equations, Academic Press.

Chapters and Sections

Unit I	Chapter 2	Sections 2.1 to 2.8 [1]
Unit II	Chapter 6	Sections 6.1 to 6.20[2]
Unit III	Chapter 9	Sections 9.1 to 9.6[2]
Unit IV	Chapter 1	Sections 1.1 to $1.7[3]$
	Chapter 2	Sections 2.1 to 2.4[3]
Unit V	Chapter 3	Sections 3.1 to 3.5[3]
	Chapter 4	Sections 4.1 to 4.4[3]

1. Gupta,A.S.(2006), Calculus of Variations with Applications, Prentice Hall of India Private Limited, New Delhi.
2. Raisinghania,M.D. (2007), Integral Equations and Boundary Value Problems, S.Chand \& Company Ltd, New Delhi.
3. Gupta.P.P and Sunjay Gupta,(2003), Integral Transforms, Kedarnath Ram Nath , Meerut.

Web References

1. https://youtu.be/701YJs2xL6Q
2. https://youtu.be/HlwYQqUdrQs
3. https://youtu.be/6HeQc7CSkZs
4. https://youtu.be/UKHBWzoOKsY
5. https://youtu.be/3OCYjT5h23w
6. https://youtu.be/pAwvErIGIV8
7. https://youtu.be/HH9QH692AZE

Pedagogy

Chalk and talk, Power point presentation, Discussion, Assignment, Quiz, Seminar.

Course Designers

1. Dr. S.Sasikala.
2. Dr.R.Radha.

Semester I	Internal Marks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA1CC4	ALGEBRAIC NUMBER THEORY	CORE	$\mathbf{6}$	$\mathbf{5}$

Course Objectives

- Explore fundamental concepts of divisibility, Congruences and primes.
- Analyze the quadratic Residues, The Mobius Inversion formula, Diophantine equations and their problems.
- Apply the ideas of Pythagorean triangle and The Chinese remainder theorem to solve problems.

Prerequisite

Theory of Numbers, Abstract Algebra
Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of this work, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Apply the concepts of divisibility, congruences, primes, primitive roots, quadratic residues, greatest integer functions and linear equations.	K 3
$\mathbf{C O 2}$	Explore the concepts of arithmetic functions, prime modulus and congruences of Degree two.	K 3
$\mathbf{C O 3}$	Relate the ideas of Chinese remainder theorem, quadratic reciprocity and The Mobius Inversion formula.	K 3
$\mathbf{C O 4}$	Determine the solutions of congruences, techniques of numerical calculations, Jacobi symbol, recurrence functions and simultaneous linear equations.	K 4
$\mathbf{C O 5}$	Examine the conceptual understanding in Pythagorean triangles, Legendre Symbol and related problems.	K 4

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	2	3	2	3	2	2	2	2	2	3
CO3	3	3	2	3	3	3	2	2	2	3
CO4	3	3	3	3	3	3	3	2	2	3
CO5	3	3	3	3	3	3	3	2	2	3

" $1 "$ - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg " 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT I

(18 Hours)

Divisibility and Congruences

Introduction - Divisibility - The Binomial Theorem - Congruences - Solutions of Congruences The Chinese Remainder Theorem.

UNIT II

(18 Hours)
Congruences
Techniques of Numerical Calculation - Prime Power Moduli - Prime Modulus - Congruences of Degree Two, Prime Modulus - Public Key Cryptography.

Equivalence and Reduction of Binary Quadratic Forms - Sums of Two Squares.

UNIT IV

Some Functions of Number Theory
Greatest Integer Function - Arithmetic Functions - The Mobius Inversion Formula.

UNIT V

(18 Hours)

Some Diophantine Equations

The Equation $a x+b y=c$ - Simultaneous Linear Equations - Pythagorean Triangles.
UNIT VI - Self-Study for Enrichment (Not included for End Semester Examinations)
Primes - Primitive Roots and Power Residues - Positive Definite Binary Quadratic Forms - Recurrence
Functions - Assorted Examples.

Text Books

Ivan Niven, Herbert S. Zuckerman \& Hugh L. Montgomery (2016) Reprint, An Introduction to the Theory of Numbers, (Fifth Edition, Reprint 2016). Wiley Publishers.

Chapters and Sections

UNIT - I Chapter $1 \quad$ Sections $1.1,1,2 \& 1.4$
Chapter $2 \quad$ Sections 2.1 to 2.3
UNIT - II Chapter $2 \quad$ Sections 2.4 to $2.7 \& 2.9$
UNIT - III Chapter 3 Sections 3.1 to 3.6
UNIT - IV Chapter 4 Sections 4.1 to 4.3
UNIT - V Chapter $5 \quad$ Sections 5.1 to 5.3

Reference Books

1. David M. Burton (2012), Elementary Number Theory (Sixth Edition), Tata McGraw Hill Education Private Limited, New Delhi.
2. Telang S. G. (2005), Number Theory (Reprint 2001),Tata McGraw Hill Education Private Limited, New Delhi.
3. Melvyn B. Nathanson (2005), Methods in Number Theory(Reprint 2006), Springer-Verlag, New York, Inc.

Web References

1. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{ChG}$ _7jeNRHo
2. https://www.youtube.com/watch?v=e8DtzQkjOMQ
3. https://www.youtube.com/watch? $\mathrm{v}=3 \mathrm{~W} 91 \mathrm{U}-\mathrm{aNclQ}$
4. https://www.youtube.com/watch?v=bg6CksAkZ-k
5. https://www.youtube.com/watch? v=4dVTIX4bwP0
6. https://www.youtube.com/watch? v=khfIH1H6iUg
7. https://www.youtube.com/watch?v=BC2BdenKsYs

Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya.

Semester I	Internal Marks: 25		External Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS /WEEK	CREDITS
22PMA1DSE1A	ADVANCED	DSICIPLINE	6	$\mathbf{3}$
	NUMERICAL	SPECIFIC		
	ANALYSIS	ELECTIVE		

Course Objectives

- To know the theory behind various numerical methods.
- To apply these methods to solve mathematical problems.
- To train the students to develop analytical thinking and the study of stability analysis.

Prerequisite

A reasonable background in linear algebra, numerical analysis, partial differential equations, and finite difference methods.
Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of this work, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Apply various methods to solve transcendental and polynomial equations	K 3
$\mathbf{C O 2}$	Use the concepts of interpolation analyze Eigen value problem with Techniques for Mathematical Problems arising in various fields	K 4
$\mathbf{C O 3}$	Classify the various techniques of interpolation and approximation	K 3
$\mathbf{C O 4}$	Compute the numerical differentiation problems	K 3
$\mathbf{C O 5}$	Apply the knowledge of various methods to solve numerical integration problems	K 3

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	2	3	2	3	2	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	2	3	2	3	3	3	2	2	3
CO4	2	2	2	2	3	2	2	2	2	3
CO5	3	3	3	3	3	3	3	3	2	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT I
(18 Hours)
Transcendental and polynomial equations
Rate of convergence - Polynomial equations: Descartes' Rule of Signs - Iterative Methods: Birge-Vieta method - Bairstow's method.

UNIT II
(17 Hours)

System of Linear Algebraic equations and Eigen Value Problems

Error Analysis for Direct methods - Iteration methods - Eigen values and Eigen vectors - Jacobi method for symmetric matrices - Power method.

Interpolation and Approximation

Hermite Interpolation - Piecewise and Spline Interpolation.
UNIT IV
(17 Hours)
Differentiation
Numerical Differentiation - Optimum choice of Step length - Extrapolation methods.

UNIT V

(20 Hours)
Integration
Numerical Integration - Methods based on undetermined coefficients: Newton- Cotes methods: Trapezoidal Method - Simpson's Method - Gauss Legendre Integration Methods - Lobatto Integration Methods.
UNIT VI - Self -Study for Enrichment(Not included for End Semester Examinations)
Direct Method - Graeffe's root squaring method- Gauss Seidel Iteration method - Bivariate Interpolation: Lagrange Bivariate interpolation - Partial Differentiation - Gauss-Chebyshev Integration Methods. Text Book

Jain. M. K, Iyengar. S. R. K. and Jain. R. K. (Sixth Edition), Numerical Methods for Scientific and Engineering Computation, New Age International (P) Limited Publishers, New Delhi.

Chapters and Sections

UNIT-I Chapter $2 \quad$ Sections 2.5 and 2.9(Page No. 83-93)
UNIT-II Chapter $3 \quad$ Sections 3.3 - 3.5, 3.7, 3.11
UNIT-III Chapter $4 \quad$ Sections 4.5 and 4.6
UNIT- IV Chapter $5 \quad$ Sections 5.2-5.4
UNIT- V Chapter $5 \quad$ Sections 5.6
(Page No. 348) and 5.8(Page No. 356-365, 380-382)

Reference Books

1. Jain. M. K, (1983), Numerical Solution of Differential Equations(2nd Edition), New Age International Pvt Ltd.,
2. Samuel. D. Conte and Carl. DeBoor, (1988), Elementary Numerical Analysis($3^{\text {rd }}$ Edition), McGraw-Hill International.
3. Kendall E. Atkinson, (1989), An Introduction to Numerical Analysis($2^{\text {nd }}$ Edition), John Wiley \& Sons.

Web References

1. https://www.youtube.com/watch?v=hTVjuH6J_C8
2. https://www.youtube.com/watch?v=EMPyjetvaDg
3. https://www.youtube.com/watch?v=YkrSgTBznek
4. https://www.youtube.com/watch?v=-fE3I-usIKk
5. https://www.youtube.com/watch?v=gyyKvonahXk.

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designers

1. Ms. R. Soundaria
2. Dr. P.Sudha

Semester I	Internal Marks: 25		External Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS /WEEK	CREDITS
22PMA1DSE1B	MATHEMATICAL MODELLING	DISCIPLINE SPECIFIC ELECTIVE	6	3

Course Objectives

- Analyze the different mathematical models through Ordinary differential equation and Differential Equations.
- Understand the implementation of graph theoretical models.
- Summarize and implementation the kinds of Difference equations.

Prerequisite

Classification of ordinary differential equations.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of this work, students will be able to	Cognitive Level
CO1	Classify the models through Ordinary Differential equations.	K3
CO2	Evaluate the systems of Ordinary Differential equations for various models.	K4
CO3	Examine the Planetary motions through Ordinary Differential equations of second order.	K4
CO4	Explain the basic concepts of Difference equation.	K4
CO5	Compute various types of models through Difference equation.	K3

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
CO5	2	2	3	3	2	3	2	2	2	3

"1" - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT I

(18 Hours)
Mathematical Modelling through Ordinary Differential Equations of First order
Mathematical Modelling Through Differential Equations- Linear Growth and Decay Models - Non-
Linear Growth and Decay Models - Compartment Models - Mathematical Modelling in Dynamics Through
Ordinary Differential Equations of First Order.

UNIT II

Mathematical Modelling through Systems of Ordinary Differential Equations of First Order

Mathematical Modelling in Population Dynamics - Mathematical Modelling of Epidemics Through Systems of Ordinary Differential Equations of First Order - Compartment Models Through Systems of Ordinary Differential Equations - Mathematical Modelling in Medicine, Arms Race, Battles and International Trade in Terms of Systems of Ordinary Differential Equations - Mathematical Modelling in Dynamics Through Systems of Ordinary Differential Equations of First Order.

UNIT III

(20 Hours)

Mathematical Modelling Through Ordinary Differential Equations of Second Order
Mathematical Modelling in Planetary Motions - Mathematical Modelling in Circular Motion and Motion of Satellites - Mathematical Modelling Through Linear Differential Equations of Second Order.

UNIT IV

(17 Hours)

Mathematical Modelling Through Difference Equations

The Need for Mathematical Modelling Through Differential Equations: Some Simple Models - Basic
Theory of Linear Difference Equations with Constant Coefficients - Mathematical Modelling Through
Differential Equations in Economics and Finance- Mathematical Modelling Through Differential Equations in
Probability Theory.

UNIT V

(17 Hours)

Mathematical Modelling through Graphs

Situations that can be Modelled Through Graphs - Mathematical Models in Terms of Directed GraphsMathematical Models in Terms of Signed Graphs-Mathematical Models in Terms of Weighted Digraphs.

UNIT VI - Self-Study for Enrichment(Not included for End Semester Examinations)
Mathematical Modellingof Geometrical problems Through Ordinary Differential Equations of First Order - Mathematical Modelling in Economics Through Systems of Ordinary Differential Equations of First Order - Miscellaneous Mathematical Models Through Systems of Ordinary Differential Equations of Second Order - Mathematical Modelling Through Differential Equations in Population Dynamics and Genetics Mathematical Modelling in Terms of Unoriented Graphs.

Text Book

J N Kapur, (Reprint 2001). Mathematical Modelling. New Age International (P) Limited, Publishers, New
Delhi.

Chapters and Sections

UNIT-I Chapter $2 \quad$ Sections 2.1 to 2.5
UNIT-II Chapter $3 \quad$ Sections 3.1 to 3.3 \& 3.6
UNIT-III Chapter 4 Sections 4.1 to 4.3
UNIT- IV Chapter $5 \quad$ Sections 5.1 to $5.3 \& 5.5$
Chapter $7 \quad$ Sections 7.1 to 7.4
UNIT- V Chapter 15 Sections 15.1 to 15.3 .6 [2]
Chapter 16 Sections 16.2 to16.2.5, 16.5, 16.5.1 to 16.5 .3 [2].

Reference Books

1. Bimal K.Mishra \& Dipak K.Satpathi (First Edition, Reprint 2009). Mathematical Modeling Applications, Issues and Analysis($1^{\text {st }}$ Edition). Ane Books Pvt. Ltd.
2. Edward A. Bender. An Introduction to Mathematical Modelling(Reprint 2000).Dover Publications.
3. Rutherford A. Mathematical Modelling Techniques(Revised Edition 2012).Dover Publications.

Web References

1. https://www.youtube.com/watch?v=3Yfsh1SnGIw
2. https://www.youtube.com/watch? $v=E d t w K 8 K S w O 0$
3. https://www.youtube.com/watch?v=zczt5GhkylY
4. https://www.youtube.com/watch?v=-wVCKOvceok
5. https://www.youtube.com/watch?v=BZwp8gAxvUc

Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment and Smart Classroom.

Course Designer

Dr R. Buvaneswari.

Semester I	Internal Marks: 25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS /WEEK	CREDITS
22PMA1DSE1C	BOUNDARY VALUE PROBLEMS	DISCIPLINE SPECIFIC ELECTIVE	$\mathbf{6}$	$\mathbf{3}$

Course Objectives

- Gain expertise and confidence in proving theorems to progress in mathematical studies.
- Analyze the implementation of boundary value problem through various models.
- Summarize the various aspects of boundary value problem.

Prerequisite

- Exposure on Fourier series and Differential Equations.

Course Outcomes
Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of this work, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Apply real world scenarios in order to solve the problems using multiple approaches.	K 3
$\mathbf{C O 2}$	Classify Boundary value problems and learn their distinguishing qualitative properties.	K 3
$\mathbf{C O 3}$	Relate the applications of Laplace and Poisson Equations	K 3
$\mathbf{C O 4}$	Determine the understanding of Fourier Bessel Series	K 4
$\mathbf{C O 5}$	Analyze Dirichlet Problems and its solutions in various Regions.	K 4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
$\mathbf{C O 1}$	2	3	3	3	3	3	2	2	2	3
$\mathbf{C O 2}$	2	3	3	2	2	2	3	2	2	3
$\mathbf{C O 3}$	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
$\mathbf{C O 5}$	2	2	3	3	2	3	2	2	2	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT I
(18 Hours)
One-sided Derivatives- An Integration Formula - Preliminary Theory -
A Fourier Theorem- Discussion of the Theorem.

UNIT II

(17 Hours)
Formal and Rigorous Solutions - The Vibrating String, Initially Displaced - Discussion of the Solution - Prescribed Initial Velocity - Non homogeneous Differential Equations - Elastic BarTemperatures in a Bar.

UNIT III

(18 Hours)
A Dirichlet Problem - Fourier Series in Two Variable - An Application of Fourier Integrals Temperatures $u(x, t)$ in an Unlimited Medium

Fourier-Bessel Series-Temperatures in a Long Cylinder-Heat Transfer at the Surface of the Cylinder.

UNIT IV

Dirichlet Problems in Spherical Regions - Steady Temperature in a Hemisphere.

UNIT V

Cauchy Criterion for Uniform Convergence -Abel's Test for Uniform Convergence - Uniqueness of Solutions of the Heat Equation - Example - Solutions of Laplaces's or Poisson's Equation.

UNIT VI - Self-Study for Enrichment(Not included for End Semester Examinations)

Other Forms of Fourier Series - The Orthonormal Trigonometric Functions - Other Boundary Conditions - Observations and Further Examples - Vibration of a circular Membrane - Other Orthogonal Sets - An Application.

Text Book

Ruel V Churchill. (1963). Fourier Series and Boundary Value Problems (Second Edition). McGraw-Hill Book Company.
Chapters and Sections

UNIT-I Chapter 4
UNIT-II Chapter 7 Sections 55 to 61
UNIT-III Chapter 7 Sections 63 to 66 Chapter $8 \quad$ Sections 78 to 80
UNIT-IV Chapter 9 Sections 89 to 90
UNIT-V Chapter10 Sections 92 to 96

Reference Books

1. Raisinghania, M.D.(2014). Ordinary and Partial Differential Equations($1^{\text {st }}$ Edition). S.Chand \& Company Pvt.Ltd.
2. George F Simmons, (2003). Differential Equations with Applications and Historical Notes(2 ${ }^{\text {nd }}$ Edition). Tata McGraw-Hill Publishing Company.
3. Sankara Rao, K. (2019). Introduction to Partial Differential Equations($3^{\text {rd }}$ Edition). Prentice-Hall of India.

Web References

1. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{m} 8 \mathrm{aIO}-\mathrm{GQkXE}$
2. https://www.youtube.com/watch?v=AgyeJEO2a-k
3. https://www.youtube.com/watch? $\mathrm{v}=\mathbf{O}$ _HgMWx4a5w
4. https://www.youtube.com/watch?v=1tDkXMDbvDg\&t=119s
5. https://www.youtube.com/watch?v=USOmOW-IN3I

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Ms. P. Geethanjali.

Semester II	Internal Marks: 25		External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PMA2CC5	ALGEBRA - II	CORE	$\mathbf{6}$	$\mathbf{5}$	

Course Objectives

- Learn the fundamentals in Galois theory
- Expertise and confidence in proving theorems to progress in Galois theory
- Familiarize the concepts of Galois group

Prerequisite

Basic knowledge of algebra.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able To	Cognitive Level
$\mathbf{C O 1}$	Analyse the important concepts of Galois theory and identify through various examples	K1, K2, K3
$\mathbf{C O 2}$	Predict the notions and their connections of Galois theory	K3
$\mathbf{C O 3}$	Examine the proof of solvability by Galois theory	K4
$\mathbf{C O 4}$	Evaluate clear cut idea in Galois theory extensions and illustrate through examples	K5
$\mathbf{C O 5}$	Learn and conclude Galois theory correspondence theorem of algebra	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	2	2	2
CO2	3	3	3	2	2	3	3	3	2	2
CO3	3	3	3	3	3	3	3	2	3	3
CO4	2	2	3	3	3	2	2	3	3	3
CO5	2	2	3	3	3	2	3	2	3	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg " 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Prime Ideals and Maximal Ideals - Irreducible Polynomials.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	Classical Formulas - Splitting Fields.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
III	The Galois Group - Roots of Unity - Solvability by Radicals.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \end{aligned}$

			$\begin{aligned} & \hline \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{gathered} \hline \text { K4, } \\ \text { K5 } \end{gathered}$
IV	Independence of Characters - Galois Extensions.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
V	The Fundamental Theorem of Galois Theory Applications - Galois's Great Theorem.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \\ & \hline \end{aligned}$
VI	Self-Study for Enrichment (Not included for End Semester Examinations) Rings - Domains and Fields - Homomorphism and Ideals - Quotients Rings- Polynomial Rings over Fields.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5

Text Book

Joseph Rotman (2006), Galois Theory, $2^{\text {nd }}$ Edition, Springer Verlag.

Chapters and Pages

UNIT I Pages 31-43
UNIT II Pages 44-58
UNIT III Pages 59-75
UNIT IV Pages 76-82
UNIT V Pages 83-95

Reference Books

1. David S. Dummit and Richard M. Foote (Reprint 2017), Abstract Algebra, Wiley and Sons, Third Edition
2. John B. Fraleigh (2018), A First Course in Abstract Algebra, Narosa Publishing House, Seventh edition
3. I. N. Herstein (2006), Topics in Algebra, John Wiley, Second Edition

Web References

1. https://nrich.maths.org/1422
2. https://www.math3ma.com/blog/what-is-galois-theory-anyway
3. https://people.math.harvard.edu/~elkies/M250.01/galois_topix.html
4. https://www.maths.ed.ac.uk/~tl/gt/gt.pdf
5. https://mathoverflow.net/questions/34125/is-galois-theory-necessary-in-a-basic-graduate-algebracourse

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. K. Kalaiarasi

Semester II	Internal Marks: 25		External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PMA2CC6	REAL ANALYSIS	CORE	$\mathbf{6}$	$\mathbf{5}$	

Course Objectives

- Identify the elements and importance of real numbers.
- Provide students with the specialist knowledge necessary for basic concepts in Real Analysis.
- Apply the proof techniques in analysis to be well prepared for the advanced courses.

Prerequisite

Basic set theory and Calculus

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Describe fundamental properties of the real numbers that lead to the formal development of real analysis.	K 2
$\mathbf{C O 2}$	Construct the important concepts of real analysis.	K 3
$\mathbf{C O 3}$	Ascertain the concepts of basic topology, continuity, differentiation, The Riemann-Stieltjes Integral, sequences and series of functions, functions of several variables.	K 4
$\mathbf{C O 4}$	Explain various mathematical proofs of basic results in real analysis.	$\mathrm{K5}$
$\mathbf{C O 5}$	Develop the abstract ideas and various methods in mathematical analysis that can be applied to important practical problems.	K 6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	2	3
CO2	3	2	3	3	3	3	2	3	2	3
CO3	3	3	3	3	3	3	2	3	3	3
CO4	3	2	3	3	2	3	2	2	2	3
CO5	3	3	3	3	2	3	2	3	3	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{aligned} & \text { COGNITI } \\ & \text { VE } \\ & \text { LEVEL } \end{aligned}$
I	Basis Topology: Finite, Countable and Uncountable Sets - Metric Spaces - Compact Sets - Connected Sets.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO}, \end{aligned}$	K2, K3, K4, K5, K6
II	Continuity and Differentiation: Limits of Functions - Continuous Functions Continuity and Compactness - Continuity and	18	$\begin{aligned} & \text { CO1, } \\ & \text { CO2, } \\ & \text { CO3, } \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \end{aligned}$

	Connectedness - Discontinuities - Monotonic Functions - The Derivative of a Real Function - Mean value Theorems - The Continuity of Derivatives - L' Hospital's Rule - Derivatives of Higher Order Taylor's Theorem.		$\begin{aligned} & \hline \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{gathered} \text { K5, } \\ \text { K6 } \end{gathered}$
III	The Riemann-Stieltjes Integral: Definition and Existence of the Integral Properties of the Integral - Integration and Differentiation.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K2, K3, K4, K5, K6
IV	Sequences and Series of Functions: Discussion of Main Problem - Uniform Convergence - Uniform Convergence and Continuity Uniform Convergence and Integration - Uniform Convergence and Differentiation - The StoneWeierstrass Theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
V	Functions of Several Variables Differentiation - The Contraction Principle - The Inverse Function Theorem _ The Implicit Function Theorem.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Perfect Sets - Infinite Limits and Limits at Infinity - Integration of Vector-valued Functions Equicontinuous Families of Functions - Linear Transformations.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6

Text Books

Walter Rudin (1986). Principles of Mathematical Analysis (Third Edition). McGraw-Hill Book Company.

Chapters and Sections

UNIT-I
Chapter 2: Sections 2.1-2.42, 2.45-2.47
UNIT-II Chapter 4: Sections $4.1-4.31$
Chapter 5: Sections 5.1-5.15
UNIT-III Chapter 6: Sections 6.1-6.22
UNIT- IV Chapter 7: Sections 7.1-7.18, 7.26-7.33
UNIT- V Chapter 9: Sections 9.10-9.29

Reference Books

1. Robert G. Bartle and Donald R. Sherbert. (2019). Introduction to Real Analysis (Fourth Edition). Wiley India Pvt. Limited.
2. Tom M. Apostol. (2002). Mathematical Analysis (Second Edition). Narosa Publishing House.
3. H.L. Royden. (2003). Real Analysis (Third Edition, Ninth Reprint). PHI Learning Private Limited, New Delhi.

Web References

1. https://youtu.be/mfoVRabIpQI
2. https://tinyurl.com/c756hc6k
3. https://youtu.be/6mNGn8dTnJw
4. https://youtu.be/xIwg_w2quRE
5. https://youtu.be/yLbgdL9HAeg
6. https://tinyurl.com/mux7d53w
7. https://youtu.be/8VTG6EsyJh4

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya

Semester II	Internal Marks: 25	External Marks: 75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PMA2CC7	LINEAR ALGEBRA	CORE	$\mathbf{6}$	5	

Course Objectives

- Acquire knowledge related to basic concepts.
- Develop rational thinking patterns in terms of problem solving in competitive exam.
- Emphasis knowledge of the various aspects of Linear Algebra.

Prerequisite

Basic Knowledge of algebra and vector space.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Remember and recall the basic concepts of vector space	K1
$\mathbf{C O 2}$	Illustrate the various techniques of problem solving in respective stream	K2
$\mathbf{C O 3}$	Apply different terminologies of linear algebra	K3
$\mathbf{C O 4}$	Classify the various properties in transformation	K4
$\mathbf{C O 5}$	Interpret the problems involved in vector spaces	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	2	3	2	3	2	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	2	3	2	3	3	3	2	2	3
CO4	2	2	2	2	3	2	2	2	2	3
CO5	3	3	3	3	3	3	3	3	2	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg " - " indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIV E LEVEL
I	Matrices:		CO1,	K1,
	Systems of Linear Equations - Matrices and Elementary	CO2,	K2,	
	Row Operations - Row reduced Echelon Matrices -		K3,	
	Invertible Matrices - Bases and Dimension.		CO4,	K4,
II	Linear Transformations:	CO5	K5	
	Linear Transformations - The Algebra of Linear	CO1,	K1,	
	Transformations - Isomorphism of Vector Spaces -	18	CO2,	K2,
	Representation of Transformations by Matrices - Linear		CO3,	K3,

	Functionals - The Transpose of a Linear Transformation.		CO5	K5
III	Polynomials: Algebras - The Algebra of Polynomials -Polynomial Ideals - The Prime Factorization of a Polynomial . Determinants: Commutative rings - Determinant functions.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
IV	Determinants: Permutations and the Uniqueness of Determinants Introduction - Characteristic values - Annihilating Polynomials.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K1, K2, K3, K4, K5
V	Elementary Canonical Forms: Invariant Subspaces -Direct - Sum Decompositions Invariant Direct Sums - The Primary Decomposition Theorem.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
VI	Self -Study for Enrichment: (Not included for End Semester Examination) Matrix Multiplication - The Double Dual - Lagrange Interpolation - Additional Properties of Determinants Simultaneous Triangulation and Simultaneous Diagonalization.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5

Text Book

Kenneth Hoffman and Ray Alden Kunze (1975). Linear Algebra, Second Edition, Prentice Hall of India Private Limited, New Delhi.

Chapters and Sections

UNIT-I
Chapter 1: \quad Sections 1.2 - 1.4, 1.6
Chapter 2: Sections 2.3
UNIT-II Chapter 3: \quad Sections 3.1 - 3.5, 3.7
UNIT-III Chapter 4: Sections 4.1, 4.2, 4.4, 4.5
Chapter 5: \quad Sections 5.1-5.2
UNIT- IV Chapter 5: Sections 5.3
Chapter 6: \quad Sections 6.1-6.3
UNIT- V Chapter 6: Sections 6.4, 6.6-6.8

Reference Books

1. Kumaresan S(2004). Linear Algebra: A Geometric Approach, Prentice - Hall of India Ltd.
2. Rao A. R, Bhimashankaram P(2000). Linear Algebra, Second Edition, Tata McGraw Hill.
3. Edgar Goodaire G(2014). Linear Algebra, Pure \& Applied World Scientific, Cambridge University Press India Ltd.

Web References

1. https://youtu.be/Pc2dWW3aSrk
2. https://youtu.be/shs81WDOBHO
3. https://youtu.be/nPOooyrM5is
4. https://youtu.be/uJNQPgYjlQc
5. https://youtu.be/6PEKr7vWsrw
6. https://ksuweb.kennesaw.edu

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P.Shalini

Semester II	Internal Marks: 25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA2CCC1A	PARTIAL DIFFERENTIAL EQUATIONS	CORE	6	4
	CHOICE			

Course Objectives

- Recognize certain basic types of first and second order PDEs and an in-depth knowledge of solving them by various methods.
- Analyze the Characteristics and Compatibility of PDE's.
- Qualitative Analysis of the solutions of Boundary value Problems.

.Prerequisite

Fundamental knowledge of Partial differential equations in UG.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Interpret the solutions of hyperbolic, linear and second order partial differential equations, Exterior, Interior and boundary value problems using various Methods.	K2
$\mathbf{C O 2}$	Develop the various type of first and second order equations, Interior and Exterior value problems and Determine the higher order equations in physics, Characteristics of Equations in Three Variables, Linear Hyperbolic Equations and Elementary Solutions of Laplace's Equation.	K3
$\mathbf{C O 3}$	Diagnose the orthogonally, compatibility and characteristics of the partial differential equations with constant and variable coefficients, method of Integral transforms and Families of Equipotential Surfaces.	K3
$\mathbf{C O 4}$	Discriminate the solutions of first, second order and hyperbolic equations, Integral Surfaces Passing through a Given Curve, Surfaces Orthogonal to a Given System of Surfaces, Characteristics of Equations in Three Variables, The Solution of Linear Hyperbolic Equations, Separation of Variables	K4
$\mathbf{C O 5}$	Ascertain the concepts of Laplace equation to find the solution of boundary value problems, Special Types of First-Order Equations, Linear Partial Differential Equations with Constant Coefficients, Equations with Variable Coefficients,the Method of Integral Transforms, Families of Equipotential Surfaces.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus				
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Partial Differential Equations of The First Order: Partial Differential Equations - Origins of First-order Partial Differential Equations - Cauchy's Problem for First-order Equations - Linear Equations of the First Order - Integral Surfaces Passing through a Given Curve - Surfaces Orthogonal to a Given System of Surfaces.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
II	Partial Differential Equations of The First Order: Cauchy's Method of Characteristics - Compatible Systems of First-order Equations - Charpit's Method - Special Types of First-Order Equations - Jacobi's Method.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
III	Partial Differential Equations of the Second Order: The Origin of Second-order Equations - Second-order Equations in Physics - Higher-order Equations in Physics - Linear Partial Differential Equations with Constant Coefficients - Equations with Variable Coefficients.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
IV	Partial Differential Equations of the Second Order: Characteristics of Equations in Three Variables - The Solution of Linear Hyperbolic Equations - Separation of Variables - The Method of Integral Transforms.	18	$\begin{aligned} & \text { CO1, } \\ & \text { CO2, } \\ & \text { CO3, } \\ & \text { CO4, } \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
V	Laplace's Equation: Elementary Solutions of Laplace's Equation - Families of Equipotential Surfaces - Boundary Value Problems - Separation of Variables.	18	$\begin{aligned} & \hline \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Nonlinear Partial Differential Equations of the First Order - Solutions Satisfying Given Conditions Characteristic Curves of Second-Order Equations Nonlinear Equations of the Second Order- Problems with Axial Symmetry.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$

Text Book

Ian N. Sneddon (2006), Elements of Partial Differential Equations, Dover Publication - INC. Mineola, Newyork.

Chapters and Sections

UNIT- I Chapter 2: Sections 1 to 6
UNIT- II Chapter 2: Sections 8 to 11, 13
UNIT- III Chapter 3: Sections 1 to 5
UNIT- IV Chapter 3: \quad Sections 7 to 10
UNIT- V Chapter 4: Sections 2 to 5

Reference Books

1. M.D.Raisinghania (2001), Advanced Differential Equations, Eighth Edition, S.Chand and Company Ltd., NewDelhi.
2. T.Amarnath (2003), Elementary Course in Partial Differential Equations, Second Edition, Narosa Publishing House, New Delhi.
3. Sauvigny, Friedrich (2006), A Partial Differential Equations 2: Functional Analytic Methods, Springer, Arizona.

Web References

1. https://people.bath.ac.uk/mir20/images/odenotes.pdf
2. https://pages.pomona.edu/~ajr04747/Spring2014/Math182/Notes/Math182Spring2014Notes.pdf/
3. https://www.youtube.com/watch?v=VBn1diQCykQ/
4. https://www.youtube.com/watch?v=f0FeWyloHrs/
5. https://nptel.ac.in/courses/111106139/

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. G. Janaki

Semester II	Internal Marks: 25		External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PMA2CCC1B	MATHEMATICAL	CORE CHOICE	6	4	
	PROGRAMMING				

Course Objectives

- Ability to Understand and Analyze managerial problems in industry so that they are able to use resources (capitals, materials, staffing, and machines) more effectively.
- Knowledge of formulating mathematical models for quantitative analysis of managerial problems in industry.
- Allows a quantitative technique or a scientific approach for making better decisions for operations under the control.

Prerequisite

Basic Knowledge of Operations Research.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Recognize the importance and value of Operations Research and mathematical modeling in solving practical problems in industry	K1, K2
$\mathbf{C O 2}$	Know how to use variables for formulating complex mathematical models in management science, industrial engineering and Transportation science and in real life.	K 3
$\mathbf{C O 3}$	Analyze a managerial decision problem and formulate into a mathematical model	K 4
$\mathbf{C O 4}$	To design, improve and operate complex systems in the best possible way	K 4,
$\mathbf{C O 5}$	Determine the solution of NonLinear Programming based on Various Method.	K 5

Mapping of CO with PO and PSO										
COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	2	3
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	2	3	3	3	2	3	3	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Advanced Linear Programming: From Extreme Points to Basic Solutions Generalized Simplex Tableau in Matrix form Development of the Optimality and Feasibility Conditions - Revised Simplex Algorithm.	17	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	Integer Linear Programming: Integer Programming Algorithms - Cutting Plane Algorithm. DeterministicDynamic Programming: Recursive Nature of Dynamic Programming(DP) Computations.	18	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
III	Simulation Modeling : Monte Carlo Simulation - Types of Simulation - Sampling from ProbabilityDistribution.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Classical Optimization Theory: Unconstrained Problems - Necessary and Sufficient Conditions - The Newton - Raphson Method - Constrained Problems - Equality Constraints (Jacobi Method).	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
V	Non Linear Programming Algorithms: Unconstrained Algorithms - Direct Search Method - Gradient Method - Constrained Algorithms - Quadratic Programming.	19	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
VI	Self -Study for Enrichment: (Not included for End Semester Examinations) Duality - Matrix Definition of the Dual Problem Optimal Dual Solution - Forward and Backward Recursion - Generation of Random Numbers Equality Constraints (Lagrangean Method) -Chance-Constrained Programming.		$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

Text Book

Hamdy A.Taha, Nineth Edition, (2014), Operations Research, Dorling Kindersley (India) Pvt. Ltd.

Chapters and Sections

UNIT-I Chapter 7: Sections 1.1, 1.2, 2.1-2.2 (Page No. 299-313)
UNIT-II Chapter 8: \quad Sections 2, 2.2 (Page No. 355, 364-373),
Chapter 11: \quad Sections1 (Page No. 461-464)
UNIT-III Chapter 17: Sections 1, 2, 3.2 (Page No. 681-686, 688-694)
UNIT- IV Chapter 18: Sections 1, 1.1, 1.2, 2, 2.1 (Page No. 713-726)
UNIT- V Chapter 19: \quad Sections 1, 1.1, 1.2, $2,2.2$ (Page No. 737 - 744, 753 - 758)

Reference Books

1. KantiSwarup, P.K. Gupta, ManMohan, Nineteenth Edition (2017), Operations Research, Sultan Chand and Sons Publishers.
2. J.K. Sharma, Fourth Edition (2009), Operations Research Theory and Applications, Macmillan India Limited.
3. S.S. Rao, Second Edition (1985), Optimization Theory and Applications, New Age International Ltd.

Web References

1. https://www.youtube.com/watch?v=ii_oSKROeRI
2. https://www.youtube.com/watch?v=NSrIb7mKtwg
3. https://faculty.ksu.edu.sa/sites/default/files/index.pdf
4. https://www.youtube.com/watch?v=eo2tOPV3AoE
5. https://www.youtube.com/watch?v=9ESUw4azhKE

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. E. Litta.

Semester II	Internal Marks: 25		ExternalMarks:75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS /WEEK	CREDITS
22PMA2CCC1C	DIFFERENCE EQUATIONS	CORE CHOICE	6	4

Course Objectives

- Analyze the linear difference equations of higher order.
- Understand the implementation of nonlinear difference equations..
- Summarize the results of oscillation for linear difference equations with systems of variables..

Prerequisite

Classification of linear difference equations.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Recall and Classify the models through linear difference equations of high- order..	K1, K2
$\mathbf{C O 2}$	Interpret the systems of two or more dependent variables for various models.	K 2
$\mathbf{C O 3}$	Solve the Planetary motions through the study of a linear difference or differential equations to examination of an associated complex function..	K 3
$\mathbf{C O 4}$	Analyze the basic concepts of Difference equations.	K 4
$\mathbf{C O 5}$	Determine various types of models through the solutions oscillate around zero or eventually positive or eventually negative and also oscillation theory for self-adjoint equations	K 5

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
CO5	2	2	3	3	2	3	2	2	2	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Linear Difference Equations of Higher Order Difference Calculus: The power Shift, Factorial Polynomials and The Antidifference Operator - General Theory of Linear Difference Equations - Linear Homogeneous Equations with Constant Coefficients Nonhomogeneous Equations: Method of Undetermined coefficients : The Method of Variation of Constants (Parameters)	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	System of Linear Difference Equations Autonomous (Time -Invariant) Systems: The Discrete Analogue of the Putzer Algorithm, The Development of the Algorithm for A^{n} - the Basic Theory The Jordan form: Autonomous (Time -Invariant) Systems Revisited : Diagonalizable Matrices, The Jordan Form and Block-Diagonal Matrices.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
III	The Z-Transform Method and Volterra Difference Equations Definition and Examples : Properties of the Z-Transform - The Inverse Z-transform and Solutions of Difference Equations: The Power Series Method, The Partial Fractions Method and The Inversion Integral Method Volterra Difference Equations of convolution types: The Scalar Case.	20	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Oscillation Theory Three-Term Difference Equations - Self-Adjoint Second- Order Equations.	17	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
V	Asymptotic Behavior of Difference Equations Tools and Approximation - Poincare's theorem : Infinite Products and Perron's Example - Asymptotically Diagonal Systems - High- Order Difference Equations	17	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO}, \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examination) Limiting behavior of solutions - Linear Periodic System - Volterra Systems - Nonlinear Difference Equations - Second-Order Difference Equations: A Generalization of the Poincare Perron Theorem.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

Text Books

Saber N Elaydi, Third Edition, (2004), An Introduction to Difference Equations, Springer Verlag, New York.

Chapters and Sections

UNIT-I Chapter $2 \quad$ Section 2.1-2.4
UNIT-II Chapter $3 \quad$ Sections 3.1-3.3
UNIT-III Chapter 6 Sections 6.1-6.3
UNIT- IV Chapter $7 \quad$ Sections $7.1 \& 7.2$ (Page No. 313-320)
UNIT- V Chapter 8 Sections 8.1-8.4

Reference Books

1. Ravi P.Agarwal and Kanishka Perera, Reprint, (2006), Proceedings of the Conference on Differential and Difference Equations and Applications, Hindawi Publishing Corporation.
2. Ravi P.Agarwal, Second Edition, (2000), Difference Eqations and Inequalites, Marcel Dekker, Inc., New York.
3. Klaus Neusser, Reprint, (2021), Difference Equations for Economists RePEc/ IDEAS.

Web References

1. https://www.youtube.com/watch?v=zw8xM5GHvZQ
2. https://www.youtube.com/watch?v=MtHpbGUIGaA
3. https://www.youtube.com/watch?v=ESKx8PEJCB4
4. https://www.youtube.com/watch? $\mathrm{v}=$ _Xub0zCmIXk
5. https://www.youtube.com/watch?v=IKtROKsWVR4
6. https://eprints.kfupm.edu.sa/id/eprint/9906/1/9906.pdf

Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment and Smart Classroom.

Course Designer

Dr R. Buvaneswari.

Semester II	Internal Marks: 40					ExternalMarks:60
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
22PMA2DSE2AP	COMPUTATIONAL	DISCIPLINE		$\mathbf{3}$		
	MATHEMATICS USING	SPECIFIC				
	MATLAB(P)	ELECTIVE				

Course Objectives

- To Provide Software that can be used to explore and experiment with Mathematical Constructions.
- Flexible for users to solve the various system of equations.
- To attain a high level of user support.

Prerequisite

- Basic knowledge of Higher Mathematics

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Remember the concepts of Algebra, Geometry, Numerical Analysis, Calculus, etc.	K 1
$\mathbf{C O 2}$	Understand the calculation by reading documented source code	K 2
$\mathbf{C O 3}$	Relate the mathematical thinking that is applicable to daily life	K 3
$\mathbf{C O 4}$	Associate technological tools for graphical visualization	K 4
$\mathbf{C O 5}$	Develop skills with core elements of MATLAB and gain an appreciation of social scientific work	K 6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	3
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	3	2	3	2	3	2	3	2	2
CO5	2	2	2	2	2	2	2	2	2	2

$" 1 "-$ Slight (Low) Correlation \neg " $2 "-$ Moderate $($ Medium $)$ Correlation \neg
$" 3 "-$ Substantial (High) Correlation \neg "-" indicates there is no correlation.

LIST OF PROGRAMS

1. Mathematical operations
2. Finding GCD and LCM
3. Finding roots and solving the system of equations
4. Matrix Operations
5. Decision Making
6. Loop Types
7. Vector Operations
8. Working with Arrays
9. Plotting 2D Graphs
10. Plotting 3D Graphs
11. Importing and Exporting data in Excel
12. Integration
13. Differentiation and Finding Maxima and Minima
14. Manipulating strings
15. Laplace Transform and Fourier Transform

Web References

1. https://www.mathworks.com/products/matlab.html
2. https://www.mathworks.com/help/matlab/ref/plot.html
3. https://www.mathworks.com/help/stateflow/ug/operations-for-vectors-and-matrices.html
4. https://www.tutorialspoint.com/matlab/matlab_matrics.htm
5. https://www.javatpoint.com/matlab-numerical-integration

Pedagogy

Power point presentations and Assignment.

Course Designers

1. Dr. S. Sasikala
2. Ms. R. Soundaria.

Semester II	Internal Marks: 40	ExternalMarks:60		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PMA2DSE2BP	MATHEMATICAL MODELLING USING MATLAB(P)	DISCIPLINE SPECIFIC ELECTIVE	$\mathbf{6}$	$\mathbf{3}$

Course Objectives

- Analyze the concepts and use the necessary to the real-life problems using MATLAB.
- Apply the technical knowledge to interpret and solve the problems using MATLAB.
- Explore the ideas of MATLAB in Mathematical modelling.

Prerequisite

Basic knowledge of Mathematical Modelling and MATLAB.
Course Outcomes
Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Understand the importance of Mathematical Modelling in the real world using MATLAB.	K 2
$\mathbf{C O 2}$	Apply Mathematical concepts to identify the appropriate mathematics to realize a solution using MATLAB.	K 3
$\mathbf{C O 3}$	Make use of formulas, familiar with memory and file management in MATLAB.	K 4
$\mathbf{C O 4}$	Determine various types of models through Difference equation .	K 5
$\mathbf{C O 5}$	Formulate, Analyse and simulate mathematical models using MATLAB.	K 6

Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	2	2	2
CO2	3	2	3	3	3	3	3	2	2	2
CO3	3	2	3	3	3	3	3	2	2	2
CO4	3	2	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	2

"1" - Slight (Low) Correlation " 2 " - Moderate (Medium) Correlation
" 3 " - Substantial (High) Correlation "-" indicates there is no correlation.

LIST OF PROGRAMS

1) Lagrange ' s Formula for Area of a Rectangle.
2) Simple interest and Compound interest.
3) Integral equations.
4) Calculus of variations in functionals involving two and three independent variables.
5) Difference Equation of a System.
6) MATLAB programming in dynamic programming.
7) Delay differential equations.
8) Linear programming in MATLAB.
9) Mixed-Integer linear programming.
10) Application of Non-linear programming.
11) Simulating simple circuit.
12) Programming a simple markov model.
13) Design Optimization.
14) MATLAB solution of a diffusion equation.
15) Commodities trading with MATLAB.

Web References

1. https://www.youtube.com/watch?v=Y93V9wOWETs
2. https://www.youtube.com/watch?v=ryxh5CoihwE
3. https://www.youtube.com/watch?v=K6yjDI4hzKo
4. https://www.youtube.com/watch?v=LpVv306NSnE
5. https://www.youtube.com/watch? $v=z 4 a M B a T P W 3 I$
6. https://www.youtube.com/watch? $\mathrm{v}=$ TCWrD3cZG9s
7. https://www.youtube.com/watch? $v=b J y \quad$ QJTQxQA
8. https://www.mathworks.com/videos/mixed-integer-linear-programming-in-matlab-91541.html
9. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{qTJDNXRfcsc}$
10. https://www.youtube.com/watch?v=yLlQ1dzAsl8
11. https://www.youtube.com/watch?v=wr35tzLMMfw
12. https://www.mathworks.com/videos/design-optimization-with-matlab-1601644975662.html
13. https://www.youtube.com/watch?v=S3DXGvrdx1w
14. https://www.youtube.com/watch?v=m6bkXNEKE7E
15. https://www.mathworks.com/videos/modeling-an-insulin-infusion-pump-87684.html

Pedagogy

Power point presentations, Live Demo, Hands on training.

Course Designer

Dr. C. Saranya

Semester II	Internal Marks:40	External Marks:60		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PMA2DSE2CP	ORDINARY DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS USING MATLAB (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3

Course Objectives

- To identify different ordinary and partial differential equation problems and reformulate them in a way that is appropriate for using MATLAB.
- Use functions from the programming language library for efficient calculations and visualization.
- Solve problems systematically and implement the solution in MATLAB.

Prerequisite

Fundamental knowledge of ordinary and partial differential equations.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Describe the use of fundamental data structures	K3
CO2	Apply MATLAB effectively to analyze and visualize data	K4
CO3	Solve scientific and mathematical problems	K4
$\mathbf{C O 4}$	Apply basic functions for ordinary and partial differential equations	K3
$\mathbf{C O 5}$	Compute programs in MATLAB	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	2	2	2	3	2	2	3
CO2	3	2	3	2	3	2	3	3	3	3
CO3	3	3	3	2	3	2	3	3	3	2
CO4	3	3	2	3	3	3	2	3	3	3
CO5	3	3	2	3	3	3	2	3	3	3

$\begin{array}{ll}" 1 "-\text { Slight (Low)Correlation } & " 2 "-\text { Moderate (Medium)Correlation } \\ " 3 "-\text { Substantial (High)Correlation } & "-" \text { indicates there is no correlation. }\end{array}$

LIST OF PROGRAMS

1. Computing the solutions of First Order Differential Equations.
2. Determine the solutions to Initial Value Problems.
3. Plotting the solutions of First Order Differential Equations.
4. Plotting the solution of the second-order equations.
5. Computing the Solutions of the heat equations.
6. Finding the solutions of the Poisson equations.
7. Determine the solutions of Laplace Equations by Direct Method.
8. Computing the solutions of Laplace Equations by Iterative Method.
9. Solving the nonlinear system of Partial Differential Equations.
10. Plotting for the single Partial Differential Equations with the initial conditions.

Web References

1. https://in.mathworks.com/help/matlab/math/partial-differential-equations.html
2. https://www.math.tamu.edu/reu/comp/matode.pdf
3. https://www.math.tamu.edu/~phoward/m401/pdemat.pdf
4. https://www.youtube.com/watch?v=-DmTK868J4A
5. https://www.youtube.com/watch?v=rwC7YU2WUf4

Pedagogy

Power point presentations, Live Demo, Hands on training.

Course Designers

1. Dr. G. Janaki
2. Ms. A. Gowri Shankari.

Semester III	Internal Marks: 25			External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
22PMA3CC8	TOPOLOGY	CORE	$\mathbf{6}$	$\mathbf{5}$		

Course Objectives

- Define the notion of topological spaces and characterize the properties of convergence, continuity, connectedness and compactness of the spaces.
- Explore the fundamental concepts of Product topology and box topology.
- Apply the idea of construction of the continuous real valued functions on normal spaces.

Prerequisite

Basic Knowledge of Real Analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Describe the basic concepts of topological spaces, continuous functions, connectedness, compactness, countability and separation axioms.	K2
$\mathbf{C O 2}$	Apply the topological concepts in various fields.	K3
$\mathbf{C O 3}$	Ascertain the notions of topological concepts, continuous functions, connectedness, compactness, countability and separation axioms.	K 4
$\mathbf{C O 4}$	Evaluate the concepts of topological spaces, continuous functions, connectedness, compactness, countability and separation axioms.	K 5
$\mathbf{C O 5}$	Develop the ideas involving topological spaces, continuous functions, connected ness, compactness, countability and separations axioms in different proofs.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	3
CO3	3	3	3	3	3	3	2	2	3	3
CO4	3	3	3	3	3	3	2	2	3	3
CO5	3	3	3	3	3	3	2	2	3	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	$\begin{aligned} & \text { COGNITI } \\ & \text { VE } \\ & \text { LEVEL } \end{aligned}$
I	Topological Spaces: Topological Spaces - Basis for a Topology - The Order Topology - The Product Topology on X x Y - The Subspace Topology - Closed Sets and Limit Points.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K2, K3, K4, K5, K6
II	Continuous Functions: Continuous Functions - The Product Topology - The Metric Topology - The Metric Topology (continued).	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K2, K3, K4, K5, K6
III	Connectedness: Connected Spaces - Connected Subspaces of the Real Line - Components and Local Connectedness.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
IV	Compactness: Compact Spaces - Compact Subspaces of the Real Line - Limit Point Compactness.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO}, \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K } \end{aligned}$
V	Countability and Separation Axioms: The Countability Axioms - The Separation Axioms Normal Spaces - The Urysohn Lemma - The Urysohn Metrization Theorem - The Tietze Extension Theorem The Tychonoff Theorem.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Topological Groups - The Quotient Topology - Nets - Local Compactness - Imbeddings of Manifolds.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$

Text Book

James R. Munkres (2013). Topology (Second Edition). PHI Learning Private Limited, New Delhi.

Chapters and Sections

UNIT-I Chapter 2: Sections 12-17
UNIT-II Chapter 2: Sections 18-21
UNIT-III Chapter 3: Sections 23-25
UNIT- IV Chapter 3: Sections 26-28
UNIT- V Chapter 4: Sections 30-35
Chapter 5: \quad Section 37

Reference Books

1. Mangesh G. Murdeshwar. (1999). General Topology (Second Edition). New Age International (P) Limited, New Delhi.
2. George F. Simmons. (2016). Introduction to Topology and Modern Analysis ($26^{\text {th }}$ Reprint). McGraw Hill Education (India) Private Limited, New Delhi.
3. Stephen Willard. (1998). General Topology. Dover Publications, INC, Mineola, New York.

Web References

1. https://youtu.be/jHQ7qEPkKkw
2. https://youtu.be/6-J75PtYC5E
3. https://tinyurl.com/yk65k76h
4. https://youtu.be/VDifg7aTXzg
5. https://youtu.be/bAkevWcBsxs
6. https://youtu.be/CGADr19iWSo
7. https://tinyurl.com/32cbv45m

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya

Semester - III	Internal Marks: 25			ExternalMarks:75
COURSECODE	COURSETITLE	CATEGORY	Hours / Week	CREDITS
22PMA3CC9	DISCRETE MATHEMATICS	CORE	6	5

Course Objectives

- Develop the mathematical concepts and technique which should serve as a preparation for more advanced quantitative courses.
- Analyze the method of logical reasoning to solve variety of problems.
- Apply mathematically correct terminology and notation.

Prerequisites

- Familiarity of concepts of statements logic and truth tables, sets, functions and relations.
- Counting principles, permutations and combinations.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Understand basic concepts in formal languages and computability, permutations, combinations,relations and functions, finite state machines, Boolean algebras.	K2
$\mathbf{C O 2}$	Classify algorithms based on the concepts of discrete Mathematics.	K3
$\mathbf{C O 3}$	Ascertain the notions of discrete Mathematics.	K4
$\mathbf{C O 4}$	Evaluate the conceptsof discrete mathematics in problem solving.	K5
$\mathbf{C O 5}$	Deduce mathematical ideas in computability, permutations, combinations,relations and functions, finite state machines, Boolean algebras.	$\mathbf{K 5}$

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3

" 1 " - Slight (Low) Correlation \neg
" 3 " - Substantial (High) Correlation \neg
" 2 " - Moderate (Medium) Correlation \neg
"-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{gathered} \hline \text { COGNITI } \\ \text { VE } \\ \text { LEVEL } \\ \hline \end{gathered}$
I	COMPUTABILITY AND LANGUAGES: Introduction-Russell's Paradox and Non computability- Languages-Phrase Structure Grammars and Languages.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

II	PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY: Introduction- The Rules of Sum and Product Permutations - Combinations - Generations of Permutations and Combinations - Discrete Probability - Conditional Probability.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
III	RELATIONS AND FUNCTIONS: Introduction - Relational Model for Data Bases Properties of Binary Relations - Equivalence Relations and Partitions - Partial Ordering Relations and Lattices - Chains and Antichains- A job - Scheduling Problem.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	FINITE STATE MACHINES: Introduction - Finite State Machines - Finite State Machines as Models of Physical Systems - Equivalent Machines - Finite State Machines as Language Recognizers.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
V	BOOLEAN ALGEBRAS: Lattices and Algebraic System - Principle of Duality Basic properties of Algebraic Systems defined by Lattices - Distributive and Complimented LatticesBoolean Lattices and Boolean Algebras- Uniqueness of Finite Boolean Algebras - Boolean Functions and Boolean Expressions.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Ordered sets - Information and Mutual Information Functions and the Pigeonhole Principle - Finite State Languages and Type-3 Languages - Propositional Calculus	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5

Text Book

C.L.Liu, (2000), Elements of Discrete Mathematics(Second Edition), Tata McGraw-Hill Publishing Company Limited.

Chapters and Sections

UNIT-I \quad Chapter 2: \quad Sections 2.1, 2.2, 2.4-2.6.
UNIT-II Chapter 3: Sections 3.1-3.7
UNIT-III Chapter 4: Sections 4.1-4.7
UNIT-IV Chapter 7: Sections 7.1-7.5
UNIT-V Chapter 12: Sections 12.1-12.7

Reference Books

1. J.P.Tremblay,R.Manohar,(2011),Discrete Mathematical, Structures with Applications to Computer Science, Tata McGraw Hill.
2. Ralph P. Grimaldi, B. V. Ramana(2006), Discrete and Combinatorial Mathematics, Pearson Education,.
3. Kenneth H. Rosen, (2008), Discrete Mathematics \& its Applications with combinatorics and graph theory, Tata McGraw Hill Company Limited, New Delhi.

Web References

1. https://gyires.inf.unideb.hu/GyBITT/14/ch02s03.html
2. https://www.youtube.com/watch? $\mathrm{v=}$ rSBC86Tdkw
3. https://www.youtube.com/watch?v=0HiMb-yf-nI
4. https://www.youtube.com/watch?v=XJnIdRXUi7A
5. https://www.youtube.com/watch?v=wbBY2tTqXDA
6. https://www.youtube.com/watch?v=Qa6csfkK7_I
7. https://plato.stanford.edu/entries/russell-paradox/
8. https://youtu.be/WW-NPtIzHwk

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P. Saranya.

Semester III	Internal Marks:25			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS
22PMA3CC10	MEASURE AND INTEGRATION	CORE	6	5

Course Objectives

- Gain the knowledge to construct Lebesgue measure and its properties.
- Compute Lebesgue integrals by convergence theorems and Fubini's theorem.
- Familiarize the concepts of Measure theory.

Prerequisite

Basic knowledge in Real Analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Describe fundamental concepts of Measure and Integration through examples.	K2
CO2	Predict the important notions and their connections of Measure theory.	K3
$\mathbf{C O 3}$	Ascertain the concepts of Measure in real line, abstract spaces, product spaces, integration of functions of a real variables and convergence	K4
$\mathbf{C O 4}$	Evaluate mathematical proofs of results in Measure and Integration.	K5
$\mathbf{C O 5}$	Examine the methods of analysis that can be applied to real world problems.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	2	3
CO2	3	2	3	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	2	2
CO4	3	2	2	3	3	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	2	2

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{gathered} \hline \text { COGNITIVE } \\ \text { LEVEL } \end{gathered}$
I	Measure On the Real Line : Lebesgue Outer Measure - Measurable Sets - Regularity - Measurable Functions - Borel and Lebesgue Measurability	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K2, K3, K4, K5
II	Integration of Functions of a Real variable : Integration of Non-negative Functions - The General Integral - Riemann and Lebesgue Integrals.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	Abstract Measure Spaces : Measures and outer measures - Extension of a Measure - Uniqueness of the Extension - Completion of a Measure	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO}, \end{aligned}$	K2, K3, K4, K5
IV	Inequalities and the L^{p} spaces: The L^{p} Spaces - Convex Functions. Convergence : Convergence in Measure - Almost Uniform Convergence.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K2, K3, K4, K5
V	Signed Measures and their Derivatives : Signed Measures and the Hahn Decomposition - The Jordan decomposition Measure and Integration in a Product Space : Measurability in a Product Space - The product measure and Fubini's theorem.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K2, K3, K4, K5
VI	Self-Study for Enrichment (Not included for End Semester Examination) Hausdorff Measures on the Real line - Integration of Series - Measure spaces - Integration with respect to a Measure - The Radon-Nikodym theorem - Lebesgue Measure in Euclidean space.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K2, K3, K4, K5

Text Book

G.De Barra, (2003). Measure Theory and Integration, New Age International (P) Limited.

Chapters and Sections

UNIT-I Chapter 2: Sections 2.1 to 2.5
UNIT II Chapter 3: \quad Sections 3.1, 3.2 and 3.4
UNIT-III Chapter 5: Sections 5.1 to 5.4
UNIT-IV Chapter 6: Sections 6.1, 6.2
Chapter 7: \quad Sections 7.1, 7.2
UNIT-V Chapter 8: \quad Sections 8.1, 8.2
Chapter 10: Sections 10.1, 10.2

Reference Books

1. Munroe. M.K. (1971). Measure and Integration, Addison - Wesley Publishing Company.
2. Jain, P.K, Gupta, V.P. (2003). Lebesgue Measure and Integration, New Age International Pvt Limited Publishers New Delhi.
3. Richard L. Wheeden and Antoni Zygmund (1977). Measure and Integral: An Introduction to Real Analysis , Marcel Dekker Inc.
4. Inder, K. Rana (1997). An Introduction to Measure and Integration, Narosa Publishing House, New Delhi.

Web References

1. https://www.youtube.com/watch?v=TG67nsccqeQ
2. https://www.youtube.com/watch?v=PGPZ0P1PJfw
3. https://www.youtube.com/watch?v=qAYX9Koo87o
4. https://www.youtube.com/watch?v=eu-6_wpTE-A
5. https://link.springer.com/book/10.1007/978-3-540-34514-5
6. http://www.math.chalmers.se/~borell/MeasureTheory.pdf

Pedagogy

Assignment, Seminar, Lecture, Quiz, Group discussion, Brain storming, e-content.

Course Designer

Dr. V. Geetha

Semester : III	Internal Marks:25		External Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22PGCS3CCC2A	CYBER SECURITY	CORE	3(T) + 2(P)	4

Course Objectives

- To develop skills in students that can help them plan, implement, and monitor cyber securitymechanisms to ensure the protection of information technology assets.

To expose students to governance, regulatory, legal, economic, environmental, social, and ethicalcontexts of cyber security.

- To expose students to the responsible use of online social media networks.
- To systematically educate the necessity to understand the impact of cyber-crimes and threats withsolutions in a global and societal context.

To select suitable ethical principles, commit to professional responsibilities and human values, and contribute value and wealth for the benefit of society

Prerequisite

Basic Knowledge of Cyber Security

Course Outcomes and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand the cyber security threat landscape	K1,K2
$\mathbf{C O 2}$	Develop a deeper understanding and familiarity with various types, cyber crimes, vulnerabilities, and remediesthereto.	K2, K3
$\mathbf{C O 3}$	Analyse and evaluate existing legal frameworks and laws on cyber security.	K4, k5
$\mathbf{C O 4}$	Analyse and evaluate the digital payment system security and remedial measures.	K4, K5
$\mathbf{C O 5}$	Analyse and evaluate the cyber security risks, plan suitable security controls	K4, K5

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	P0 1	PO 2	PO 3	PO 4	PO 5		
CO1	3	3	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	3	3	3		
CO3	3	3	3	3	2	3	3	3	3	2		
CO4	3	3	3	3	2	3	3	3	3	2		
CO5	3	3	3	2	3	3	3	3	2			"1"- Slight (Low) Correlation
:---												
" 3 " - Substantial (High) Correlation												

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Overview of Cyber Security: Cyber security increasing threat landscape, -Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism, Protection of end user machine, Critical IT and National Critical Infrastructure, Cyber warfare, Case Studies.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	Cyber Crimes: Cyber Crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cyber-squatting, Pharming, Cyber espionage, Cryptojacking, Darknetillegal trades, drug trafficking, human trafficking., Social Media Scams \& Frauds- impersonation, identity theft, job scams, misinformation, fake news cyber crime against persons -cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
III	Cyber Law: Cyber Crime and legal landscape around the world, IT Act, 2000 and its amendments. Limitations of IT Act, 2000. Cyber Crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologiesAI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO}, \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Data Privacy and Data Security: Defining data, meta-data, big data, non-personal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other $\begin{array}{lcc:c}\text { countries- General Data } & \text { Protection } \\ \text { Regulations(GDPR) } 2016 & \text { Personal } & \text { Information } & \text { Protection }\end{array}$ Regulations(GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA). Social mediadata privacy and security issues.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
V	Cyber security Management, Compliance and Governance: Cyber security Plan-cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.	9	$\begin{aligned} & \text { CO1, } \\ & \text { CO2, } \\ & \text { CO3, } \\ & \text { CO4, } \\ & \text { CO5 } \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

VI	Self Study for Enrichment	\cdots	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Case Studies: Largest Cyber Attacks : Yahoo Data		CO3,	K3,
	Breach, Equifax Data Breach, WannaCry Malware Attack,		CO4,	K4,
	Simple Locker.		CO5	K5

Reference Books

1. Vivek Sood, (2017). Cyber Law Simplified. McGraw Hill Education
2. Sumit Belapure and Nina Godbole, (2011). Computer Forensics and Legal Perspectives. Wiley India Pvt. Ltd.
3. Dorothy F. Denning, (1998). Information Warfare and Security. Addison Wesley.
4. Henry A. Oliver, (2015). Security in the Digital Age: Social Media Security Threats and Vulnerabilities.Create Space Independent Publishing Platform.
5. Natraj Venkataramanan and Ashwin Shriram, (2016). Data Privacy Principles and Practice. $1^{\text {st }}$ Edition, CRC Press.
6. W.Krag Brothy, (2008). Information Security Governance, Guidance for Information Security Managers. $1^{\text {st }}$ Edition, Wiley Publication.
7. Martin Weiss, Michael G.Solomon, (2015). Auditing IT Infrastructures for Compliance. $2^{\text {nd }}$ Edition, Jones \& Bartlett Learning.

Web References

1. https://www.tutorialspoint.com/principles-of-information-system-security
2. https://www.geeksforgeeks.org/principle-or-information-system-secutiry/
3. https://www.techtarget.com/searchsecurity/definition/cybersecurity
4. https://www.ukessays.com/essays/computer-science/analysis-of-the-yahoo-data-breaches.php
5. https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
6. https://www.techtarget.com/searchsecurity/definition/WannaCry-ransomware
7. https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

Practicals:

List of Exercises (Not included for End Semester Examinations)

1. Platforms for reporting cyber crimes.
2. Checklist for reporting cyber crimes online
3. Setting privacy settings on social media platforms.
4. Do's and Don'ts for posting content on Social media platforms.
5. Registering complaints on a Social media platform.
6. Prepare password policy for computer and mobile device.
7. List out security controls for computer and implement technical security controls in the personal computer.
8. List out security controls for mobile phone and implement technical security controls in the personal mobile phone.
9. Log into computer system as an administrator and check the security policies in the system.

Web References

1. https://cybercrime.gov.in/
2. https://cybercrime.gov.in/webform/crime_onlinesafetytips.aspx
3. https://www.digitalvidya.com/blog/social-media-dos-and-donts/
4. https://www.medianama.com/2023/02/223-platform-grievance-appellate-committees-social- media/
5. https://www.ibm.com/topics/security-controls
6. https://docs.oracle.com/cd/E19683-01/817-0365/concept-2/index.html

Pedagogy

Chalk and Talk, Group discussion, Seminar \& Assignment.

Course Designer

From UGC SYLLABUS

Semester III	Internal Marks: 25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA3CCC2B	INTRODUCTION TO CODING THEORY	CORE CHOICE	5	4

Course Objectives

- Apply the coding theory to code an information using linear codes and cyclic codes.
- Acquire the knowledge of decoding the codes received and retrieve the original information.
- Find various bounds for various types of codes.

Prerequisite

Basic Knowledge in Algebra.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explain the concept of coding.	K 2
$\mathbf{C O 2}$	Classify the Communication Channels and give the datas in a required format.	K 3
$\mathbf{C O 3}$	Determine the bounds on various coding.	K 4
$\mathbf{C O 4}$	Examine some methodologies for the coding and decoding in an effective manner.	K 4
$\mathbf{C O 5}$	Compare the notions of distinct codes and represent the data in a easy way.	K 5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2	3	2	2	2	3
CO2	2	2	3	2	2	2	2	2	2	3
CO3	3	2	3	2	2	3	2	2	3	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	2	2	2	3	3	2	3	3	2	2
" 1 " - Slight (Low) Correlation \neg							" 2 " - Moderate (Medium) Correlation \neg			

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{gathered} \text { COGNITI } \\ \text { VE } \\ \text { LEVEL } \end{gathered}$
I	Error detection, correction and decoding:Communication Channels- Maximum likelihood decoding- Hamming distance -Nearest neighbor/minimum distance decoding .	18	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	Finite Fields: Fields- Polynomial rings-Structure of finit fields-Minimal Polynomials. Linear Codes: Vector spaces over finite fields- Linear codes-Hamming weight-bases for linear codes.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
III	Linear Codes: Equivalence of linear codes-Encoding with linear code-Decoding of linear codes: CosetsNearest neighbor decoding for linear codes. Bounds in coding theory: The main coding theory problem- Lower bounds-Hamming bound and perfect codes.	18	$\begin{aligned} & \hline \mathrm{CO1}, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Bounds in coding theory: Singleton bound and MDS codes-Plotkin bound-Nonlinear codes-griesmer bound.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K1, K2, K3, K4, K5
V	Construction of cyclic codes: Definition-Generator polynomials-generator and parity check matricesDecoding of cyclic codes.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examination) Distance of a Code - Generator Matrix and parity-check matrix- Syndrome decoding- Linear Programming bound - Brust-error-correcting codes.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

Text Book

San Ling Chaoping Xing.(2004), Coding Theory: A First Course, The Cambridge University Press, United States of America.

Chapters and Sections

UNIT-I	Chapter 2	Sections 2.1-2.4
UNIT-II	Chapter 3	Sections 3.1-3.4
	Chapter 4	Sections 4.1-4.4
UNIT-III	Chapter 4	Sections 4.5-4.8
	Chapter 5	Sections 5.1-5.3
UNIT- IV	Chapter 5	Sections 5.4-5.7
UNIT- V	Chapter 7	Sections 7.1 to 7.4.

Reference Books

1. Lint Van J. H (2004).A Introduction to Coding Theory, Springer- Verlag, Berlin.
2. Mary J Jones and Gareth A Jones(2004). The Information and Coding Theory, Springer- Verlag, Berlin.
3. Woungang I, Misra S \& Misra S. C(2010). Selected Topics in Information and Coding Theory, Prentice Hall of India, New Delhi.

Web References

1. https://www.youtube.com/watch? $\mathrm{v}=5 \mathrm{wDVsXrDFoQ}$
2. https://www.youtube.com/watch? $v=N U L v-d p-U z O$
3. https://www.youtube.com/watch?v=_cdSLHfRN_o
4. https://u.cs.biu.ac.il/~lindell/89-662/coding_theory-lecture-notes.pdf
5. https://users.math.msu.edu/users/halljo/classes/codenotes/Topstuff.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Dr. S. Saridha

Semester III	Internal Marks: 25		External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PMA3CCC2C	MECHANICS	CORE	$\mathbf{5}$	$\mathbf{4}$	
		CHOICE			

Course Objectives

- State the basic concepts of Lagrangian and Hamiltonian approaches to classical mechanics.
- Explore different applications of these concepts in mechanics.
- Analyze the methods of solving central force problems.

Prerequisite

Mechanics and differential equations at UG level.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Describe the fundamental concepts of Mechanics.	K 2
$\mathbf{C O 2}$	Interpret and illustrate the knowledge of core principles in mechanics.	K 3
$\mathbf{C O 3}$	Ascertain the analytical techniques for solving some partial differential equations that frequently occur in applications.	K 4
$\mathbf{C O 4}$	Test for the importance of concepts such as generalized coordinates and constrained motion.	K 4
$\mathbf{C O 5}$	Build up an understanding of kinetic and potential energies of a system, the Lagrangian and Hamiltonian functions of systems will be set up in order to arrive at the equations of motion and to realize the reduction of a two-body problem to a one-body problem in a central force system.	K 6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	3
CO3	3	3	3	3	3	3	2	2	3	3
CO4	3	3	3	3	3	3	2	2	3	3
CO5	3	3	3	3	3	3	2	2	3	3

" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{gathered} \text { COGNITI } \\ \text { VE } \\ \text { LEVEL } \\ \hline \end{gathered}$
I	SURVEY OF THE ELEMENTARY PRINCIPLES Mechanics of a Particle- Mechanics of a System of Particles - Constraints- D'Alembert's Principle and Lagrange's Equations - Velocity-Dependent Potentials and the Dissipation Function.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO}, \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K6 } \end{aligned}$
II	VARIATIONAL PRINCIPLES AND LAGRANGE'S EQUATIONS Hamilton's Principle - Some Techniques of the Calculus of Variations - Derivation of Lagrange's Equations from Hamilton's Principle - Advantages of a Variational Principle Formulation - Conservation Theorems and Symmetry Properties - Energy Function and the Conservation of Energy.	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K6 } \end{aligned}$
III	THE CENTRAL FORCE PROBLEM Reduction to the Equivalent One-Body Problem- The Equations of Motion and First Integrals - The Equivalent One-Dimensional Problem and Classification of Orbits - The Virial Theorem.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K2, K3, K4, K6
IV	THE CENTRAL FORCE PROBLEM The Differential Equation for the Orbit and Integrable Power-Law Potentials - Conditions for Closed Orbits (Bertrand's Theorem) - The Kepler Problem: Inverse Square Law of Force - The Motion in Time in the Kepler Problem - The Laplace-Runge-Lenz vector.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K6 } \end{aligned}$
V	THE HAMILTON EQUATIONS OF MOTION Legendre Transformations and the Hamilton Equations of Motion- Cyclic Coordinates and the Conservation Theorems - Routh's Procedure - Derivation of Hamilton's Equations from a Variational Principle The Principle of Least Action.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K6 } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Simple Applications of the Lagrangian FormulationExtending Hamilton's Principle to systems with constraints- Scattering in a Central Force FieldTransformation of the Scattering Problem to Laboratory Coordinates - The Hamiltonian Formulation of Relativistic Mechanics.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K6 } \end{aligned}$

Text Book

Herbert Goldstein, Charles P.Poole, John Safko (2011). Classical Mechanics (Third Edition). Darling Kindersley, India.

Chapters and Sections

UNIT-I	Chapter 1	Sections 1.1-1.5
UNIT-II	Chapter 2	Sections 2.1-2.3, 2.5-2.7
UNIT-III	Chapter 3	Sections 3.1-3.4
UNIT- IV	Chapter 3	Sections 3.5-3.9
UNIT- V	Chapter 8	Sections 8.1-8.3, 8.5, 8.6

Reference Books

1. S.K.Sinha (2009). Classical Mechanics. Narosa Publishing House, New Delhi.
2. J.C.Upadhaya (2003). Classical Mechanics. Himalaya Publishing House, New Delhi.
3. D.Greenwood(1985). Classical Dynamics. Prentice hall of India, New Delhi.

Web References

1. https://youtu.be/-9g3bqbZHCI
2. https://youtu.be/ONese_4PSeM
3. https://youtu.be/OWTaGzLeRpE
4. https://youtu.be/Wrr4d2De5IE
5. https://youtu.be/wejAz4hIVUI
6. https://youtu.be/2DvvSvUi_Og
7. https://sites.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. C.Saranya

Semester III	Internal Marks: -			ExternalMarks:100	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22PMA3DSE3A	ANALYTICAL SKILLS FOR COMPETITIVE EXAMINATIONS	DISCIPLINE SPECIFIC ELECTIVE	4	$\mathbf{3}$	

Course Objectives

- Analyse the concepts concerned with linear and algebraic properties that are preserved under continuous deformations of objects.
- Enhance the students to develop analytical thinking and the study of continuity and connectivity
- Motivate the advance treatment of theory at a fairly understandable level.

Prerequisite

Basic Knowledge of algebra and vector spaces.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO 1	Remember the basic concepts and objective of algebra and vector spaces.	K1
CO 2	Illustrate the properties of algebra and vector spaces to find the solution.	K2
CO 3	Apply different terminologies of algebra and linear algebra	K3
CO 4	Classify the various properties in algebra and transformation	K4
CO 5	Interpret the problems involved in algebra and vector spaces	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

" 1 " - Slight (Low) Correlation
" 2 " - Moderate (Medium) Correlation
" 3 " - Substantial (High) Correlation
"-" indicates there is no correlation.
Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I		12	$\begin{gathered} \mathrm{CO} 1, \\ \mathrm{CO} 2, \\ \mathrm{CO}, \\ \mathrm{CO} 4, \\ \mathrm{CO} 5 \end{gathered}$	K1, K2, K3, K4, K5
II	Vector Spaces - Subspaces - Linear dependence Basis - Dimension - Algebra of linear transformations.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

III	Algebra of matrices - Rank and Determinant of matrices - Linear equations - Eigenvalues Eigenvectors - Cayley -Hamilton theorem.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Matrix representation of linear transformations Change of basis - Canonical forms - Diagonal forms - Triangular forms -Jordan forms.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
V	Inner product spaces - Ortho normal basis Quadratic forms -Reduction and Classification of Quadratic forms.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) The Double Dual - Lagrange Interpolation Modules - Direct-Sum Decomposition Theorem Operators on Inner Product Spaces.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

Text Books

[1] Joseph A. Gallian, (1999), Contemporary Abstract Algebra, Narosa Publishing House, Fourth Edition.
[2] David M. Burton (2012), Elementary Number Theory (Sixth Edition), Tata McGraw Hill Education Private Limited, New Delhi.
[3] Kumaresan.S (2000), Linear Algebra: A Geometric Approach , Prentice hall.
[4] Seymour Lipschutz (2001), Marc Lipson, Schaum's outlines- Linear Algebra ,Mcgraw Hill Education, Third Edition.
[5] Krishnamurthy, Mainra V P and Arora JL (1976), Introduction to linear Algebra, East West Press, New Delhi.
[6] Vasistha. A. R, Linear Algebra (2006), Krishna Prakashan media (P).
[7] Stephen. H, Friedberg (2004), Linear Algebra, Prentice Hall of India Pvt Ltd.

Reference Books

[1] Telang S. G. (2005), Number Theory (Reprint 2001),Tata McGraw Hill Education Private Limited, New Delhi.
[2] David S. Dummit and Richard M. Foote, (2004), Abstract Algebra, Wiley and Sons, Third Edition.
[3] Kenneth Hoffman and R. Kunze (1984): Linear Algebra, Phi Learning Private Limited, $2^{\text {nd }}$ Edition.

Web References

1. https://www.google.com/search?q=csir+net+mathematical+science+solved+question+papers\&tbm= vid\&ei=FeE0ZI7uILqOseMP_oSWyAw\&start=10\&sa=N\&ved=2ahUKEwjOzIv8_aDAhU6R2wG HX6CBckQ8tMDegQIFhAE\&biw=1366\&bih=600\&dpr=1\#fpstate=ive\&vld=cid:ee12b87c,vid:6iC mTnhgM0Y.
2. https://www.google.com/search?q=csir+net+mathematical+science+solved+linear+algebra+questio n+papers\&biw=1366\&bih=600\&tbm=vid\&ei=UeI0ZOmOLuWcseMP_IXwA4\&ved=0ahUKEwipS _6DAhVITmwGHfzHBeg4FBDh1QMIDQ\&uact=5\&oq=csir+net+mathematical+science+solved+li near+algebra+question+papers\&gs_lcp=Cg1nd3Mtd216LXZpZGVvEAM6BAgAEB46CAgAEIoFE IYDOgYIABAeEA06CgghEKABEMMEEAo6CAghEKABEMMEOgQIIRAKULwGWM0tYLY6 aABwAHgAgAGAA4gBsheSAQgwLjEyLjIuMpgBAKABAcABAQ\&sclient=gws-wizvideo\#fpstate=ive\&vld=cid:dffaef48,vid:ItF4GBWtdwQ
3. https://www.google.com/search?q=csir+net+mathematical+science+solved+linear+algebra+questio n+papers\&biw=1366\&bih=600\&tbm=vid\&ei=UeI0ZOmOLuWcseMP IXwA4\&ved=0ahUKEwipS _6DAhVITmwGHfzHBeg4FBDh1QMIDQ\&uact=5\&oq=csir+net+mathematical+science+solved+li near+algebra+question+papers\&gs_lcp=Cg1nd3Mtd216LXZpZGVvEAM6BAgAEB46CAgAEIoFE IYDOgYIABAeEA06CgghEKABEMMEEAo6CAghEKABEMMEOgQIIRAKULwGWM0tYLY6 aABwAHgAgAGAA4gBsheSAQgwLjEyLjIuMpgBAKABAcABAQ\&sclient=gws-wizvideo\#fpstate=ive\&vld=cid:20257e30,vid:okGkqdNAyuQ
4. https://www.youtube.com/watch?v=bbQ0uPTLZzo
5. https://www.youtube.com/watch?v=3KqG8Mc6C40
6. https://www.youtube.com/watch?v=RoYIu6LbSnI
7. https://www.youtube.com/watch? v=rgxyxcTwvuo
8. https://www.youtube.com/watch?v=y 57UcnWHfU
9. https://www.cuemath.com/numbers/the-fundamental-theorem-of-arithmetic/
10. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/euler-s-totient-function-phi-function

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignments.

Course Designer

Ms. V. ManiMozhi

Semester III	Internal Marks:25		External Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS
22PMA3DSE3B	STOCHASTIC PROCESSES	DISCIPLINE SPECIFIC ELECTIVE	4	3

Course Objectives

- Acquire the basic concepts of stochastic processes and their applications.
- Understand the fundamental of renewal processes.
- Explore fundamental concepts in queuing theory.

Prerequisite

Basic knowledge in Probability

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Remember and recall the basic concept of probability	K1
CO2	Interpret the various states space and chains of the Stochastic Processes.	K2
CO3	Analyze the different techniques of Stochastic Processes.	K3
CO4	Classify the solution of mathematical problems using various techniques	K4
CO5	Examine the solution of various state space.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	2	2
CO4	3	2	2	3	3	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	2	2

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Stochastic Processes: Some Notions : Introduction- I Specification of Stochastic processes - Stationary processes Markov Chains: Definitions and examples - Higher Transition Probabilities - Generalization of Independent	12	CO1,	K1,	
		CO3,	K2,	
	K3,			
	K4			

II	Markov chains: Classification of States and Chains Determination of Higher Transition Probabilities Stability of a Markov System - Graph Theoretic Approach - Markov Chain with Denumerable Number of States- Reducible Chains - Markov Chains with Continuous State Space.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
III	Markov Processes with Discrete State Space : Poisson Process and its Extensions - Poisson Process -Poisson Process and Related Distributions - Generalisations of Poisson ProcessBirth and Death Process	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
IV	Renewal processes and Theory: Renewal Process Renewal Processes in Continuous Time - Renewal Equation - Stopping time: Wald's Equation - Renewal Theorems.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4
V	Stochastic Processes in Queueing and Reliability Queueing Systems: General Concepts - The Queueing Model M/M/1: Steady State Behaviour - Transient Behaviour of M/M/1 Model - Non-Markovian Queueing Models.	12	$\begin{aligned} & \hline \mathrm{CO1}, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K1, K2, K3, K4
VI	Self-Study for Enrichment (Not included for End Semester Examination) Martingales - Non-Homogeneous chain- Markov Processes with Discrete State Space (Continuous Time Markov Chains) - Delayed and Equilibrium Renewal Processes - The Model GI/M/1.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4

Text Book

J. Medhi (1984), Stochastic Processes, New Age International (P) Limited, Publishers, New DelhiSecond Edition.

Chapters and Sections

UNIT I Chapter 2: Section 2.1-2.3

$$
\text { Chapter 3: Section } 3.1-3.3
$$

UNIT II Chapter 3: Section 3.4-3.9 and 3.11
UNIT III Chapter 4: Section $4.1-4.4$
UNIT IV Chapter 6: Section 6.1-6.5
UNIT V Chapter 10: Section 10.1-10.3 and 10.7

Reference Books

1. B.R.Bhat, Stochastic Models Analysis and Applications ,New Age International(P) Limited Publishers, New Delhi,2004
2. Biswas, Suddhendu , Stochastic Processes in Demography and Applications, New Central Book Agency Calcutta, 2006.
3. T.Veerarajan, Probability, Statistics and Random Processes, Tata McGraw Hill Education Private Limited, New Delhi,2010 .

Web References

1. https://www.google.com/url? $q=h t t p s \% 3 A \% 2 F \% 2 F m p a l d r i d g e . g i t h u b . i o \% 2 F m a t h 27 ~$ 50\%2FP04.html\&sa=D\&sntz=1\&usg=AOvVaw1alFxYapjLEFq-K2MNhQjT
2. https://images.app.goo.gl/8tiFh5mvAGGamRV86
3. https://www.google.com/url?q=https\%3A\%2F\%2For.stackexchange.com\%2Fquestions\%2 F4882\%2Fhow-do-derive-the-steady-state-probabilities-m-m-1-k-queueing-
system\&sa=D\&sntz=1\&usg=AOvVaw3OpFUoK7nMmoVMCKeClnlU
4. https://youtu.be/i3AkTO9HLXo
5. https://youtu.be/sb4ji04P4ZLI
6. https://youtu.be/L1fK3p5U4x0
7. https://youtu.be/xGkpXk-AnWU
8. https://youtu.be/AOcCMi7SPqM

Pedagogy

Assignment, Seminar, Group discussion, Brain storming, e-content.

Course Designer

Dr. S. Sasikala

Semester III	Internal Marks: 25			ExternalMarks:75		
COURSE CODE	COURSETITLE	CATEGORY	$\begin{array}{c}\text { Hrs } \\ \text { /WEEk }\end{array}$	CREDITS		
22PMA3DSE3C	FUZZY SETS AND					
	THEIR APPLICATIONS					

Elective Course\end{array}\right] 4\)| 4 |
| :--- |

Course Objectives

- Introduce the concept of fuzzy set theory and study its application in real problems.
- Acquire knowledge of the uncertainty environment through the fuzzy logic that incorporates imprecision and subjectivity.
- Provide a good outline of a model formulation and solution process.

Prerequisite

Basic Knowledge of Algebra, Logic and Graph Theory.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Identify and Explain the basic concepts of Fuzzy sets and its properties	K1,K2
$\mathbf{C O 2}$	Classify the operations on Fuzzy sets	K3,K4
$\mathbf{C O 3}$	Explain and Relate Fuzzy sets and its Graphs	K3,K4
$\mathbf{C O 4}$	Distinguish clear and accurate results to assess the concepts of Fuzzy inference systems	K4,K5,K6
$\mathbf{C O 5}$	Develop and Define Fuzzy concepts to compute Design procedure for Fuzzy expert systems	K5,K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	1	1	3	3	2	2	1
CO2	3	3	2	2	1	3	3	2	2	2
CO3	2	3	3	3	2	3	3	3	2	2
CO4	1	2	2	3	3	3	3	2	3	3
CO5	1	2	3	3	3	3	3	2	2	3

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	FUZZY SETS : Sets - Operation of Sets -			K1,
	Characteristics of Crisp Set -Definition of Fuzzy Set		CO1,	K2,
	-Expanding Concepts of Fuzzy Set - Standard	12	CO2,	K3,
	Operation of Fuzzy Set		CO4,	K4,
	THE OPERATION OF FUZZY SET : Standard		CO5,	K6
	Operations of Fuzzy Set -- Fuzzy Complement -			

	Fuzzy Union - Fuzzy Intersection - Other Operations In Fuzzy Set - T-norms and T-conorms			
II	FUZZY RELATION AND COMPOSITION Crisp Relation -Properties of Relation on a Single Set - Fuzzy Relation - Extension of Fuzzy Set FUZZY GRAPH AND RELATION: Fuzzy Graph -Characteristics of Fuzzy Relation -Classification of Fuzzy Relation -Other Fuzzy Relations	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
III	FUZZY NUMBER: Concept of Fuzzy Number Operation of Fuzzy Number -Triangular Fuzzy Number -Other Types of Fuzzy Number FUZZY FUNCTION: Kinds of Fuzzy Function Fuzzy Extrema of Function -Integration and Differentiation of Fuzzy Function	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5, K6
IV	PROBABILITY AND UNCERTAINTY : Probability and Possibility -Fuzzy Event -Uncertainty -Measure of Fuzziness FUZZY LOGIC : Classical Logic -Fuzzy Logic Linguistic Variable - Fuzzy Truth Qualifier Representation of Fuzzy Rule	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5, K6
V	FUZZY INFERENCE: Composition of Rules Fuzzy Rules and Implication - Inference Mechanism - Inference Methods FUZZY CONTROL AND FUZZY EXPERT SYSTEMS -Fuzzy Logic Controller -Fuzzification Interface Component - Knowledge Base Component - Inference (Decision Making Logic) Defuzzification -Design Procedure of Fuzzy Logic Controller - Application Example of FLC Design Fuzzy Expert Systems	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examination) Fusion of fuzzy system and neural networks - Neural Networks - Fusion With Neural Networks -Fusion of fuzzy system and genetic algorithms - Genetic Algorithms -Fusion With Genetic Algorithms	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5, K6

Text Book

Kwang H. Lee (2005), First Course on Fuzzy Theory and Applications, Springer

Chapters and Sections

UNIT-I Chapter I \& II Sections: $1.1-1.6$ \& 2.1-2.6
UNIT-II Chapter III \& IV Sections: 3.1-3.4 \& 4.1-4.4
UNIT-III Chapter V \& VI Sections: $5.1-5.4 \& 6.1 \& 6.3$
UNIT- IV Chapter VII \& VIII Sections: 7.1-7.4 \& 8.1-8.5
UNIT- V Chapter IX \& X Sections: 9.1-9.4 \& 10.1-10.8

Reference Books

1. Zimmermann H.J. (2006). Fuzzy Set Theory and its Applications. Fourth Edition. Springer(India) Private Limited.
2. Klir G. J. and Yuan B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice-Hall of India.
3. Ganesh M. (2006). Introduction to Fuzzy Sets and Fuzzy Logic. Prentice-Hall of India.

Web References

1. https://www.tutorialspoint.com/fuzzy_logic/fuzzy_logic_introduction.htm
2. https://nitsri.ac.in/Department/Computer\ Science\ \&\ Engineering/FuzzyLogic.pdf
3. http://site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf
4. https://codecrucks.com/fuzzy-inference-system-concepts-foundation/
5. http://fuzzy.cs.ovgu.de/wiki/uploads/Lehre.FS0910/fs0910lecture07.pdf

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. K. Kalaiarasi

Semester III	Internal Marks: 25		ExternalMarks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA3GEC1	FOUNDATION FOR LOGICAL THINKING	GENERIC ELECTIVE	$\mathbf{3}$	$\mathbf{2}$

Course Objectives

- Explain many short tricks to solve mathematical problems easily.
- Apply the knowledge to interpret and solve the problems.
- Predict elite knowledge in verbal reasoning.

Prerequisite

Knowledge of basic mathematics

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explain the knowledge of the various techniques of quantitative aptitude and reasoning.	K1, K2
$\mathbf{C O 2}$	Apply the concepts in solving mathematical problems to succeed in various competitive examinations.	K 3
$\mathbf{C O 3}$	Examine various types of Problems using arithmetic and reasoning test.	K 3
$\mathbf{C O 4}$	Apply the concept obtained in the course to solve the problems.	K 3
$\mathbf{C O 5}$	Analyse real-life problems and find solutions.	K 4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	SO3	SO4	SO5	D1	D2	D3	D4	D5
CO1	3	3	3	2	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

" 1 " - Slight (Low) Correlation " 2 " - Moderate (Medium) Correlation
" 3 " - Substantial (High) Correlation "-" indicates there is no Correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Arithmetical Ability: Surds and indices - Logarithms - Alligation or Mixture	9	$\begin{aligned} & \hline \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1 } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
II	Probability - Heights and Distances - Odd Man Out and Series	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1 K2, K3, K4
III	Data Interpretation: Bar Graphs - Pie Chart - Line Graphs.	9	$\begin{aligned} & \hline \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
IV	Reasoning Test: Relationship -Direction Sense Test - Problems based on Alphabet.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
V	Logical Reasoning	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Arithmetical Ability: Permutation and CombinationClocks - Calendar. Verbal Reasoning: Analogy- Classification.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$

Text Books

1. R.S.Aggarwal (Reprint 2017), Quantitative Aptitude for Competitive Examinations (Fully Solved), S.Chand and Company Ltd., New Delhi.
2. Dr. Lal, Jain and Dr. K. C. Vashisthu (2018), UGC NET/JRF/ SET Teaching \& Research Aptitude, Upkar Prakashan, Agra.

Chapters and Sections

UNIT-I $\quad \operatorname{Section~I~}(9,10,21)$ [1]
UNIT-II \quad Section I $(31,34,35)$ [1]
UNIT-III Section II $(37,38,39)$ [1]
UNIT- IV $\operatorname{Section~I~(1,~5,~7)~[2]~}$
UNIT- V Section II [2]

Reference Books

1. Dinesh Khattar (2016), Pearson Guide to Quantitative Aptitude for Competitive Examinations, Pearson Publication, $3^{\text {rd }}$ Edition.
2. Lal, Jain and Vashisthu .K .C (2018), UGC NET/JRF/SET Teaching Research Aptitude.
3. Abhijit Guha (2014), Quantitative Aptitude for Competitive Examinations, Mcgraw Hill Education Private Limited, New Delhi, $5{ }^{\text {th }}$ Edition.

Web References

1. https://www.indiabix.com/aptitude/questions-and-answers/
2. https://www.youtube.com/watch?v=1FHjNbSmsCE
3. https://www.sawaal.com/aptitude-reasoning/quantitative-aptitude-arithmetic-ability-questions-and-answers.html
4. https://www.youtube.com/watch?v=xRLNYich5Ls
5. https://www.youtube.com/watch?v=qwHJtfEUCgE
6. https://www.youtube.com/watch?v=g0_1ZhueCcE
7. https://www.indiabix.com/logical-reasoning/questions-and-answers/
8. https://byjus.com/govt-exams/logical-reasoning/

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designer

Ms. V. ManiMozhi

Semester IV	Internal Marks: 25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA4CC11	COMPLEX ANALYSIS	CORE	6	5

Course Objectives

- Define analytic functions, linear transformations, Harmonic functions and power series.
- Explore the fundamental concepts of Cauchy's theorem, Cauchy's integral formula and the calculus of residues.
- Apply the idea of removable singularities, zeros and poles in various fields.

Prerequisite

Fundamental concepts in Real Analysis
Course Outcomes
Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be ableto	Cognitive Level
$\mathbf{C O 1}$	Explain the fundamental concepts of conformality, Analyticfunctions, complex integration and series.	K 2
$\mathbf{C O 2}$	Apply the various concepts of complex integration in differentfields. $\mathbf{C O 3}$Ascertain the notion of complex integration, series, conformalityand linear transformations.	K 4
$\mathbf{C O 4}$	Evaluate the problems in complex integration using variousconcepts.	K 5
$\mathbf{C O 5}$	Develop the basic concepts of complex integration, conformality,series in various fields.	K 6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	3	3
CO2	3	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3	2	3	3
CO4	3	3	3	3	3	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	3	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg " - " indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Conformality and Linear Transformations: Arcs and closed curves - Analytic Functions in Regions - Conformal Mapping - Length and Area - The Linear Group - The Cross Ratio - Symmetry.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
II	Fundamental Theorems and Cauchy's Integral Formula: Line Integrals - Rectifiable Arcs - Line Integrals as Functions of Arcs - Cauchy's Theorem for a Rectangle - Cauchy's Theorem in a Disk - The Index of a Point with Respect to a Closed Curve - The Integral Formula - Higher Derivatives.	18	$\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
III	Local Properties of Analytical Functions: Removable Singularities. Taylor's Theorem - Zeros and Poles - The Local Mapping - The Maximum Principle.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
IV	The General Form of Cauchy's Theorem and The Calculus of Residues: Chains and Cycles - Simple Connectivity Homology - The General Statement of Cauchy's Theorem - Proof of Cauchy's Theorem - Locally Exact Differentials - The Residue Theorem - The Argument Principle - Evaluation of Definite Integrals.	18	$\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K2, K3, K4, K5, K6
V	Harmonic Functions and Power Series Expansions: Definition and Basic Properties - The Mean-value Property - Poisson's Formula - Schwarz's Theorem The Reflection Principle - Weierstrass's Theorem - The Taylor Series - The Laurent Series.	18	$\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Elementary Point Set Topology - Oriented Circles - Families of Circles - Multiply Connected Regions.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO}, \\ & \mathrm{CO} \end{aligned}$	K2, K3, K4, K5, K6

Text Book

Lars V. Ahlfors. (1979). Complex Analysis (Third Edition). McGraw-Hill International Editions.

Chapters and Sections

UNIT-I Chapter 3: Sections 2.1-2.4, 3.1-3.3
UNIT-II Chapter 4: Sections 1.1-1.5, 2.1-2.3
UNIT-III Chapter 4: Sections 3.1-3.4
UNIT- IV Chapter 4: Sections 4.1-4.6, 5.1-5.3
UNIT- V Chapter 4: Sections 6.1-6.5
Chapter 5: Sections 1.1-1.3

Reference Books

1. Serge Lang. (2005). Complex Analysis (Fourth Edition, First Indian Reprint). Springer International Edition.
2. Ponnusamy S. (2007). Foundations of Complex Analysis (Second Edition, First Reprint). Narosa Publishing House Pvt. Ltd.
3. John B. Conway. (2002). Functions of One Complex Variable (Second Edition, Sixteenth Reprint). Narosa Publishing House.

Web References

1. https://youtu.be/3rOikI9G8TO
2. https://tinvurl.com/45me9mx6
3. https://tinvurl.com/vrmka7d9
4. https://voutu.be/OCnFnBtle-c
5. https://tinyurl.com/3mthbnsp
6. https://tinvurl.com/52v5mmpw
7. https://tinyurl.com/58p5c888

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya

Semester IV	Internal Marks: 25		External Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA4CC12	FUNCTIONAL ANALYSIS	CORE COURSE	$\mathbf{6}$	5

Course Objectives

- Explore Banach spaces, Hilbert spaces and their properties.
- Compose clear, accurate proof of Hahn Banach Theorem, Open Mapping Theorem usingcontinuous linear transformation and Conjugate of an operator.
- Analyze the structure of Commutative Banach Algebras to prove the Gelfand Neumarktheorem.

Prerequisite

Topology and Linear algebra at PG level.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explain Banach spaces, Hilbert spaces, Banach algebras, commutative banach algebra and interpret their properties with other type of spaces.	K2
$\mathbf{C O 2}$	Apply the analytical techniques and theoretical knowledge in Banach spaces, Hilbert spaces, Banach algebras, commutative banach algebras.	K3
$\mathbf{C O 3}$	Construct banach algebras, Commutative banach algebra through banach spaces and determine orthonormal sets in Hilbert spaces.	K4
$\mathbf{C O 4}$	Analyze the properties of the operators defined on these spaces.	K4
$\mathbf{C O 5}$	Attain knowledge and experience of working with many pure mathematical problems.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	3	2	2	2	3	2	2	2	3
CO4	2	2	2	2	2	3	2	2	2	3
CO5	3	3	3	3	3	3	3	3	3	3

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{gathered} \hline \text { COGNITI } \\ \text { VE } \\ \text { LEVEL } \end{gathered}$		
I	BANACH SPACES The definition and some examples - Continuous linear transformations - The Hahn-Banach theorem The natural imbedding of N in $\mathrm{N}^{* *}$ - The open mapping theorem - The conjugate of an operator.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K } \end{aligned}$		
II	HILBERT SPACES The definition and some simple properties Orthogonal complements - Orthonormal sets - The conjugate space H^{*}.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K } \end{aligned}$		
III	HILBERT SPACES The adjoint of an operator - Self-adjoint operators - Normal and unitary operators - Projections.	18	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$		
IV	GENERAL PRELIMINARIES ON BANACH ALGEBRAS The definition and some examples - Regular and singular elements - Topological divisors of zero - The spectrum - The formula for the spectral radius - The radical and semi-simplicity.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$		
V	THE STRUCTURE OF COMMUTATIVE BANACH ALGEBRAS The Gelfand mapping - Applications of the formula $\quad r(x)=\lim \left\\|x_{x^{n}}\right\\|_{n}^{X}$ Involutions in Banach Algebras - The Gelfand-Neumark theorem.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$		
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Euclidean and unitary spaces - Weak topologies- Linear spaces - Determinants and the spectrum of an operator - Commutative C^{*}-algebras.	-	$\begin{aligned} & \text { CO1, } \\ & \text { CO2, } \\ & \text { CO3, } \\ & \text { CO4, } \\ & \text { CO5 } \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$		

Text Book

George F. Simmons (2016). Introduction to Topology and Modern Analysis(26 ${ }^{\text {th }}$ reprint). Mcgraw Hill Education (India) Private Limited, New Delhi.

Chapters and Sections

UNIT-I	Chapter 9	Sections 46-51
UNIT-II	Chapter 10	Sections 52-55
UNIT-III	Chapter 10	Sections 56-59
UNIT- IV	Chapter 12	Sections 64-69
UNIT- V	Chapter 13	Sections 70-73

Reference Books

1. Walter Rudin (2008). Functional Analysis (Fourth Reprint). Tata Mcgraw-Hill Publishing Company Limited, New Delhi.
2. B.V. Limaye (2002). Functional Analysis (Second Edition). New Age International (P) Limited Publishers, New Delhi.
3. K.Yosida (2005). Functional Analysis (Second Indian Reprint). Springer-Verlag, Newyork.

Web References

1. https://youtu.be/imYO.JOgUx7Y
2. https://voutu.be/EGii1lz7XHA
3. https://voutu.be/MfZz1k9rlUc
4. https://voutu.be/0LnL9kE-6us
5. https://voutu.be/zOPEABKzBpc
6. https://voutu.be/kiUTXw3 ids
7. https://59clc.files.wordpress.com/2012/08/functional-analysis- -rudin-2th.pdf
8. https://people.math.ethz.ch/~salamon/PREPRINTS/funcana.pdf
9. https://zlib.pub/book/introduction-to-topology-and-modern-analysis7jh9srua6920

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. C.Saranya

Semester IV	Internal Marks: 25		ExternalMarks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA4CCC3A	DIFFERENTIAL GEOMETRY	CORE CHOICE COURSE	6	4

Course Objectives

- Introduce space curves and its characterizations.
- Study properties of curves on surfaces.
- Understand the concepts of Geodesics and canonical Geodesics equations.

Prerequisite

Knowledge of basic concepts of Vectors and Differentiation.

Course Outcomes

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand the concepts of a space curve, Geodesics, developables, helihoids and umbilics.	K2
$\mathbf{C O 2}$	Compute its curvature and torsion, surface of revolution, Existence theorems and lines of curvature.	K2
$\mathbf{C O 3}$	Acquire the knowledge of curves on a surface, Geodesic curvature and lines of curvature	K3
$\mathbf{C O 4}$	Determine the second fundamental form and developable associated with curves on surfaces, Hilbert's Lemma and classify differential geometry of several surfaces.	K3
$\mathbf{C O 5}$	Interpret the concepts of geodesics and its normal properties, differential geometry of surfaces and also familiar with Gauss Bonnet Theorem.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	1	3	3	1	2
CO2	3	3	2	1	3	1	3	3	2	2
CO3	3	3	2	2	3	1	3	3	2	2
CO4	3	3	2	2	3	1	3	3	2	2
CO5	3	3	2	2	3	1	3	3	2	2

" 1 " - Slight (Low) Correlation
" 3 " - Substantial (High) Correlation
" 2 " - Moderate (Medium) Correlation
"-" indicates there is no Correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	The Theory of Space Curves Definitions - Arc length - Tangent, normal and binormal - Curvature and torsion of a curve given as the intersection of two surfaces - Contact between curves and surfaces - Tangent surface, involutes and evolutes Helices.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \mathrm{K} 1 \\ & \mathrm{~K} 2, \\ & \mathrm{~K} 3, \\ & \mathrm{~K} 4 \end{aligned}$
II	The Metric Definition of a surface - Curves on a surface Surfaces of revolution - Helicoids - Metric - Direction coefficients - Families of curves - Isometric correspondence.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{K} 1 \\ & \mathrm{~K} 2, \\ & \mathrm{~K} 3, \\ & \mathrm{~K} 4 \end{aligned}$
III	Geodesics Geodesics - Canonical geodesic equations - Normal property of geodesics - Existence theorems Geodesic parallels - Geodesic curvature - Gauss-Bonnet Theorem	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	K1, K2, K3, K4
IV	The Second Fundamental Form: Local Non-Intrinsic Properties of a Surface The Second fundamental form - Principal curvatures - Lines of curvature - Developables Developables associated with space curves.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{K} 1, \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
V	Differential Geometry of surfaces in the large Compact surfaces whose points are umbilics Hilbert's Lemma - Compact surfaces of constant Gaussian or mean curvature - Complete surfaces.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Intrinsic equations, fundamental existence theorem for space curves - Intrinsic properties - Gaussian curvature Surfaces of constant curvature - Developables associated with curves on surfaces- Characterization of complete surfaces.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \mathrm{K} 1, \\ & \mathrm{~K} 2, \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$

Text Books

T.J. Willmore (2017), An Introduction to Differential Geometry (21 ${ }^{\text {st }}$ Impression), Oxford University Press, New Delhi.

Chapters and Sections

UNIT-I Chapter I: Sections: 2-7 \& 9
UNIT-II Chapter II: Sections: 1-8
UNIT-III Chapter II: Sections: 10-16
UNIT- IV Chapter III: Sections: 1-5
UNIT- V Chapter IV: Sections: 2-5

Reference Books

1. D. Somasundaram (2010), Differential Geometry, A First Course (Third Reprint), Narosa Publishing House, New Delhi.
2. Christian Bar (2011), Elementary Differential Geometry (First South Asian Edition), Cambridge University Press, New York.
3. J.A. Thorpe (2004), Elementary Topics in Differential Geometry (First Indian Reprint), , Springer-Verlag, New York.

Web References

9. https://www.youtube.com/watch?v=4fB0VfKZRXM
10. https://youtu.be/1HUpNAS81PY?list=PLIljB45xT85DWUiFYYGqJVtfnkUFWkKtP
11. https://youtu.be/J-RgiQca6Q8?list=PLIljB45xT85DWUiFYYGqJVtfnkUFWkKtP
12. https://youtu.be/drOldszOT7I?list=PLIljB45xT85DWUiFYYGqJVtfnkUFWkKtP
13. https://youtu.be/QXrqsz5zD2I
14. https://youtu.be/zADj0k0waFY
15. https://people.math.ethz.ch/~salamon/PREPRINTS/diffgeo.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designer

Ms. A. Gowri Shankari

Semester IV	Internal Marks: 25			External Marks: 75
COURSECODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PMA4CCC3B	FORMAL LANGUAGE AND AUTOMATA THEORY	CORE CHOICE COURSE - III	6	4

Course Objectives

- Explore the nuances of Automata and Grammar.
- Analyze the applications of these techniques in Computer science.
- Apply the ideas for constructing the Regular Expressions.

Prerequisite

Familiarity in concepts of Discrete Mathematics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explain the basic concepts of automata, regular expressions, regular sets, grammars and compilers.	K2
$\mathbf{C O 2}$	Interpret the fundamental ideas in formal languages, automata, compilers and regular sets.	K2
$\mathbf{C O 3}$	Relate the concepts of deterministic and nondeterministic Finite Automata, grammars, regular expressions with pushdown automata, compilers and regular sets.	K3
$\mathbf{C O 4}$	Determine the implementation of automata languages, regular expressions, regular sets in compilers.	K4
$\mathbf{C O 5}$	Deduce mathematical notions in computability of regular expressions, automata, grammars, and regular sets and compilers.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
C03	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	FINITE AUTOMATA: Finite state systems - Basic definitions - Nondeterministic finite automata - Finite automata with ε-moves.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	REGULAR EXPRESSIONS AND CONTEXT-FREE GRAMMARS: Regular expressions - Motivation and introduction -Context-free grammars - Derivation trees - Chomsky normal form - Greibach normal form.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	PROPERTIES OF REGULAR SETS: The pumping lemma for regular sets - Closure properties of regular sets - Decision algorithms for regular sets - The Myhill-Nerode theorem and minimization of finite automata.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO}, \end{aligned}$	K2, K3, K4, K5
IV	PUSHDOWN AUTOMATA: Informal description - Definitions - Pushdown automata and context-free languages.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
V	INTRODUCTION TO COMPILERS: Compilers and translators - Why we need transtators? - The structure of compiler - Lexical analysis - Syntax analysis Intermediate code generation - Optimization - Code generation - Book keeping - Error handling - Compiler writing tools - Getting Started.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Strings, alphabets and languages - Graphs and trees Applications of finite automata -From regular expression to finite automata - Minimizing the number of states of a DFA.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

Text Books

1. John E. Hopcroft and Jeffery D. Ullman (1979), Introduction to Automata theory, Languages and Computation, Narosa Publishing House Pvt. Ltd
2. Alfred V. Aho and Jeffrey D. Ullman, (2002), Principles of Compiler Design (Twentyfifth Reprint), Narosa Publishing House.

Chapters and Sections

UNIT-I Chapter 2[1]: Sections 2.1-2.4
UNIT-II Chapter 2[1]: Sections 2.5
Chapter 4[1]: Sections 4.1-4.3, 4.5, 4.6
UNIT-III Chapter 3[1]: Sections 3.1-3.4
UNIT-IV Chapter 5[1]: Sections 5.1-5.3
UNIT-V Chapter 1[2]: Sections 1.1-1.12

Reference Books

1. Iyengar N Ch S. N., Chandrasekaran V.M, Venkatesh K. A, Arunachalam P.S.(2005), Discrete Mathematics(Third Reprint), Vikas Publishing House Pvt Ltd.
2. Dhamdhere (2008),Compiler Construction,(Reprint five time), Macmillan India Ltd.
3. Alfred V. Aho Ravi Sethi Jeffrey D. Ullman (2007), Compilers Principles, Techniques, and Tools, Pearson Education.

Web References

1. https://www.vssut.ac.in/lecture_notes/lecture1423726104.pdf
2. https://www.iitg.ac.in/dgoswami/Flat-Notes.pdf
3. https://www.youtube.com/watch?v=ntrF_KxHn18\&pp=ygUacHVzaGRvd24gYXV0b21hdGEgZ XhhbXBsZXM\%3D
4. https://www.youtube.com/watch?v=4nx8LEGy9kI\&pp=ygUlbGV4aWNhbCBhbmFseXNpcyBkZ WZpbml0aW9uICBleGFtcGxlcw\%3D\%3D
5. https://www.youtube.com/watch?v=H0Mf4FE2wiU\&pp=ygUoUmVndWxhciBFeHByZXNzaW9 ucyBkZWZpbml0aW9uICBleGFtcGxlcw\%3D\%3D

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Saridha

Semester IV	Internal Marks: 25			External Marks: 75
COURSECODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PMA4CCC3C	FLUID DYNAMICS	CORE CHOICE COURSE	6	4

Course Objectives

- Understand the dynamics of real fluids.
- Familiarize with the properties of fluids and the applications of fluid dynamics.
- Apply the concept of fluid measurement, types of flows and dimensional analysis.

Prerequisite

Basic concepts in Dynamics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Understand the measuring techniques of temperature, heat flux, pressure, velocity, force.and flow rate.	$\mathbf{K 2}$
$\mathbf{C O 2}$	Apply governing equations for particular flow fields with applications and analyse potential flows and execute concept of conformal transformation for flow over bodies.	$\mathbf{K 3}$
$\mathbf{C O 3}$	Compute the Navier - Stokes equations of Motion of a Viscous Fluid and analyse the Kinematics of fluids, two dimensional and three-dimensional flows through various techniques	$\mathbf{K 3}$
$\mathbf{C O 4}$	Examine viscous flows through various systems and apply various intrusive and non-intrusive techniques to measure flow and fluid properties.	$\mathbf{K 4}$
$\mathbf{C O 5}$	Evaluate the knowledge of experimental fluid dynamics and analyze of fluid motion.	$\mathbf{K 5}$

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	2	2	3
CO2	3	3	2	1	3	3	3	2	3	2
CO3	3	3	2	2	3	2	3	2	3	2
CO4	3	3	2	2	3	2	2	3	3	3
CO5	3	3	2	2	3	3	3	3	3	2

" 1 " - Slight (Low) Correlation
" 3 " - Substantial (High) Correlation
" 2 " - Moderate (Medium) Correlation
"-" indicates there is no Correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Kinematics of Fluids in Motion: Real Fluids and Ideal Fluids - Velocity of a Fluid at a point - Streamlines and Path lines; Steady and Unsteady Flows - The Velocity potential - The Vorticity vector - Local and Particle Rates of Change - The Equation of continuity Worked examples - Acceleration of a Fluid - Conditions at a rigid boundary Equations of Motion of a Fluid: Pressure at a point in a Fluid at Rest - Pressure at a point in a Moving Fluid - Conditions at a Boundary of Two Inviscid Immiscible Fluids - Euler's equations of motion Bernoulli's equation - Worked examples.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	Equations of Motion of a Fluid: Discussion of the case of steady motion under conservative body forces - Some potential theorems - Some Flows Involving Axial Symmetry - Some special twoDimensional Flows - Impulsive Motion Some Three-Dimensional Flows: Sources, Sinks and Doublets - Images in a Rigid Infinite Plane - Images in solid spheres - Axi-Symmetric Flows; Stokes's stream function.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
III	Some Two-Dimensional Flows: Meaning of a Two-Dimensional Flow - Use of cylindrical Polar coordinates - The stream function - The Complex Potential for Two-Dimensional, Irrotational, Incompressible Flow - Complex velocity potentials for Standard TwoDimensional Flows - Some worked examples - TwoDimensional Image systems - The Milne-Thomson circle theorem - The Theorem of Blasius.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Some Two-Dimensional Flows: The use of conformal Transformation - The SchwarzChristoffel Transformation	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5

	Viscous Flow: Stress components in a Real fluid - Relations between Cartesian components of stress - Translational Motion of Fluid Element - The Rate of Strain Quadric and Principal Stresses - Some Further properties of the Rate of Strain Quadric - Stress Analysis in Fluid Motion - Relations Between stress and rate of strain - The coefficient of viscosity and Laminar Flow			
V	Viscous Flow: Some solvable problems in Viscous Flow - Steady Viscous Flow in Tubes of Uniform cross section - Diffusion of Vorticity - Energy Dissipation due to Viscosity - Steady Flow past a Fixed Sphere Dimensional Analysis; Reynolds Number.	18	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) General analysis of fluid motion -Some Further Aspects of Vortex Motion - Some Special Forms of the Stream Function for Axi-Symmetric Irrotational Motions - Vortex Rows - - The Navier-Stokes equations of Motion of a Viscous Fluid - Prandtl's Boundary Layer.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$

Text Book

F. Chorlton (2004), Text Book of Fluid Dynamics, CBS Publishers \& Distributors Pvt. Ltd., New Delhi.

Chapters and Sections

UNIT-I Chapter 2: Sections 2.1-2.10
Chapter 3: \quad Sections 3.1-3.6
UNIT-II Chapter 3: Sections 3.7-3.11
Chapter 4: \quad Sections 4.2-4.5 (omit 4.5.1)
UNIT-III Chapter 5: Sections 5.1-5.9
UNIT-IV Chapter 5: Sections 5.10-5.11
Chapter 8: ` Sections 8.1-8.8
UNIT-V \quad Chapter 8: \quad Sections $8.10-8.15$

Reference Books

[1] Dr. M.D. Raisinghania (2013), Fluid Dynamics with Complete Hydrodynamics and Boundary Layer Theory, S. Chand \& Company Pvt. Ltd. (Online PDF)
[2] Hyoung Woo Oh (2012), Advanced Fluid Dynamics. (Online PDF)
[3] J.H. Ferziger \& M. Peric (2005), Computational methods for fluid Dynamics (Third Edition), Springer - Verlag.

Web References

1. https://www.voutube.com/watch? v=zzdWqBnwkys
2. https://tinvurl.com/vunrr3eb
3. https://www.youtube.com/watch? $v=I 4 N Z A N f y z M s \& l i s t=P L 1 U Z B J q z z y--$ IKFA0xRcsgVsdqctF2r2p\&index=2
4. https://tinvurl.com/bdf2bwv3
5. https://www.voutube.com/watch?v=wlPXZrP9vR8\&list=PLCoE5wxWtHFYiVGswvsWR aHjv18vxZzE2
6. file:///C:/Users/user/Downloads/toaz.info-fluid-dvnamics-bv-chorltonpr 5ce01488c289a4a10ce5d30a8198cc16.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. G. Janaki

Semester IV	Internal Marks: 25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA4GEC2	OPTIMIZATION TECHNIQUES	GENERIC ELECTIVE	$\mathbf{3}$	$\mathbf{2}$

Course Objectives

- Understand the various features of Operations research.
- Analyze the optimum solutions using Operations research.
- Explore the concepts of Operations research in real life problems.

Prerequisite

Basic computational knowledge.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be ableto	Cognitive Level
$\mathbf{C O 1}$	Illustrate the various notions in the respective streams.	K2
$\mathbf{C O 2}$	Identify the different terminologies of Operations research	K3
$\mathbf{C O 3}$	Analyze the solutions of mathematical problem using specific techniques.	K 4
$\mathbf{C O 4}$	Simplify the optimum solutions of a mathematical problem.	K5
$\mathbf{C O 5}$	Construct various mathematical problem of Sequencing.	K 6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	2	3	3	3	2	3
CO2	3	2	3	3	2	3	3	3	3	2
CO3	3	2	3	3	2	3	2	3	2	2
CO4	3	2	2	2	2	3	3	2	3	2
CO5	3	2	3	2	2	3	3	3	2	2
$" 1 "-$ Slight (Low) Correlation $\neg 2 "-$ Moderate (Medium) Correlation \neg										

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Linear Programming Problem - Mathematical Formulation Introduction \quad Linear Programming Problem - Mathematical Formulation of the Problem - Illustration on Mathematical Formulation of LPPs. Linear Programming Problem - Graphical Solution and Extension Introduction - Graphical Solution Method - Some Exceptional Cases	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
II	Linear Programming Problem Graphical Solution and Extension General Linear Programming Problem Canonical and Standard Forms of LPP. Linear Programming Problem - Simplex Method Introduction - Fundamental Propertiesof Solutions - The computational Procedure.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
III	Transportation Problem: The Transportation Table - Solution of a Transportation Problem - Finding an initial basic feasible solution - Transportation algorithm (MODI method) - Some exceptional Cases.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
IV	Assignment Problem: Introduction - Solution methods of assignment problem - Special Cases in Assignment Problem.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K2, K3, K4, K5, K6
V	Sequencing Problem: Introduction - Problem of Sequencing - Basic Terms Used in Sequencing - Processing n Jobs through Two Machines - Processing n Jobs through k Machines.	9	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Some Exceptional Cases(Graphical Solution) - Use of Artificial Variables - Degeneracy in Transportation Problem - The Traveling Salesman Problem - Processing 2 Jobs through k Machines.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5, } \\ & \text { K6 } \end{aligned}$

Text Book

Kanti Swarup, P.K. Gupta, Manmohan. (2008). Operations research, Sultan Chand \& sons

Chapters and Sections

UNIT-I Chapter 2: Sections 2.1-2.4
Chapter 3: Sections 3.1-3.3.
UNIT-II Chapter 3: Sections 3.4-3.5.
Chapter 4: Sections $4.1-4.3$
UNIT- III Chapter 10: Sections 10.5, 10.8, 10.9, 10.13, 10.15.
UNIT- IV Chapter 11: Sections 11.1, 11.3, 11.4
UNIT- V Chapter 12: Sections 12.1 - 12.5.

Reference Books

1. Hamdy A.Taha. (2017). Operations Research An Introduction Pearson India Education services PVT Ltd
2. Premkumar Gupta. (2004). Operations Research. S.Chand \& Company Ltd, New Delhi..
3. Chandrasekhara Rao.K,Shanti Lata Mishra. (2008). Real Operations Research, Narosa Publishing House PVT Ltd, New Delhi

Web References

1. https://youtube.com/@introductiontooperationsre4975?si=s4hUaj5nLi331rrz
2. https://youtube.com/@iit?si=X62o-o3CvMdgXQpp
3. https://youtube.com/@introductiontooperationsre4975?si=s4hUaj5nLi331rrz
4. https://youtube.com/@iit?si=X62o-o3CvMdgXQpq
5. https://youtube.com/@kauserwise?si=tdP IvoCD12LgHos

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. E. Litta.

[^0]: " 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation -

