CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015 Certified

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS
AUTONOMOUS SYLLABUS
(2022-2023 and ONWARDS)

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

MISSION

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the
	students to be effective leaders in their chosenfields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR B.Sc Mathematics, B.Sc Physics, B.Sc Chemistry PROGRAMME

After completing a B.Sc., programme, a learner will be able to

PO NO.	On completion of B.Sc Mathematics / B.Sc Physics / B.Sc Chemistry
	Programme, the students will be able to
PO1	DOMAIN KNOWLEDGE
	Analyse, design and develop solutions by applying from fundamental concepts of
	basic sciences and expertise in discipline.
PO2	PROBLEM SOLVING
	Ability to think abstractly, to evaluate and concentrates effectively on problem-
	solving, as well as knowledge of global challenges.
PO3	CREATIVE THINKING AND TEAM WORK
	Develop prudent decision-making skills and mobility to work in teams to solve
	multifaceted problems.
PO4	EMPLOYABILITY
	Self-study acclimatize them to observe effective interactive practices for practical
	learning enabling them to be a successful science graduate.
PO5	LIFE LONG LEARNING
	Assure consistent improvement in the performance and arouse interest to pursue
	higher studies in premium institutions.

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc MATHEMATICS

PSO NO.	The Students of B.Sc Mathematics will be able to	POs Addressed
PSO1	Procure a precise understanding of the mathematical concepts.	PO1, PO3
PSO2	Excel by enhancing interpersonal skills, overcoming procedural challenges and intending career paths.	PO3, PO4
PSO3	Recognize, strengthen and analyse mathematical problems in order to acquire better conclusion.	PO4, PO5
PSO4	Manipulate numerical abilities across a variety of domains.	PO2, PO5
PSO5	Develop and desire to learn more about advanced mathematics and its applications.	PO5

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

PG AND RESEARCH DEPARTMENT OF MATHEMATICS B.Sc MATHEMATICS PROGRAMME STRUCTURE

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS-LOCF)

(For the candidates admitted from the Academic year 2022-2023 Onwards)

ter				Irs.	S	Exam				
Semester	Part	Course	Course Title	Course Code	Inst. Hrs. / week	Credits	Hrs.	Mark	S	Total
Se	Pa				In / v	Cı	H	Int	Ext	\mathbf{T}_0
			இக்கால இலக்கியம் Hindi Literature &	22ULT1 22ULH1						
	I	Language Course-I (LC)	Grammar – I History of Popular Tales, Literature and Sanskrit Story	22ULS1	6	3	3	25	75	100
			Basic French – I	22ULF1						
	II	English Language Course – I (ELC)	Functional English for Effective Communication – I	22UE1	6	3	3	25	75	100
I		Core Course – I (CC)	Differential Calculus and Trigonometry	22UMA1CC1	5	4	3	25	75	100
	III	Core Course – II (CC)	Integral Calculus	22UMA1CC2	4	4	3	25	75	100
	111	First Allied Course – I (AC)	Mathematical Statistics I	22UMA1AC1	5	4	3	25	75	100
		First Allied Course – II (AP)	Mathematical Statistics (P)	22UMA1AC2P	2	2	3	40	60	100
	IV	Ability Enhancement Compulsory Course-I (AECC)	UGC Jeevan Kaushal- Universal Human Values	22UGVE	2	2	-	100	-	100
		ŗ	Γotal		30	22				700
	I	Language Course-II (LC)	இடைக்கால இலக்கியமும், புதினமும் Hindi Literature & Grammar – II Poetry, Textual	22ULT2 22ULH2 22ULS2	5	3	3	25	75	100
			Grammar and Alankara Basic French – II	22ULF2						
	II	English Language Course – II (ELC)	Functional English for Effective Communication – II	22UE2	6	3	3	25	75	100
II		Core Course – III (CC)	Differential Equations and Laplace Transforms	22UMA2CC3	5	5	3	25	75	100
	III	Core Course – IV (CC)	Vector Calculus and Fourier Series	22UMA2CC4	4	4	3	25	75	100
	111	Core Practical –I (CP)	MATLAB Programming (P)	22UMA2CC1P	2	2	3	40	60	100
		First Allied Course – III (AC)	Mathematical Statistics	22UMA2AC3	4	3	3	25	75	100
	IV	Ability Enhancement Compulsory Course-II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	-	100
		Ability Enhancement Compulsory Course-III (AECC)	Innovetion and		2	1	-	100	-	100
		Extra Credit Course	SWAYAM		As pe	er UGC	Reco	mmenda	ation	
		To		30	23				800	

	I	Language Course-III (LC)	காப்பியமும், நாடகமும் Hindi Literature & Grammar – III Prose, Textual Grammar and Vakyarachana Intermediate French – I	22ULT3 22ULH3 22ULS3 22ULF3	5	3	3	25	75	100
	II	English Language Course – II (ELC)	Learning Grammar Through Literature – I	6	3	3	25	75	100	
III		Core Course – V (CC)	Analytical Geometry (3D)	22UMA3CC5	4	4	3	25	75	100
1111	III	Core Course – VI (CC)	Classical Algebra and Theory of Numbers	22UMA3CC6	5	5	3	25	75	100
		Second Allied Course – I (AC)	Python Programming	22UMA3AC4	5	4	3	25	75	100
		Second Allied Course–II (AP)	Python Programming (P)	22UMA3AC5P	3	2	3	40	60	100
	_	Generic Elective Course- I	Mathematics for	22UMA3GEC1	_					
	IV	(GEC)	Competitive		2	2	3	25	75	100
	·		Examinations – I							
			Basic Tamil-I	22ULC3BT1						
			Special Tamil-I	22ULC3ST1						
		Extra Credit Course	SWAYAM	As	per U	GC Re	comn	nendat	ion	'
		Total				23				700

15 Days INTERNSHIP during Semester Holidays

			பண்டைய	22ULT4						
			இலக்கியமும்,							
			உரைநடையும்							
	I	Language Course-IV (LC)	Hindi Literature &	22ULH4	6	3	3	25	75	100
	1	Language Course-1 v (LC)	Functional Hindi			3	3	23	13	100
			Drama, History of	22ULS4						
			Drama Literature							
			Intermediate French - II	22ULF4						
	II	English Language Course – IV	Learning Grammar	22UE4	6	3	3	25	75	100
		(ELC)	Through Literature - II							
		Core Course – VII (CC)	Sequences and Series	22UMA4CC7	5	5	3	25	75	100
		Core Course – VIII (CC)	Methods in Numerical	22UMA4CC8	5	5	3	25	75	100
	III		Analysis							
		Second Allied Course– III (AC)	Internet of Things	22UMA4AC6	4	3	3	25	75	100
IV		Internship	Internship	22UMA4INT	1	2	1	1	100	100
			Mathematics for	22UMA4GEC2						
		Generic Elective Course- II	Competitive		2	2	3	25	75	100
		(GEC)	Examinations – II							
	IV		Basic Tamil-II	22ULC4BT2						
			Special Tamil-II	22ULC4ST2						
		Skill Enhancement Course – I	Statistical Tools and	22UMA4SEC1P						
		(SEC)	Techniques - R		2	2	3	40	60	100
			Programming (P)							
	Ext	ra Credit Course	SWAYAM		Ā	As per	UGC	Reco	mmenda	ation
			Total		30	25				800

			180	150				4400		
				Total	30	28				700
	V	V Extension activity 22UGEA					0	-	-	-
		Gender Studies	Gender Studies	22UGGS	1	1	-	-	-	100
		Project	Project Work	22UMA6PW	5	4	-	-	100	100
			Data Analytics							
			C. Fundamentals of Big	22UMA6DSE2C						
VI		II(DSE)	B. Number Theory	22UMA6DSE2B	5	4	3	25	75	100
	III	Discipline Specific Elective –	A. Graph Theory	22UMA6DSE2A	_		_	-		
		Core Course –XVI (CC)	Cyber Security	22UGCS	5	4	3	25	75	100
		Core Course –XV (CC)	Dynamics	22UMA6CC15	4	4	3	25	75	100
		Core Course – XIV(CC) Complex Analysis		22UMA6CC14	5	5	3	25	75	100
		Core Course – XIII (CC)	Linear Algebra	22UMA6CC13	5	5	3	25	75	100
			Total		30	29				700
		Extra Credit Course	As per UGC Recommend			mendati	ion			
		Skill Enhancement Course – II LaTeX (P) 22UMA5SEC2P (SEC)		2	2	3	40	60	100	
	IV	Compulsory Course -IV (AECC) Skill Enhancement Course – II								
		Ability Enhancement		22UGPS	2	2	_	100	_	100
•			C. Artificial Intelligence	22UMA5DSE1C						
v		(DSE)	B. Astronomy	22UMA5DSE1B	5	4	3	25	75	100
		Discipline Specific Elective – I	A. Operations Research	22UMA5DSE1A						
,	III	Core Course XII (CC)	Discrete Mathematics	22UMA5CC12	5	5	3	25	75	100
		Core Course – XI (CC)	Statics	22UMA5CC11	5	5	3	25	75	100
		Core Course – X (CC)	Real Analysis	22UMA5CC10	5	5	3	25	75	100
		Core Course – IX (CC)	Abstract Algebra	22UMA5CC9	6	6	3	25	75	100

Note:

Part – I-Language – Tamil/Hindi/French/Sanskrit

Part – II- English

List of Allied Courses:

Allied Course I- Mathematical Statistics

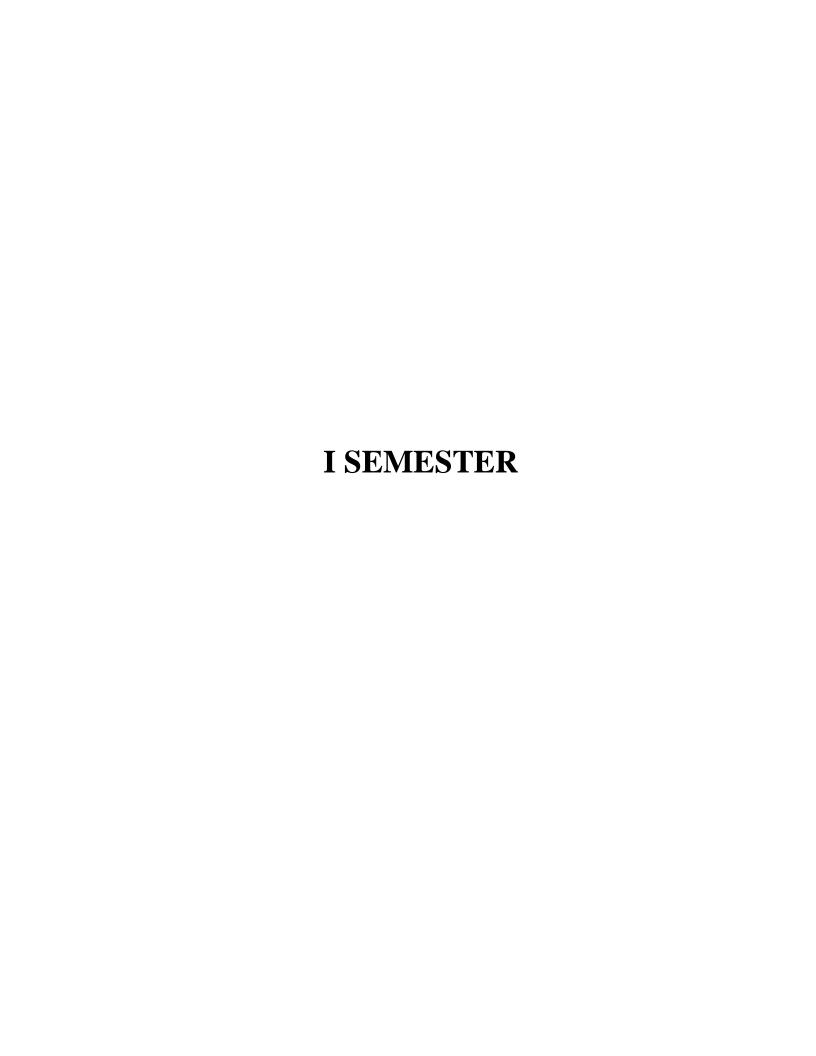
Allied Course II- Computer Science

Part	Course	No. of	Credits	Total Credits
		Courses		
I	Tamil/ Other Language	4	12	12
II	English	4	12	12
	Core (Theory& Practical)	16+1	77	
	Project Work	1	4	
111	Internship	1	2	109
III	First Allied	3	9	
	Second Allied	3	9	
	DSE	2	8	
	GEC	2	4	
***	SEC	2	4	
IV	AECC-I -Universal Human Values	1	2	
	AECC-II-Environmental Studies	1	2	1.5
	AECC-III-Innovation and	1	1	15
	Entrepreneurship		1	
	AECC-IV- Professional Skills	1	2	
V	Gender Studies	1	1	02
	Extension Activities	_	1	
		44		150

The Internal and External marks for Theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	40	60

FOR THEORY:


The passing minimum for CIA shall be 40% out of 25 marks [i.e. 10 marks].

The passing minimum for University Examinations shall be 40% out of 75 marks [i.e. 30 marks].

FOR PRACTICAL:

The passing minimum for CIA shall be 40% out of 40 marks [i.e. 16 marks].

The passing minimum for University Examinations shall be 40% out of 60 marks [i.e. 24 marks].

CORE COURSE – I (CC)

DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(2022-2023 Onwards)

Semester I	Internal Marks: 2	External Marks:75			
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
CODE					
22UMA1CC1	DIFFERENTIAL	CORE	5	4	
	CALCULUS AND				
	TRIGONOMETRY				

Course Objective

- **Compute** mathematical quantities using differential calculus and **interpret** their meaning.
- Explore fundamental concepts of single variable calculus
- **Apply** calculus concepts to solve real-world problems such as optimization and related rates problems.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain the basic concepts of differentiation, extreme functions of two variables.	K2
CO2	Apply the concept of differentiation for explaining curvature/.	К3
CO3	Explore the solution of problems from a mathematical perspective.	К3
CO4	Associate various types of hyperbolic and inverse hyperbolic functions and Solve problems in summation of trigonometric series.	K4
CO5	Examine the conceptual understanding and fluency with trigonometric functions, techniques and manipulations necessary for success in calculus.	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Successive Differentiation:			
	The n^{th} derivative – Standard results – Method of splitting the fractional expressions into partial fractions – Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula for the n^{th} derivative of a product – A complete formal proof by induction.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
II	Curvature:			
	Curvature – Circle, radius and centre of curvature – Cartesian formula for the radius of curvature – The coordinates of the centre of curvature – Evolute and Involute – Radius of curvature when the curve is given in polar coordinates.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
III	Expansions:			
	Expansions of $\cos n\theta$ and $\sin n\theta$ -Expansion of $\tan n\theta$ in powers of $\tan \theta$ —Expansion of $\tan(A+B+C+)$ (omitting examples on formation of equations) — Powers of sines and cosines of θ in terms of functions of multiples of θ — Expansions of $\cos^n \theta$ when n is a positive integer — Expansions of $\sin^n \theta$ when n is a positive integer — Expansions of $\sin^n \theta$ and $\cos \theta$ in a series of ascending powers of θ .	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
IV	Hyperbolic functions: Hyperbolic functions – Relation between hyperbolic functions – Relations between hyperbolic functions and circular functions – Inverse hyperbolic functions.	15	CO1, CO2, CO3, CO4,	K2, K3, K4
V	Derivatives for Graphing and Applications: Maxima and Minima: Maxima and Minima of functions of two variables – Working Rule – Lagrange's method of undetermined multiplier Tracing of Curves – Tracing of curves whose equation is in Cartesian coordinates.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Meaning of the Derivative: Geometrical interpretation — Meaning of the sign of the differential coefficient - p - r equation: Pedal equation of a curve — The expansions of $\sin \theta$ and $\cos \theta$ to find the limits of certain expressions — Logarithms of complex quantities: Logarithms of complex quantities — To find the logarithm of x + iy — General value of logarithm of x + iy — Tracing of Curves: Polar Equation.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4

Text Books

- 1. Narayanan. S, .Manicavachagom Pillay. T. K. (2015). *Calculus Volume I*. S. Viswanathan (Printer & publishers) Pvt Ltd.
- 2. Narayanan. S, .Manicavachagom Pillay. T. K. (2013). *Trigonometry*. S. Viswanathan (Printer & publishers) Pvt Ltd.

Chapters and Sections

UNIT-I Chapter III: Sections 1.1 - 1.6, 2.1, 2.2 [1]

UNIT-II Chapter X: Sections 2.1 - 2.6 [1]

UNIT-III Chapter III: Sections 1 - 4, 4.1, 5 [2]

UNIT- IV Chapter IV: Sections 1,2,2.1,2.2,2.3 [2]

UNIT- V Chapter VIII: Sections 4, 4.1,5 [1]

Chapter XIII: Sections 1.1 & 1.2 [1]

Reference Books

1. Arumugam. S and Issac. (2014). Calculus. New Gamma Publishing House.

- 2. Singaravelu. A. (2003). *Differential Calculus and Trigonometry*. A.Singaravelu and R.Ramaa 1st edition, Nagapattinam, R Publication.
- 3. Bali. N.P. (2010). Differential Calculus. Laxmi Publications (P) Ltd. New Delhi.

Web References

- 1. https://www.youtube.com/watch?v=s8hVridQ5IA
- 2. https://www.youtube.com/watch?v=KijGLjxKlsY
- 3. https://www.youtube.com/watch?v=IQJ0UiM91Z4
- 4. https://www.youtube.com/watch?v=43cMRs2pat4
- 5. https://www.youtube.com/watch?v=mAC88G cc M
- 6. https://www.youtube.com/watch?v=CioY8ElsjO4
- 7. https://youtu.be/zExo4_TpOAw

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P. Sudha

CORE COURSE – II (CC) INTEGRAL CALCULUS

(2022-2023 Onwards)

Semester I	Internal Marks: 25		External Marks:75		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY		CREDITS	
22UMA1CC2	INTEGRAL	CORE	4	4	
	CALCULUS				

Course Objective

- Analyze the properties of definite integral and Reduction formulae.
- **Explore** the order of Integration, Triple Integrals, Beta and Gamma functions.
- Apply Geometrical Applications of Integration of area under plane curve.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Apply the concepts of double, triple integrals.	К3
CO2	Distinguish the concepts of Beta and Gamma functions.	К3
CO3	Apply the concept of definite integral to solve various problems.	К3
CO4	Interpret the definite integral geometrically as the area under a plane curve.	К3
CO5	Evaluate the types of integration.	K5

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	3	2
CO2	3	2	3	3	2	2	2	3	3	3
CO3	3	3	3	3	3	2	3	2	2	2
CO4	3	2	3	3	2	3	3	3	2	2
CO5	3	3	3	3	3	2	2	2	3	3

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Integration: Integration of rational algebraic functions: $\int \frac{dx}{ax^2 + bx + c} - \int \frac{lx + m}{ax^2 + bx + c} dx - $ Integration of Irrational functions $\int \frac{px + q}{\sqrt{ax^2 + bx + c}} dx - $ Any expression of the form $\int \frac{dx}{(x - k)\sqrt{ax^2 + bx + c}} - \int \frac{dx}{a + b\cos x}$ (Integration of these types only).	12	CO1, CO2, CO3, CO4, CO5	K3, K5
II	Properties of Definite Integrals – Integration by parts – Reduction formulae.	12	CO1, CO2, CO3, CO4, CO5	K3, K5
III	Multiple Integrals: Definition of the double integrals – Evaluation of the double Integrals – Triple Integrals.	12	CO1, CO2, CO3, CO4, CO5	K3, K5
IV	Improper Integrals: Beta and Gamma functions: Definition – convergence of $\Gamma(n)$ – Recurrence formula for gamma functions – Properties of Beta functions – Relation between Beta and Gamma functions – Definite integrals using Gamma functions.	12	CO1, CO2, CO3, CO4, CO5	K3, K5
V	Geometrical Applications of Integration – Areas under plane curves: Cartesian Co-ordinates – Area of a closed curve – Examples – Area in polar co-ordinates.	12	CO1, CO2, CO3, CO4, CO5	K3, K5
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) $\int \frac{dx}{a\cos x + b\sin x} - \text{Bernoulli's formula} - \text{Applications of Multiple Integrals} - \text{Applications of Gamma functions to multiple integrals} - \text{Approximate Integration.}$	-	CO1, CO2, CO3, CO4, CO5	K3, K5

Text Books

1. Narayanan, S. & Manicavachagom Pillay, T.K.(2015), Calculus, Volume II, S. Viswanathan (Printers & publishers) Pvt Ltd.

Chapters and Sections

UNIT – I Chapter 1: Sections 7.3 (Type I & II) 8 - Case II and case V, 9

UNIT – II Chapter 1: Sections 11, 12, 13 (13.1 – 13.9)

UNIT –III Chapter 5: Sections 2.1, 2.2 & 4

UNIT – IV Chapter 7: Sections: 2.1 - 2.3, 3 - 5

UNIT -V Chapter 2: Sections 1.1 - 1.4

Reference Books

- 1. Shanti Narayan, Integral Calculus (2002), S. Chand & Company Ltd
- 2. Shanti Narayan & Mittal, P. K (2008) Integral Calculus, S. Chand & Company Ltd
- 3. Singh, U. P. Srivastava, R. J & Siddiqui, N. H. (2011) Integral Calculus, Wistom Press.

Web References

- 1. https://youtu.be/w-T90XSM90s
- 2. https://youtu.be/VXSn6EY9klg
- 3. https://youtu.be/2l-_SV8cwsw
- 4. https://youtu.be/bLhxQldbWW8
- 5. https://youtu.be/4KDenLHggDM
- 6. https://youtu.be/db7d_a0wiUg
- 7. https://youtu.be/zFy-OpajEtA
- 8. https://youtu.be/j6A44yQrGfU
- 9. https://youtu.be/scKJXbQpePM
- 10. https://youtu.be/FsC3do74Ulo

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P. Shalini

FIRST ALLIED COURSE -I (AC)

MATHEMATICAL STATISTICS I

(2022-2023 Onwards)

Semester I	Internal Marks: 25		External	Marks:75	
COURSE CODE	COURSE CODE COURSE TITLE CATEGORY		Hrs / Week	CREDITS	
22UMA1AC1	MATHEMATICAL	ALLIED	5	4	
	STATISTICS I				

Course Objective

- **Enable** the students to acquire the knowledge of statistics.
- Analyze the properties of various statistical functions.
- **Explore** the concepts of some statistical distributions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Apply Student's t, Fisher's t and F statistics to derive their probability Distribution.	К3
CO2	Analyze how correlation is used to identify the relationships between variables and how regression analysis is used to predict outcomes.	К3
CO3	Solving mean, median, mode, moments and moment generating functions of discrete and continuous distributions.	К3
CO4	Distinguish between a discrete and a continuous random variable.	K4
CO5	Examine the various properties of expectation, variance and the concept of covariance.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Random Variables and Distribution Functions:			
	Random Variable - Distribution Functions -			
	Properties of Distribution Function – Discrete			
	Random Variable - Probability Mass Function -			
	Discrete Distribution Function – Continuous Random			
	Variable – Probability Density Function – Various			
	Measures of Central Tendency, Dispersion,		CO1, CO2,	K3,
	Skewness and Kurtosis for Continuous Probability	15	CO3,	K3, K4
	Distribution - Continuous Distribution Function -		CO4, CO5	
	Joint Probability Mass Function and Marginal and		CO3	
	Conditional Probability Function – Joint Probability			
	Distribution Function – Joint Density Function,			
	Marginal Density Function - The Conditional			
	Distribution Function and Conditional Probability			
	Density Function.			
II	Mathematical Expectation:			
	Mathematical Expectation - Addition			K3, K5
	Theorem of Expectation – Multiplication Theorem of		CO1,	
	Expectation - Co-variance - Expectation of a Linear	10	CO2, CO3, CO4, CO5	
	Combination of Random Variables - Variance of a	12		
	Linear Combination of Random Variables -			
	Expectation of a Continuous random variable -			
	Conditional Expectation & Conditional Variance.			
III	Generating Functions:			
	Moment Generating Function – Theorems on		CO1,	
	moment Generating Functions- Cumulants- Additive	10	CO2,	K3,
	Property of Cumulants – Effect of Change of Origin	12	CO3, CO4,	K5
	and Scale on Cumulants – Characteristic Function –		CO5	
	Properties of Characteristic Function.			
IV	Correlation and Linear Regression:		CO1,	
	Introduction - Meaning of Correlation -	10	CO2,	K3,
	Scatter Diagram - Karl Pearson's Co-efficient of	12	CO3, CO4,	K5
	Correlation: Limits for Correlation Co-efficient –		CO5	

	Assumptions Underlying Karl Pearson's Correlation			
	Co-efficient - Rank Correlation : Spearman's Rank			
	Correlation Co- efficient – Tied or Repeated Ranks –			
	Repeated Ranks (continued) - Introduction - Linear			
	Regression: Regression Co-efficient - Properties of			
	Regression Co-efficient – Angle between two lines of			
	Regression.			
V	Exact Sampling Distributions:			
	Chi-Square Distribution: Introduction –			
	Derivation of the Chi-Square Distribution(χ^2) –			
	M.G.F. of Chi-Square Distribution : Cumulant			
	Generating Function of χ^2 -Distribution – Limiting			
	Form of χ^2 -Distribution for-Characteristic Function			
	of χ^2 -Distribution – Mode and Skewness of χ^2 -		CO1,	K3, K5
	Distribution – Additive Property of χ^2 Variates –	12	CO2, CO3,	
	Chi- Square Probability Curve - Students 't'	12	CO4,	K
	Distribution : Derivation of the Students 't'		CO5	
	Distribution – Fisher's 't' – Distribution of Fisher's			
	't' - Constants of t-distribution - Limiting Form of t-			
	distribution - F- Distribution : Derivation of			
	Snedecor's F- Distribution – Constants of F-			
	Distribution - Mode and Points of Inflexion of F-			
	Distribution.			
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Independent Random Variables – Uniqueness Theorem of Characteristic Function – Limits for the Rank Correlation Coefficient – Graph of t-distribution – Critical Values of t .	-	CO1, CO2, CO3, CO4, CO5	K3, K5

Text Books

- 1. Gupta, S.C. & Kapoor, V.K. (2004). *Elements Of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.
- 2. Gupta, S.C. & Kapoor, V.K. (2015). *Fundamentals Of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.

Chapters and Sections

UNIT-I	Chapter 5: Sections 5.1 to 5.5.3, 5.5.5 [1]
UNIT-II	Chapter 6: Sections 6.1 to 6.8 [1]
UNIT-III	Chapter 6: Sections 6.9 to 6.11.1 [1]
UNIT- IV	Chapter 10: Sections 10.1 to 10.4.2 & 10.7, 10.7.1 to 10.7.3 [2]
	Chapter 11: Sections 11.1 to 11.2.3 [2]
UNIT- V	Chapter 15: Sections 15.1 to 15.3.6 [2]
	Chapter 16: Sections 16.2 to 16.2.5, 16.5, 16.5.1 to 16.5.3 [2]

Reference Books

- 1. Pillai, R.S.N. Pillai & Bhagavathi. (2008). Statistics, Theory and Practice. S.Chand & Sons.
- 2. Bhishma Rao, G.S.S. (2011). Probability and Statistics. Scitech Publications (India) Pvt Ltd.
- 3. Veerarajan, T. (2010). *Probability, Statistics and Random Processes*. Tata McGraw Hill Education Private Limited.

Web References

- 1. https://www.youtube.com/watch?v=YXLVjCKVP7U
- 2. https://www.youtube.com/watch?v=xTpHD5WLuoA
- 3. https://www.youtube.com/watch?v=wjwLTNYOuI4
- 4. https://www.youtube.com/watch?v=zmyh7nCjmsg
- 5. https://www.youtube.com/watch?v=ux8zQvWWLk

Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment and Smart Classroom.

Course Designer

Ms. V. ManiMozhi

FIRST ALLIED COURSE – II (AC)

MATHEMATICAL STATISTICS (P)

(2022-2023 Onwards)

Semester I	Internal Marks	s: 40	External Marks:60		
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
CODE					
22UMA1AC2P	MATHEMATICAL	ALLIED	2	2	
	STATISTICS (P)				

Course Objective

- Understands the basic concepts in quantitative data analysis.
- **Apply** the technical knowledge to **interpret** and **solve** the problems.
- **Explore** the ideas of Excel in Statistics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explore various statistical concepts in Excel.	К3
CO2	Solve the Measures of Central Tendency and Measures of Dispersion using Excel.	К3
CO3	Compute Correlation and Regression co-efficient between two data sets and their applications.	К3
CO4	Analyze the concepts of testing the hypothesis and apply the test to the real-life problems.	K4
CO5	Make use of formulas, including the use of built-in functions.	К3

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	1	2	3	2	2	2	3	2	2	2
CO2	1	2	3	2	2	2	3	2	2	2
CO3	1	2	3	2	2	2	3	2	2	2
CO4	1	2	3	2	2	2	3	2	2	2
CO5	1	2	3	2	2	2	3	2	2	2

[&]quot;1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

LIST OF PROGRAMS

- 1) Arithmetic Mean, Geometric Mean and Harmonic Mean.
- 2) Median and Mode.
- 3) Quartile Deviation and Mean Deviation.
- 4) Standard Deviation and Co-efficient of Variation.
- 5) Karl Pearson's Co-efficient of Skewness.
- 6) Bowley's Co-efficient of Skewness.
- 7) Moments and Kurtosis.
- 8) Karl Pearson's Co-efficient of correlation.
- 9) Rank Correlation.
- 10) Fit the regression line.
- 11) Test the hypothesis for the difference between two sample means.
- 12) Test the hypothesis for single proportion.
- 13) Test the significance of hypothesis using 't' test.
- 14) Test the significance of hypothesis using 'F' test.
- 15) Test the significance of hypothesis using chi-square test.

Text Books

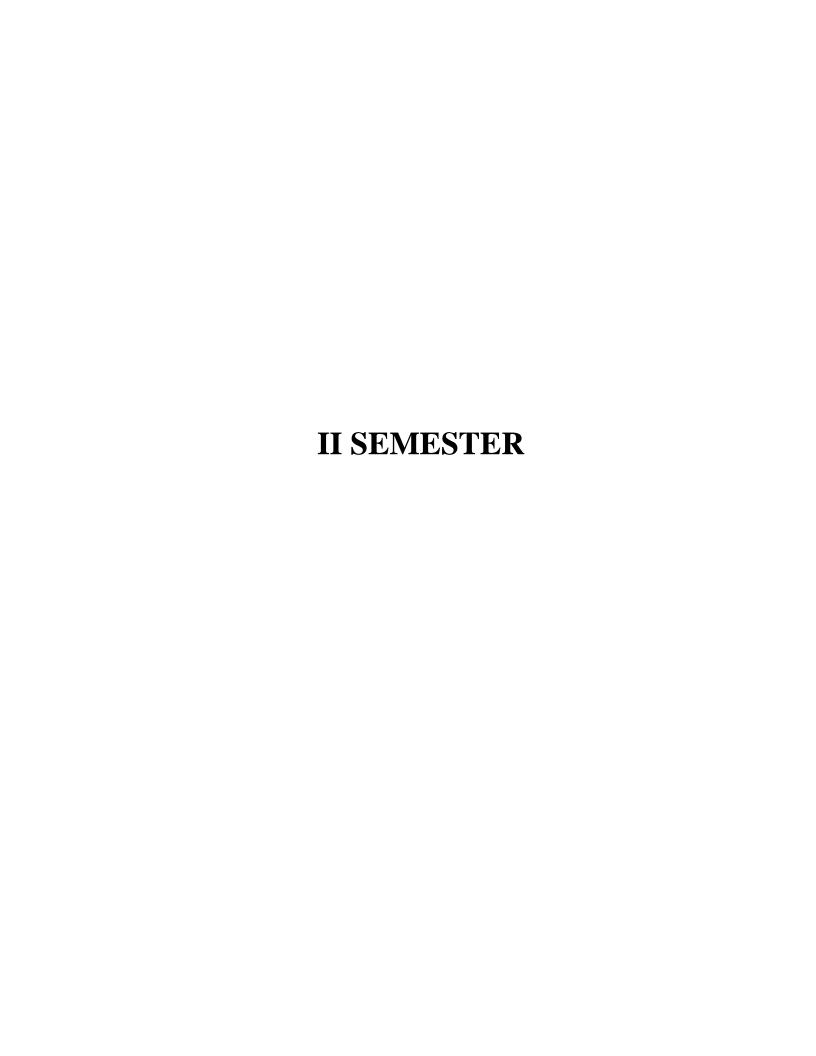
1. Asha Chawla. & Seema Malik. (2017). *Statistical Analysis with MS Excel*. Avichal Publishing Company.

Reference Books

- 1. Web Tech Sol. (2010). *Mastering Microsoft Excel Functions and Formulas*. Khanna Book Publishing Company.
- 2. Neil J. Salkind. (2015). Excel Statistics a Quick Guide. SAGE Publications, Inc.
- 3. Charles Zaiontz. (2015). Statistics using Excel Succinctly. E-Book.

Web links

- 1. https://www.youtube.com/watch?v=2rEhWFhSqnI
- 2. https://www.youtube.com/watch?v=L9TiYC6tQmU
- 3. https://www.youtube.com/watch?v=v5kYz3ADPBI
- 4. https://www.youtube.com/watch?v=9cXluqvGe8c
- 5. https://www.youtube.com/watch?v=egAvfCZTpz8
- 6. https://www.youtube.com/watch?v=7Y1g340tcbU
- 7. https://www.youtube.com/watch?v=_QnsH74zXhA
- 8. https://www.youtube.com/watch?v=BIS11D2VL_U
- 9. https://www.youtube.com/watch?v=_WNUfgZipww


- 10. https://www.youtube.com/watch?v=j966OJol0iA
- 11. https://www.youtube.com/watch?v=mUycvaTRrCw
- 12. https://www.youtube.com/watch?v=ckcUt3EyD-Q

Pedagogy

Power point presentations, Live Demo, Hands on training.

Course Designers

- 1. Dr. P. Saranya
- 2. Dr. C. Saranya

CORE COURSE – III (CC)

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

(2022-2023 Onwards)

Semester II	Internal Marks: 25	External Marks:75		
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
CODE				
22UMA2CC3	DIFFERENTIAL	CORE	5	5
	EQUATIONS AND			
	LAPLACE TRANSFORMS			

Course Objective

- Explain the basics of Ordinary Differential Equations.
- Emphasize in the field of Partial Differential Equations.
- **Explore** the mathematical methods formatted for major concepts.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain various notions in ODE, PDE, Laplace transforms.	K1, K2
CO2	Classify the problem models in the respective area.	К3
CO3	Identify the properties of solutions in the field of mathematics.	К3
CO4	Solve various types of problems involving differential equations.	К3
CO5	Analyze the applications of the Differential equations in practical	K4
	life.	

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

				COGNITI
UNIT	CONTENT	HOURS	COs	VE
				LEVEL
	Equations of the first order but of higher degree:			
I	Equations solvable for dy/dx – Equations solvable for y – Equations solvable for x – Clairaut's form – Extended form of Clairaut's form – Exact differential equations – Conditions of integrability of $M dx + N dy = 0$ – Practical rule for solving an exact differential equation – Rules for finding integrating factors - simple problems.	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4
II	Linear equations with constant coefficients: Definition – The operator D – Complementary function of a linear equation with constant coefficients – Particular integral – General method of finding P.I. – Special methods for finding P.I. of the forms e^{ax} , $\cos ax$ or $\sin ax$, $e^{ax}V$, x^m – Linear equations with variable coefficients – Methods of finding particular integrals – Method of Variation of Parameters (Omit third & higher order equations).	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4
III	Partial differential equations of the first order: Classification of Integrals – Derivation of partial differential equations – By elimination of constants – By elimination of an arbitrary function – Lagrange's method of solving the linear equation – Special methods for some standard forms $F(p,q) = 0, F(x,p,q) = 0, F(y,p,q) = 0, F(z,p,q) = 0, f_1(x,p) = f_2(y,q)$ Clairant's form – Equations reducible to the standard forms – Charpit's method .	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4
IV	Partial differential equations of higher order: Introduction – Homogeneous differential equation – Methods of finding C.F. – Methods of finding P.I. of the forms	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4

	$e^{ax + by}$, $x^r y^s$, $\sin(ax + by)$ or $\cos(ax + by)$,		CO5	
	$e^{ax + by} \varphi(x, y).$			
	Laplace transforms & inverse laplace transforms:			
	Definition - Piecewise continuity - Sufficient			
	conditions for the existence of the Laplace Transforms –		CO1,	K1,
	Basic results – Laplace Transform of periodic functions		CO1,	K1, K2,
V	- Some general theorems & simple applications -	15	ĺ	,
V	Evaluation of certain integrals using Laplace Transform	15	CO3,	K3,
	- The Inverse Laplace Transforms -Modification of		CO4,	K4,
	results in Laplace Transform to get the inverse Laplace		CO5	K5
	Transform - Use of Laplace Transforms in solving ODE			
	with constant coefficients.			
	Self Study for Enrichment:			
	(Not included for End Semester Examination)			
	Equations that do not contain x explicitly-			
	Equations that do not contain y explicitly- Equations		CO1,	K1,
VI	homogeneous in x and y - Special method of	_	CO2,	K2,
V1	evaluating the P.I. when X is of the form x^m -Solving	_	CO4,	К3,
	of few standard forms from Charpit's method - Methods		CO5	K4
	of finding P.I. of the forms $\sin ax \sin by$ or $\cos ax \cos by$ -			
	Use of Laplace Transforms in solving system of			
	differential equations.			

Text Books

- 1. Narayanan, S and Manicavachagom Pillay, T.K (2016). *Differential Equations And Its Applications*. S. Viswanathan Publishers Pvt. Ltd.
- 2. Arumugam, S and Thangapandi Isaac, A (2014). *Differential Equations And Applications*. New Gamma publishing House.

Chapters and Sections

UNIT-I Chapter IV: Sections 1 - 3 [1]
Chapter II: Section 6 [1].

UNIT-II Chapter V: Sections 1-5 [1] (Omit 5.5)
Chapter VIII: Section 4 [1] (Omit 6.1)

UNIT-III Chapter XII: Sections 1-6 [1]

UNIT- IV Chapter V: Sections 1-2 [2]

UNIT- V Chapter IX: Sections 1-8 [1]

Reference Books

1. Raisinghania M.D. (2008). Ordinary and Partial Differential Equations.S.Chand & Company.

Web References

- 1. https://youtu.be/aYrsPeE7NLQ
- 2. https://youtu.be/913LV 0QDO0
- 3. https://youtu.be/JEyzQtRPnjk
- 4. https://youtu.be/6rTtLQr8uq0
- 5. https://youtu.be/ZDHmF5PBk-8

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R.Divya

CORE COURSE – IV (CC)

VECTOR CALCULUS AND FOURIER SERIES

(2022-2023 Onwards)

Semester II	Internal Marks: 25	External Marks:75		
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
CODE				
22UMA2CC4	VECTOR CALCULUS	CORE	4	4
	AND FOURIER SERIES			

Course Objective

- **Explain** the basics principles of vector calculus.
- **Explore** the mathematical methods with vector integration.
- Understand the concepts and properties of Fourier Series.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember and recall the concepts of Vector Calculus and Fourier Series.	K1
CO2	Solve various types of problems in the Core area.	К3
CO3	Explain the concepts of odd and even functions.	К3
CO4	Describe the development of series.	К3
CO5	Examine the concepts of integration for finding solution.	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	3	2	3	3	2	2	3
CO3	3	2	3	3	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
I	Vector Differentiation: Vector valued function of a single scalar variable. Differential Operators: Definition – The Vector differential operator – The operator a.∇, where a is a unit vector – The Gradient of a scalar point function – Equation of tangent plane and normal –Divergence and Curl of a vector.	12	CO1, CO2, CO3, CO4, CO5	K1, K3, K4
II	Vector Integration: Vector Integration – Line integrals-Normal Surface Integral $\int_{S} \vec{F} \cdot \hat{n} \cdot dS$ – Flux across a Surface-Volume Integral $\int_{V} F \cdot dV$ (Simple Problems only).	12	CO1, CO2, CO3, CO4, CO5	K1, K3, K4
III	Vector Integration: Gauss's Divergence Theorem $\int_{S} \vec{F} \cdot \hat{n} \cdot dS = \int_{V} div \vec{F} dV$ - Stoke's theorem $\int_{c} \vec{F} \cdot \hat{n} \cdot d\vec{r} = \int_{S} curl \vec{F} \cdot \hat{n} dS$ - Green's theorem - Stoke's theorem in space.	12	CO1, CO2, CO3, CO4, CO5	K1, K3, K4
IV	Fourier series: Fourier series – definition - Fourier Series expansion of periodic functions with Period 2π and period $2a$ – Odd & even functions in Fourier Series.	12	CO1, CO2, CO3, CO4,	K1, K3, K4
V	Fourier series: Half- range Fourier Series – definition - Development in Cosine series - Development in Sine series - Change of interval.	12	CO1, CO2, CO3, CO4,	K1, K3, K4
VI	Self Study for Enrichment: (Not included for End Semester Examination) Theorems on differentiation- Properties of grad φ - Stoke's theorem in Cartesian form - Properties of odd and even functions- Combination of Series.	-	CO1, CO2, CO3, CO4, CO5	K1, K3, K4

Text Books

- 1. Khanna. M.L., *Vector Calculus*, Jai Prakash Nath and Co., 8th Edition, (1986).
- 2. Narayanan.S, Manicavachagam Pillai. T.K., *Calculus*, Vol.III, S.Viswanathan (Printers and Publishers) Pvt Limited, (2014).

Chapters and Sections

UNIT-I Chapter I: Section 1 [1]

Chapter II: Sections 2-4, 6,7[1]

UNIT-II Chapter III: Sections 1 – 4 [1]

UNIT-III Chapter III: Sections 5 - 7 [1]

UNIT- IV Chapter IV: Sections 1-3 [2]

UNIT- V Chapter IV: Sections 4-6 [2]

Reference Books

- 1. Duraipandiyan. P & Lakshmi Duraipandian, *Vector Analysis*, Emarald Publishers (1998).
- 2. Vittal. P.R. & V.Malini, *Vector Analysis*, Margham Publications (2014).
- 3. Sankarappan. S & Arulmozhi. G. (2006). *Vector Calculus, Fourier Series and Fourier Transforms*, Vijay Nicole imprints Private Limited, Chennai.

Web References:

- $\begin{array}{ll} \textbf{1.} & \underline{\text{https://www.youtube.com/watch?v=}FfJtVvQtqTM\&list=}PLU6SqdYcYsfJz9FAzbgoc} \\ & \underline{\text{Ijlkw4NXAar-}} \end{array}$
- 2. https://www.youtube.com/watch?v=9LqzrAHrSS0&list=PLeIE3weEKo4YnuLABA
 wpfuN9ufYJjg1SR
- 3. https://www.youtube.com/watch?v=KCS-
 VTm398I&list=PLhSp9OSVmeyLke5 cby8i8ZhK8FHpw3qs
- 4. https://www.rtu.ac.in/expert/app/documents/kjangid@rtu.ac.in 51629122020100932a m.pdf

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R. Radha

CORE PRACTICAL – I (CP)

MATLAB PROGRAMMING (P)

(2022-2023 Onwards)

SEMESTER II	INTERNAL MARKS: 4	EXTERNAL MARKS:60		
COURSE	COURSE TITLE	CATEGORY	HRS	CREDITS
CODE			/WEEK	
22UMA2CC1P	MATLAB	CORE	2	2
	PROGRAMMING (P)	PRACTICAL		

Course Objective

- **Apply** MATLAB as a simulation tool.
- Compute mathematical solutions using MATLAB and develop inter-disciplinary skills.
- **Determine** syntax, semantics, data-types and library functions of numerical computing.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain fundamental concepts of MATLAB.	K2
CO2	Illustrate a great numbers of MATLAB commands and how to use them in programming and in many applications in Mathematics.	K2
CO3	Compute simple program for a given problem in MATLAB coding.	К3
CO4	Determine the result and the outcome of any command or script.	K4
CO5	Deduce Mathematical solutions using MATLAB tools.	K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Listings:

- 1. Finding the leap year.
- 2. Operations using Matrices (Addition, Subtraction, Multiplication, Transpose and Inverse)
- 3. Basic plotting of variables (Simple and multiple data set).
- 4. Sorting of given data.
- 5. Finding the sum of n numbers, sum of square of n numbers, sum of 'n' odd numbers.
- 6. Finding the roots of a polynomial equation.
- 7. Solving system of equations using matrices.
- 8. Finding the Eigen vectors and Eigen values.
- 9. Generating Fibonacci series.
- 10. Vector operations.
- 11. Evaluation of integrals.
- 12. Finding the derivatives of given order.
- 13. Operations on sets.

Web Links

- 1. https://www.youtube.com/watch?v=_Rd61S1yS24
- 2. https://www.youtube.com/watch?v=EF4wmV5xBM0
- 3. https://www.youtube.com/watch?v=XsrhAO3r3VY
- 4. https://www.youtube.com/watch?v=aEjeuj5jfLU
- 5. https://www.youtube.com/watch?v=ZBafH5fss1E
- 6. https://www.youtube.com/watch?v=XtiAC4adozQ
- 7. https://www.youtube.com/watch?v=kt8QSkt-M6c
- 8. https://www.youtube.com/watch?v=y4Sy9xo-pFU
- 9. https://www.youtube.com/watch?v=pi6Dkvs6rP4
- 10. https://www.youtube.com/watch?v=YzEp0jiVyYs
- 11. https://www.youtube.com/watch?v=LFoutvnfP6A
- 12. https://www.youtube.com/watch?v=7BJUX3oIIz0

Pedagogy

Power point presentations, Live Demo, Hands on Training.

Course Designer

Dr. P. Saranya

FIRST ALLIED COURSE -III (AC)

MATHEMATICAL STATISTICS II

(2022-2023 and Onwards)

Semester II	Internal Mark	ks: 25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22UMA2AC3	MATHEMATICAL STATISTICS II	ALLIED	4	3	

Course Objectives

- **Enable** in-depth knowledge of probability.
- **Explore** the concepts of some statistical data.
- Analyse the properties of discrete and continuous distributions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Define the basic concepts in probability, some special distributions, and sampling distributions.	K1
CO2	Explain the properties of probability, special distributions and the theory of sampling distributions to find solutions of real-life problems.	K2
CO3	Solve problems in probability, some special distributions and sampling distributions.	К3
CO4	Examine the given data and interpret the results	K4
CO5	Analyze probability, and various distributions in the case of solid conclusions about the values of the population parameter.	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" - Slight (Low) Correlation

[&]quot;2" - Moderate (Medium)Correlation

[&]quot;3" - Substantial (High) Correlation

[&]quot;-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	Theory of probability:			
	Introduction – Short History – Definitions of Various			
	Terms – Mathematical or Classical or 'a Priori'			
	Probability – Statistical or Empirical Probability –			
	Mathematical Tools: Preliminary Notion of sets -			
	Sets and Elements of Sets – Operations on Sets –		CO1,	K1,
	Algebra of Sets - Axiomatic approach to Probability		CO2,	K2,
	- Random Experiment (Sample Space) - Event -	12	CO3,	K3,
	Some Illustrations – Algebra of Events – Probability		CO4,	K4
	: Mathematical Notion – Probability Function – Laws		CO5	
	of Addition of Probabilities – Extension of General			
	Law of Addition of Probabilities – Law of			
	Multiplication or Theorem of Compound Probability			
	- Independent Events – Pairwise Independent Events			
	– Mutually Independent Events – Baye's theorem.			
II	Special Discrete Probability Distributions:			
	Introduction – Discrete uniform Distribution-			
	Bernoulli Distribution : Moments of Bernoulli			
	Distribution - Binomial Distribution : Moments of		CO1,	K1,
	Binomial Distribution – Recurrence Relation for the		CO2,	K2,
	Moments of Binomial Distribution – Factorial	12	CO3,	K3,
	Moments of Binomial Distribution –Mean Deviation		CO4,	K4
	about Mean of Binomial Distribution - Mode of		CO5	
	Binomial Distribution – Moment Generating			
	Function of Binomial Distribution – Additive			
	Property of Binomial Distribution			
III	Special Discrete Probability Distributions:			
	Poisson Distribution: The Poisson Process –		CO1,	K1,
	Moments of the Poisson Distribution – Mode of the		CO2,	K2,
	Poisson Distribution – Recurrence Relation for	12	CO3,	K3,
	Moments of the Poisson Distribution – Moment		CO4,	K 4
	Generating Function of the Poisson Distribution –		CO5	
	Characteristic Function of the Poisson Distribution –			

	Cumulants of the Poisson Distribution – Additive or			
	Reproductive Property of Independent Poisson			
	Variates.			
IV	Special Continuous Probability Distributions:			
	Introduction –Normal Distribution: Normal		CO1	
	Distribution as a Limiting Form of Binomial			TZ 1
	Distribution - Chief Characteristics of the Normal		CO1,	K1,
	Distribution – Mode of Normal Distribution –	10	CO2,	K2,
	Median of Normal Distribution – M.G.F. of Normal	12	CO3,	K3,
	Distribution – Cumulant Generating Function (c.g.f.)		CO4,	K4
	of Normal Distribution - Moments of Normal		CO5	
	Distribution – A Linear Combination of Independent			
	Normal Variates - Fitting of Normal Distribution.			
V	Special Continuous Probability Distributions:			
	Rectangular (or Uniform) Distribution: Moments of			
	Rectangular Distribution – M.G.F. of Rectangular Distribution – Characteristic Function of Rectangular		CO1,	K1,
			CO1,	•
	Distribution - Mean Deviation (about Mean) of	12	CO2,	K2, K3,
	Rectangular Distribution-Gamma Distribution(only		CO3,	K3, K4
	definition)- Beta Distributions of first kind :		CO4,	N4
	Constants of Beta Distributions of first kind – Beta		003	
	Distributions of second kind : Constants of Beta			
	Distributions of Second kind.			
VI	Self-Study for Enrichment: (Not included for End			
	Semester Examinations)			
	Extension of Multiplication Law of Probability -		CO1,	K1,
	Characteristic Function of Binomial Distribution –			K1, K2,
	Cumulants of the Binomial Distribution –	-	CO2,	K2, K3,
	Recurrence Relation for Cumulants of Binomial		CO3,	K3, K4
	Distribution – Recurrence formula for the		CO4,	127
	Probabilities of Poisson distribution -Log-normal			
	Distribution – Triangular Distribution– Exponential			
	Distribution.			

Text B0ooks

- 1. Gupta, S.C. & Kapoor, V.K. (2018). *Elements of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.
- 2. Gupta, S.C. & Kapoor, V.K. (2014). *Fundamentals of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.

Chapters and Sections

UNIT-I Chapter 4: Section 4.1 -4.8 (omit 4.7.1)[1]

UNIT-II Chapter 8: Sections 8.1 to 8.3, 8.4(8.4.1 to 8.4.7) [2]

UNIT-III Chapter 8: Sections 8.5 (8.5.1 to 8.5.8)[2]

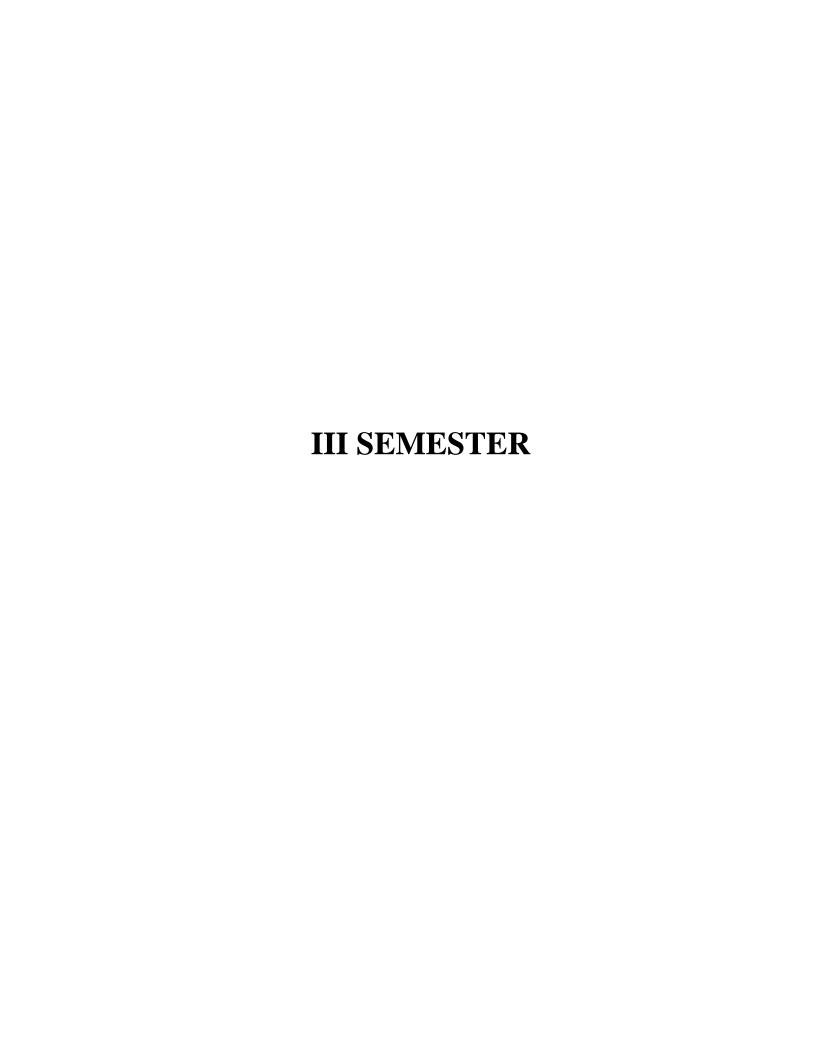
UNIT- IV Chapter 9: Sections 9.1 and 9.2 (9.2.1 to 9.2.8, 9.2.14)[2]

UNIT- V Chapter 9: Sections 9.3, 9.5, 9.6 -9.7[2]

Reference Books

- 1. Pillai. R.S.N. Pillai & Bhagavathi. (2008). Statistics, Theory and Practice. S.Chand & Sons.
- 2. Bhishma Rao. G.S.S. (2011). *Probability and Statistics*. Scitech Publications (India) Pvt Ltd.
- 3. Veerarajan. T. (2010). *Probability, Statistics and Random Processes*. Tata McGraw Hill Education Private Limited.

Web References


- 2. https://www.youtube.com/watch?v=jmqZG6roVqU
- 3. https://www.youtube.com/watch?v=gHBL5Zau3NE
- 4. https://www.youtube.com/watch?v=3PWKQiLK41M
- 5. https://www.youtube.com/watch?v=dOr0NKyD31Q
- 6. https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/uniform-distribution/

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designer

Ms. V. ManiMozhi

CORE COURSE – V (CC)

ANALYTICAL GEOMETRY (3D)

(2022-2023 Onwards)

Semester III	Internal Marks: 25	External Mark	arks:75	
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
CODE				
22UMA3CC5	ANALYTICAL GEOMETRY (3D)	CORE	4	4

Course Objective

- **Understand** the geometrical terminology and idea of the Planes, Straight line, Sphere and Cone.
- Explain the properties of four basic three-dimensional shapes.
- **Recognize** three-dimensional shapes in the world around them.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember the basic concepts of Straight Line, Plane, the Sphere and the Cone.	K1
CO2	Understand the aspects of Modern Mathematics through Straight Line, Plane, the Sphere and the Cone.	K2
CO3	Relate the Various forms of equation of a plane, Straight line, Sphere and Cone.	К3
CO4	Determine the angle between the plane, the line and infer about coplanar lines and Shortest distance between two lines.	K4
CO5	Evaluate the Problems based on Properties of the Coordinate system of equations.	K5

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

				COGNITI
UNIT	CONTENT	HOURS	COs	VE
				LEVEL
			CO1,	K1,
	Coordinate System:		CO2,	K2,
I	Introduction - Rectangular Cartesian Coordinates -	12	CO3,	K3,
	Distance between two Points - Direction Cosines.		CO4,	K4,
			CO5	K5
			CO1,	K1,
	Planes:		CO2,	K2,
II	Equation of a Plane – Angle Between two Planes –	12	CO3,	K3,
	Angle Bisectors of two Planes.		CO4,	K4,
			CO5	K5
			CO1,	K1,
	Straight Lines:		CO2,	K2,
III	Equation of a Straight Line – A Plane and a Line –	12	CO3,	K3,
	Equations of Two Skew Lines in a Simple form.		CO4,	K4,
			CO5	K5
			CO1,	K1,
	The Sphere:		CO2,	K2,
IV	Introduction – Equation of a Sphere – Tangent Line and	12	CO3,	K3,
	Tangent Plane – Section of a Sphere.		CO4,	K4,
			CO5	K5
			CO1,	K1,
	Cones:		CO2,	K2,
V	Definition - Equation of a Cone with a conic as Guiding	12	CO3,	K3,
	curve - Enveloping Cone of a Sphere.		CO4,	K4,
			CO5	K5
	Self Study for Enrichment:			
	(Not included for End Semester Examination)		CO1,	K1,
	Equations of Two Skew Lines in a Simple Form - The		CO2,	K2,
VI	Intersection of Three Planes - Orthogonal Projection on	-	CO3,	K3,
	a Plane - Volume of a Tetrahedron - Angle of		CO4,	K4,
	Intersection of Two Spheres - Quadratic Cones with		CO5	K5
	Vertex at Origin.			

Text Books

- 1. Arumugam S and Thangapandi Isaac A (2011). *Analytical Geometry 3D and Vector Calculus*. New Gamma Publishing House, Palayamkottai.
- 2. Shanti Narayanan and Mittal P.K. (2007). *Analytical Solid Geometry* .S. Chand & Company Ltd. New Delhi.

Chapters and Sections

UNIT-I	Chapter I: Sections 1.0 - 1.3 [1]
UNIT-II	Chapter II: Sections 2.1 - 2.3 [1]
UNIT-III	Chapter III: Sections 3.1 - 3.3 [1]
UNIT- IV	Chapter IV: Sections 4.0 - 4.3 [1]

UNIT- V Chapter VII: Sections 7.1, 7.1.1, 7.1.2 [2]

Reference Books

- 1. Duraipandian P, Laxmi Duraipandian and Muhilan D (1984). *Analytical Geometry Three Dimensional*. Emerald Publishers.
- 2. Pandey H.D, Khan M.Q and Gupta B.N. (2011). *A Text Book of Analytical Geometry and Vector Analysis*. Wisdom Press.
- 3. Manicavachagom Pillai T.K. and Natarajan T (2009). *A Text book of Analytical GeometryPart II Three Dimensions*. Viswanathan, S., Printers & Publishers Pvt Ltd.

Web References

- 1. https://www.pdfdrive.com/analytical-geometry-of-three-dimensions-e158533348.html
- 2. https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SMT1303.pdf
- 3. https://school.careers360.com/maths/three-dimensional-geometry-chapter-pge
- 4. https://youtu.be/UXIT-68QvTE
- 5. https://www.youtube.com/watch?v=rbPMX0h2hWQ

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P. Sudha

CORE COURSE – VI (CC)

CLASSICAL ALGEBRA AND THEORY OF NUMBERS

(2022-2023 Onwards)

Semester III	Internal Marks: 25	External Marks:75					
COURSE	COURSE TITLE	CATEGORY	CREDITS				
CODE							
22UMA3CC6	CLASSICAL ALGEBRA	CORE	5	5			
	AND THEORY OF						
	NUMBERS						

Course Objective

- **Establish** a sound knowledge on theory of equations.
- > Inculcate the students in applicable algebra.
- ➤ **Enable** the students to solve the Problems based on the applications of the theory of numbers.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember the relation between roots and co-efficients of Polynomial equations.	K1
CO2	Understand the symmetric functions in solving equations and find sum of r th power of roots.	K2
CO3	Compute transformation of equations and solve Reciprocal equations.	К3
CO4	Determine the inequalities in all manners.	K4
CO5	Evaluate the Problems based on the applications of the theory of numbers	К5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
I	Relation between the roots and coefficients of Equations – Symmetric function of the roots – Sum of the powers of the roots of an equation.	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
II	Newton's theorem on the sum of the power of the roots- Transformations of Equations— Reciprocal equations— To increase or decrease the roots of a given equation by a given quantity.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Form of the quotient and remainder when a polynomial is divided by a binomial – Removal of terms – To form of an equation whose roots are any power of the roots of a given equation – Transformation in general.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Inequalities – Elementary principles – Geometric & Arithmetic means – Weirstrass inequalities – Cauchy inequality.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Theory of Numbers – Prime & Composite numbers – Divisors of a given number N – Euler's function $\phi(N)$ and its value –Integral part of a real number – The highest Power of aprime P contained in $n!$ – Congruences	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Descarte's rule of signs— Applications to Maxima & Minima—Fermat's, Wilson's & Lagrange's Theorems.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Manicavachagom Pillay.T.K, Natarajan.T, Ganapathy.K.S (2015), *Algebra Volume I*, S.Viswanathan (Printers & Publishers) Private Limited
- 2. Manicavachagom Pillay.T.K, Natarajan.T, Ganapathy.K.S (2015), *Algebra Volume II*, S.Viswanathan (Printers & Publishers) Private Limited

Chapters and Sections

UNIT-I Chapter VI: Sections 11 - 13 [1]
UNIT-II Chapter VI: Sections 14 - 17 [1]
UNIT-III Chapter VI: Sections 18 - 21 [1]
UNIT- IV Chapter IV: Sections 1 - 12 [2]
UNIT- V Chapter V: Sections 1 - 15 [2]

Reference Books

- 1. Ramakrishna Ghosh, Kantish Chandra Maity (1980). *Higher Algebra (Classical & Modern)*, New Central Book Agency (P0 Ltd.
- 2. Ivan Niven, Herbert S.Zuckerman, Hugh L. Montgomery (2016). *An Introduction to the Theory of Numbers*, Wiley.
- 3. Narayanan.S , Hanumantha Rao.R , Manicavachagom Pillay.T.K and P. Kandaswamy (2009). *Ancillary Mathematics*, Viswanathan S. Printers & Publishers Pvt Ltd.

Web References

- 1. https://youtu.be/FAPShLAdkto
- 2. https://blog.myrank.co.in/transformation-of-equation/
- 3. https://youtu.be/XJQStun0WnI
- 4. https://youtu.be/MNj_e-t9tIs
- 5. https://artofproblemsolving.com/wiki/index.php/Cauchy-Schwarz_Inequality

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R.Radha

SECOND ALLIED COURSE – I (AC)

PYTHON PROGRAMMING

(2022-2023 Onwards)

Semester III	Internal Marks: 25	xternal Mar	ternal Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs	CREDITS	
			/Week		
22UMA3AC4	PYTHON PROGRAMMING	ALLIED	5	4	

Course Objective

- ➤ **Understand** the basic principles of Python.
- **Provide** basic idea on functions and concepts of Python programming.
- ➤ **Inculcate** the basic techniques of Python programming.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand Python's core data types while writing new programs.	К2
CO2	Demonstrate programs using simple Python statements and expressions.	K2
CO3	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow statements.	K2
CO4	Develop algorithmic solutions to simple computational problems.	К3
CO5	Construct Python programs step-wise and Acquire programming skills in core Python.	К3

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	2	3	3
CO2	3	2	3	3	2	3	3	3	3	2
CO3	3	3	3	2	3	2	3	3	3	3
CO4	3	3	2	3	3	3	3	3	2	3
CO5	2	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
I	Basics of Python Programming: Introduction - Python Character Set —Token - Python Core Data Type - The print() Function - Assigning Value to a Variable - Multiple Assignments - Statement in Python — Multiline Statement in Python - Writing Simple Programs in Python - The input() Function - The eval() Function- Formatting Number and Strings - Python Inbuilt Functions.	15	CO1, CO2, CO3, CO4,	K2, K3
II	Operators and Expressions: Introduction - Operators and Expressions - Arithmetic Operators - Membership Operator - Identity Operator - Operator Precedence and Associativity - Changing Precedence and Associativity of Arithmetic Operators - Translating Mathematical Formulae into Equivalent Python Expressions - Bitwise Operator - The Compound Assignment Operator Decision Statements: Introduction - Boolean Type - Boolean Operators - Using Numbers with Boolean Operators - Using String with Boolean Operators - Boolean Expressions and Relational Operators - Decision Making Statements - Conditional Expressions.	15	CO1, CO2, CO3, CO4,	K2, K3
III	Loop Control Statements: - Introduction - The while Loop - The range() Function - The for Loop - Nested Loops - The break Statement - The continue Statement Functions: Introduction - Syntax and Basics of a Function - Use of a Function - Parameters and Arguments in a Function - Variable Length Non- Keyword and Keyword Arguments - The Local and Global Scope of a Variable - The return Statement- Recursive Functions - The Lambda Function.	15	CO1, CO2, CO3, CO4,	K2, K3
IV	Strings: Introduction - The str class - Basic Inbuilt Python Functions for String - The index[] Operator- Traversing String with for and while Loop - Immutable	15	CO1, CO2, CO3,	K2, K3

	Strings – The String Operators - String Operations.		CO4,	
	Lists: Introduction - Creating Lists - Accessing the		CO5	
	Elements of a List – Negative List Indices - List Slicing			
	[Start : End] - List Slicing with Step Size - Python			
	Inbuilt Functions for Lists - The List Operator - List			
	Comprehensions- List Methods - List and Strings -			
	Splitting a String in List - Passing List to a Function -			
	Returning List from a Function.			
	Tuples, Sets and Dictionaries - Introduction to Tuples			
	– Sets - Dictionaries.			
	Graphics Programming: Drawing with Turtle		CO1,	
	Graphics: Introduction - Getting Started with the		CO1,	
V	turtle Module - Moving the turtle in any Direction -	15	CO2,	K2,
V	Moving the turtle to any Location - The Color, Bgcolor,	13	CO3,	К3
	Circle and Speed Method of turtle - Drawing with		CO4,	
	Colors - Drawing Basic Shapes using Iterations -		003	
	Changing Color Dynamically Using List - turtles to			
	Create Bar Charts.			
			CO1,	
	Self Study for Enrichment:		CO2,	K2,
VI	(Not included for End Semester Examination)	-	CO3,	,
	File Handling – Exception Handling.		CO4,	К3
			CO5	
	1	l	1	

Text Book

Ashok Namdev Kamthane, Amit Ashok Kamthane (2020), *Programming and Problem Solving with PYTHON*, Second Edition, McGraw Hill Education

Chapters and Sections

UNIT-I	Chapter II Sections: 2.1 – 2.14
UNIT-II	Chapter III & IV Sections: 3.1 – 3.10 & 4.1 – 4.8
UNIT-III	Chapter V & VI Sections: 5.1 – 5.7 & 6.1 – 6.9
UNIT- IV	Chapter VII & VIII Sections: 7.1 – 7.8 & 8.1 – 8.14
UNIT- V	Chapter XI & XII Sections: 11.1 – 11.3 & 12.1 – 12.9

Reference Books

- 1. Jeeva Jose and Sojan Lal P. (2021), *Introduction to Computing and Problem Solving with PYTHON*, Khanna Book Publising Co. (P) Ltd., New Delhi.
- 2. Satyanarayana Ch., Radhika Mani M., and Jagadesh B.N. (2018), *Python Programming*, Universities Press, Hyderabad.
- 3. Dr Nageswara Rao R. (2021), Core Python Programming, Dreamtech Press, New Delhi.

Web References

- 1. https://www.geeksforgeeks.org
- 2. https://www.python.org
- 3. https://www.tutorialspoint.com
- 4. https://www.pythonforbeginners.com
- 5. https://www.w3schools.com

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Ms. R. Soundaria

SECOND ALLIED COURSE – II (AP)

PYTHON PROGRAMMING (P)

(2022-2023 Onwards)

Semester III	Internal Marks: 40	External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs	CREDITS
			/Week	
22UMA3AC5P	PYTHON PROGRAMMING (P)	ALLIED	3	2

Course Objective

- **Explore** python programming language to construct basic programs.
- > Acquire programming skills in core Python.
- > Analyze the basics of problem solving.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand and apply Python's basic concepts.	K2
CO2	Demonstrate different data types and its usage.	K2
CO3	Build and execute simple Python programs.	К3
CO4	Make use of Python lists, tuples, and dictionaries to represent compound data.	К3
CO5	Develop algorithmic solutions to simple computational problems.	К3

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	3	3	3
CO2	3	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

LIST OF PRACTICALS

- 1. Get inputs from user and display them.
- 2. Develop a calculator.
- 3. Implement Decision making and Loop control statements.
- 4. Create and call an user defined function.
- 5. Strings and their built-in functions.
- 6. List and their built-in functions.
- 7. Working with Tuples.
- 8. Working with Dictionaries.
- 9. Bar chart, Pie Chart and Line graph.
- 10. Plotting 2D and 3D graphs.
- 11. Create Fibonacci series.
- 12. Create Pascal Triangle.
- 13. Performing Matrix operations.
- 14. Finding roots of an equations.
- 15. Calculating HCF, LCM and GCD.

Web References

- 1. https://www.geeksforgeeks.org
- 2. https://www.python.org
- 3. https://www.tutorialspoint.com
- 4. https://www.pythonforbeginners.com
- 5. https://www.w3schools.com

Pedagogy

Power point presentations, Group Discussions, Hands on training, Assignment.

Course Designer

Ms. R. Soundaria

GENERIC ELECTIVE COURSE – I (GEC)

(For BCA, B.Sc Computer Science with Cognitive Systems, B.Sc IT)

MATHEMATICS FOR COMPETITIVE EXAMINATIONS-I

(2022-2023 Onwards)

Semester III	Internal Marks: 25	External Marks:75			
COURSE	COURSE TITLE	CATEGORY	Hrs	CREDITS	
CODE			/Week		
22UMA3GEC1	MATHEMATICS FOR	GENERIC	2	2	
	COMPETITIVE	ELECTIVE			
	EXAMINATIONS-I	COURSE			

Course Objective

- **Explain** many short tricks to solve the mathematical problems easily.
- **Apply** the knowledge to **interpret** and **solve** the problems.
- **Explore** the ideas and to solve the Mathematical problems.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain the knowledge of the various techniques of Quantitative	K1, K2
	Aptitude and Reasoning.	
CO2	Apply the concepts in solving mathematical problems to succeed in	К3
	various Competitive examinations.	
CO3	Examine various types of Problems using Arithmetic and	К3
	Reasoning test.	
CO4	Apply the different concepts of Arithmetic and Reasoning test to	К3
	solve the problems.	
CO5	Analyze real-life problems and finding solutions.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	3	2	3	3	3
CO2	3	2	2	2	2	2	3	3	3	3
CO3	3	2	2	2	2	3	3	2	2	3
CO4	3	2	2	2	2	3	3	2	2	2
CO5	3	2	2	2	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
			CO1,	K1,
			CO2,	K2,
I	Problems on Numbers – Problems on Ages.	6	CO3,	K3,
			CO4,	K4
			CO5	
			CO1,	K1,
	Time & Distance – Calendar – Clocks.		CO2,	K2,
II	Time & Distance Suichdar Stocks.	6	CO3,	K3,
			CO4,	K4
			CO5	
	Data Interpretation: Bar Graphs – Pie Charts – Line Graphs.		CO1,	K1,
		_	CO2,	K2,
III		6	CO3,	К3,
	1		CO4,	K4
			CO5	774
			CO1,	K1,
TT 7	Reasoning (Including Mathematical): Series –	6	CO2,	K2,
IV	Codes – Relationship –Classification.		CO3,	K3,
	-		CO4,	K4
			CO5	
			CO1,	K1,
T 7	T 'ID '		CO2,	K2,
V	Logical Reasoning.	6	CO3,	K3,
			CO4,	K4
			CO5	
	Self -Study for Enrichment:		CO1, CO2,	K1,
VI	(Not included for End Semester Examination)		CO2,	K2,
	Numbers -HCF and LCM of Numbers -Time and	_	CO3,	K3,
	Work- Tabulation – Analogy.		CO ₄ ,	K4
			003	

Text Book

- 1. Aggarwal. R.S. (2015). *Quantitative Aptitude For Competitive Examinations (Fully Solved)*. S.Chand & Company Pvt.Ltd.
- 2. Dr.Kautilya.K. (2018). *UGC NET/JRF/SET Teaching & Research Aptitude (General Paper I)*. UPKAR PRAKASHAN, AGRA 2, Sixth Edition.

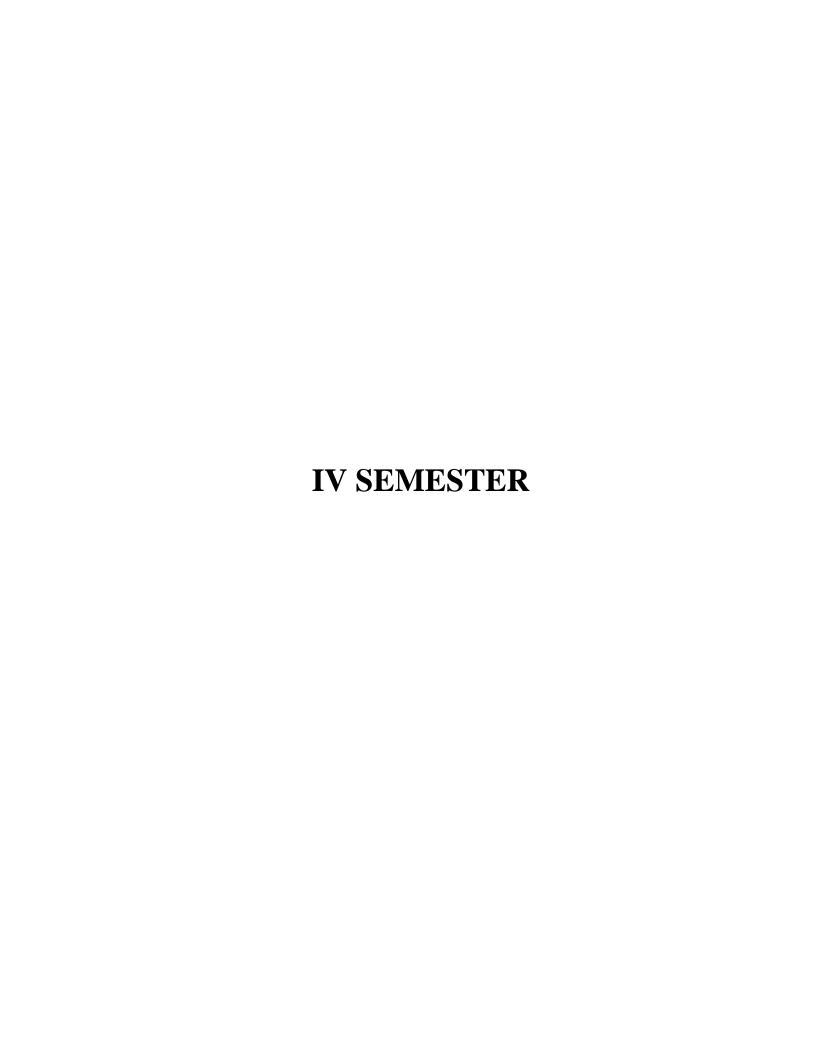
Chapters and Sections

UNIT-I	Chapter 7	Pg.No 161 – 181 [1]
	Chapter 8	Pg.No 182 - 194 [1]
UNIT-II	Chapter 17	Pg.No 384 – 404 [1]
	Chapter 27	Pg.No 593 – 596 [1]
	Chapter 28	Pg.No 597 - 604 [1]
UNIT-III	Chapter 37	Pg.No 676 – 694 [1]
	Chapter 38	Pg.No 695 - 708 [1]
	Chapter 39	Pg.No 709-726 [1]
UNIT- IV	Unit-5	Sections 1-3,5 [2]
UNIT- V	Unit-6	Pg.No 162 – 190 [2]

Reference Books

- 1. Edgar Thorpe. (2000). *Test of Reasoning for Competitive Examinations*. Tata McGraw-Hill Publishing Company Limited, New Delhi, 2nd Edition.
- 2. Sinha. T.K. (2002). 80+ Practice Sets of Quantitative Aptitude for Bank PO Exams. Arihant Publication (India) limited.
- 3. Abhijit Guha.(2014). *Quantitative Aptitude for Competitive Examinations*. McGraw-Hill Publishing Company Limited, New Delhi, 5 th Edition.

Web References


- 1. https://www.youtube.com/watch?v=viKaYznFJbw&list=PL5cSYiJ8KoWGqLLS_w6 G80U5FUEI0T39.
- 2. https://www.youtube.com/watch?v=ufbDCFUn6PY
- 3. https://www.youtube.com/watch?v=hGFGybSQDxQ
- 4. https://www.youtube.com/watch?v=_up3mXnsVEc&list=PLOoogDtEDyvs3Qznc3-1DnlpbQSRuWP-z
- 5. https://www.youtube.com/watch?v=MV00SQU f7E&list=PLOoogDtEDyvvDNHO B a58OrE567nCzzl2
- 6. https://www.youtube.com/watch?v=31qZR-BbPIs
- $\begin{array}{ll} \textbf{7.} & \underline{\text{https://www.youtube.com/watch?v=ev2SkXJVAbA\&list=PLOoogDtEDyvsBG38tzlj1}} \\ & Zkd0PLxgZwXV \end{array}$

Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, Seminar, Assignment and Quiz.

Course Designer

Dr.L.Mahalakshmi

CORE COURSE VII – (CC)

SEQUENCES AND SERIES

(2022-2023 Onwards)

Semester IV	Internal Marks: 25	External Marks:75		
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
CODE				
22UMA4CC7	SEQUENCES AND SERIES	CORE	5	5
	SERIES			

Course Objective

- > To lay a good foundation for classical analysis.
- > To study the behavior of sequences and series.
- > To acquire the knowledge of solving problems in Binomial, Logarithm & Exponential Series.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the Successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the concepts of convergent sequences, divergent sequences and series.	K2
CO2	Apply the ideas of sequences in Algebra of limits and Compute the behavior of monotonic functions.	К3
CO3	Apply the theory of Cauchy's condensation test and Cauchy's root test on series.	К3
CO4	Solve the problems based on binomial, logarithmic and exponential series.	К3
CO5	Examine infinite series using D' Alembert's ratio test.	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	3	2	3	2	3	3	3	2	2
CO3	3	3	2	3	2	3	3	3	2	2
CO4	3	3	3	3	3	3	2	3	3	3
CO5	3	3	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	Cos	COGNITIVE LEVEL
I	Introduction – Sequences – Bounded Sequences – Monotonic Sequences – Convergent Sequences – Divergent Sequences and Oscillating Sequences – The Algebra of Limits.	15	CO1, CO2, CO3, CO4,	K2, K3, K4
II	Behavior of Monotonic sequences – Some theorems on limits –Subsequences -Limit points.	15	CO1, CO2, CO3, CO4,	K2, K3, K4
Ш	Infinite Series – Definition of Convergence, Divergence & Oscillate – Convergence of Geometric series – Some general theorems concerning infinite series – Series of positive terms – Comparison test- convergence of $\sum \frac{1}{n^k}$ – D' Alembert's Ratio test.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
IV	Cauchy's Condensation test – Cauchy's Root test and their simple problems – Absolute Convergence Series– Conditional Convergence Series – Alternative Series.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
V	Binomial theorem for a rational index – Some important particular case of the Binomial expansion – Sign of terms in binomial expansion – Numerically greatest term – Method of splitting functions into partial fractions – Application of the Binomial theorem to the summation of series – Exponential limit – The exponential theorem – Summation – Logarithmic series – Modification of the logarithmic series – Summation of series – Series which can be summed up by the logarithmic series.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
VI	Self Study for Enrichment: (Not included for End Semester Examination) Cauchy sequence - Raabe's test - Uniform Convergence- Approximate values - Euler's constant - The application of the exponential and logarithmic series to limits and approximations.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4

Text Books

- 1. Dr.S.Arumugam & Mr.A.Thangapandi Isaac(2015), Sequences and Series, New Gamma Publishing House.
- 2. T.K.Manicavachagam Pillai, T.Natarajan & K.S.Ganapathy (2010), Algebra, Volume I , S.Viswanathan Pvt Limited.

Chapters and Sections

UNIT-I Chapter III: Sections 3.0-3.6[1]
UNIT-II Chapter III: Sections 3.7-3.10[1]
UNIT-III Chapter II: Sections 8-14, 16 [2]
UNIT- IV Chapter II: Sections 15, 17, 21-24[2]

UNIT- V Chapter III: Sections 5-10 [2]

Chapter IV: Sections 1-3, 5-7, 9[2]

Reference Books

- 1. M.K. Singal and Asha Rani Singal (2018). A First course in Real Analysis. R.chand & Co.
- 2. Shanti Narayan, P.K.Mittal (2002). A Course of Mathematical Analysis . S.Chand & Company Ltd.
- 3. Dr.P.R. Vittal (2014). Allied Mathematics. Margham Publications.

Web References

- 1. https://youtu.be/XdkoTb8PEG0?si=u_ZtB1anBe7bI0vt
- 2. https://youtu.be/BZ-LQpz5EBc?si=9H5Ydbq9amtAxUX4
- 3. https://youtu.be/zg9N2gAf6a4?si=_07ubR0LIl3GBhMU
- 4. https://youtu.be/Fjrb8f-assM?si=Hsn2y6rGxAS4AU-V
- 5. https://youtu.be/jmZIEyabJIU?si=PQB-8QllG10GxEvv

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R.Divya

CORE COURSE VIII- (CC)

METHODS IN NUMERICAL ANALYSIS

(2022-2023 Onwards)

Semester IV	Internal Marks: 25	External Marks:75		
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
CODE				
22UMA4CC8	METHODS IN	CORE	5	5
	NUMERICAL			
	ANALYSIS			

Course Objectives:

- > To introduce the basic concepts of solving algebraic and transcendental equations.
- > To introduce the numerical techniques of interpolation in various intervals.
- > To understand the knowledge of numerical techniques of differentiation and integration.

Course Outcome

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the Successful completion of the course, students will be able to	Cognitive Level
CO1	Apply numerical methods to solve Algebraic, Transcendental equations.	K1, K2
CO2	Classify and solve the numerical techniques of interpolation in various intervals.	K2, K4
CO3	Solve numerical integration and differentiation problems.	К3
CO4	Determine the system of algebraic equations by various methods.	K5
CO5	Compute the numerical solution of ordinary differential equation Using different methods.	К3

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation "-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	ALGEBRAIC AND TRANSCENDENTAL EQUATIONS: Introduction —Iteration Method — Bisection Method — Regula Falsi Method — Newton — Raphson Method — Horner's Method (Problems only).	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	SIMULTANEOUS EQUATIONS: Introduction—Simultaneous Equations — Back Substitution — Gauss Elimination Method — Gauss-Jordan Elimination Method — Calculation of inverse of a Matrix — Crout's Method — Iterative Methods — Gauss Jacobi Iteration Method — Gauss-Seidel Iteration Method (Problems only).	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	INTERPOLATION: Introduction – Newton's interpolation formula— Lagrange's interpolation formula (Problems only)	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4,
IV	NUMERICAL DIFFERENTIATION AND INTEGRATION: Introduction – Derivatives using Newton's forward difference formula – Derivatives using Newton's backward difference formula - Numerical Integration: Newton-Cotes quadrature formulae – Trapezoidal Rule – Simpson's one third Rule – Simpson's three eight Rule – Weddle's Rule – Romberg's Method (Problems only).	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: Introduction — Taylor's Series Method — Euler's Method: Modified Euler's Method, Runge - Kutta Methods: Second order and Fourth order R.K Methods — Predictor Corrector Methods — Milne's Method (Problems only)	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Relaxation Method – Newton Raphson Method for simultaneous equations – Newton's divided differences formula – Gaussian quadrature formula – Adams - Bashforth Method.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book:

1. S. Arumugam, A. Thangapandi Isaac and A. Somasundaram, (2017), *Numerical Methods*, Second Edition, Scitech Publications (India) Pvt. Ltd.

Chapters and Sections:

UNIT I Chapter 3: Sections 3.0, 3.2 - 3.6

UNIT II Chapter 4: Sections 4.0-4.8

UNIT III Chapter 7: Sections 7.0, 7.1, 7.3

UNIT IV Chapter 8: Sections 8.0 - 8.2, 8.5

UNIT V Chapter 10: Sections 10.0, 10.1,10.3-10.6

Reference Books:

- 1. M.K. Jain, S.R.K. Iyengar and R.K. Jain (1999), *Numerical Methods for Scientific and Engineering Computations*, New Age International Private Limited.
- 2. C.E. Froberg (1979), *Introduction to Numerical Analysis*, II Edition, Addison Wesley.
- 3. Dr. P. Kandasamy, Dr. K. Thilagavathy and Dr. K. Gunavathi, (2013) *Numerical Methods*, S. Chand & Company Pvt Ltd.

Web References:

- 1. https://youtu.be/39pu-
 - z3KpAQ?list=PLbzVLFZiGEdQnmR2M2jDmi0nVHUF3WPyG
- 2. https://youtu.be/ukNbG7muKho
- 3. https://youtu.be/Ym1EUjTWMnE
- 4. https://youtu.be/o7uwKpZNak
- 5. https://youtu.be/82IDoaiYU0c
- 6. https://youtu.be/oTN7hGoSPMw
- 7. https://youtu.be/-Lf0VZzKRw0

Pedagogy:

Power point presentation, Group Discussion, Seminar, Quiz, Assignment.

Course Designer:

Dr.R.Radha

SECOND ALLIED COURSE-III (AC) **INTERNET OF THINGS 2022-2023 Onwards**

Semester IV	Internal Marks: 25		Externa	l Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22UMA4AC6	INTERNET OF	SECOND ALLIED	4	3
	THINGS	COURSE III (AC)		

Course Objective

- ➤ **Able** to understand building blocks of Internet of Things and characteristics.
- > **Apply** the concept of Internet of Things in the real-world scenario.
- > Understand the application areas of Internet of things.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand building blocks of Internet of Things and its	K1, K2
	characteristics.	
CO2	Analyze basic protocols in wireless sensor network.	К3
CO3	Categorize different sensor technologies for sensing real world	K4
	entities and identify the applications.	
CO4	Demonstrate the ability to transmit data wirelessly between	K5
	different devices.	
CO5	Design IoT applications in different domains and able to analyze	K5
	their performance.	

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	3	3	3
CO2	3	2	3	3	2	3	3	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Introduction to Internet of Things: Introduction –			
	Overview of Internet of Things (IoT) - Characteristics		CO1	17.1
	of IoT - IOT Applications - Working and		CO1,	K1,
_	Implementation of IoT - Components of an IoT	10	CO2,	K2,
I	System - IoT Architecture and Levels - IoT	12	CO3,	K3,
	Ecosystem - Value chain and global value chain -		CO4,	K4,
	Types of Networks – IoT Technologies and Protocols		CO5	K5
	 Technologies used in IoT. 			
	Introduction to Internet of Things: Communication		CO1,	K1,
	Protocols – IOT Enabling Technologies – Building		CO2,	K2,
II	blocks of IoT – The logical and Physical design of	12	CO3,	K3,
	IoT – Functional blocks of IoT – IoT design		CO4,	K4,
	Methodology – Communication models.		CO5	K5
	Things and Connections: Introduction to control		CO1,	V 1
	systems – Working of controlled systems – Feedback			K1,
111	systems – Connectivity models – OSI model –	12	CO2,	K2,
III	TCP/IP model – Types of modes – Wired and		CO3,	K3,
	Wireless Methodology – Transmission media –		CO4, CO5	K4, K5
	Guided media – Unguided media.		COS	KJ
	Sensors, Actuators and Microcontrollers:			
	Introduction – Sensor – Classification of Sensors –		CO1,	K1,
	Types of Sensors – Criteria to choose a Sensor –	12	CO1,	K1, K2,
IV	Actuators – Classification of Actuators –		CO2,	K2, K3,
1 V	Microcontroller – Classification of Microcontrollers –		CO4,	K3, K4,
	Components of Microcontroller – Types of		CO ₄ ,	K4, K5
	Microcontrollers – Application of Microcontroller –		003	N.J
	Embedded System – Real time Embedded system.			
	Building IoT Applications: Introduction to Arduino			
	- Types of Arduino Boards - Introduction to Arduino		CO1,	K1,
	IDE – Parts of Arduino IDE – Development Cycle –		CO2,	K2,
V	Writing/Editing Code in Sketch – Compiling –	12	CO3,	K3,
	Debugging – Uploading and Running a File – Role of		CO4,	K4,
	Serial Monitor – Role of Serial Plotter – LED		CO5	K5
	Programming – Open Your First Sketch.			
	Self -Study for Enrichment:		CO1,	K1,
	(Not included for End Semester Examination) Development tools used in LoT. The process flow of		CO2,	K2,
VI	Development tools used in IoT - The process flow of IoT- Embedded 'C' Language Basics – Variables	-	CO3,	К3,
			CO4,	K4,
	and Identifiers – Keywords – Built –in Data Types –		CO5	K5
	Variable Scope.			

Text Book

1. Prof. Satish Jain & Shashi Singh (2020). *IoT and its Applications*, BPB Publications, India.

Chapters and Sections

UNIT-I Chapter 1 : Sections 1.1 - 1.12 UNIT-II Chapter 1 : Sections 1.13 - 1.19 UNIT-III Chapter 2 : Sections 2.1 - 2.11 UNIT-IV Chapter 3 : Sections 3.1 - 3.14 UNIT-V Chapter 4 : Sections 4.1 - 4.12

Reference Books

- 1. Arshdeep Bahga and Vijay Madisetti (2014). *Internet of Things A Hands-on Approach*, Universities Press.
- 2. Raj Kamal (2017). *Internet of Things Architecture and Design Principles*, Mc Graw Hill Education (India) Private Limited.
- 3. Preston Gralla (2012). How the Internet Works, Pearson Education.

Web References

- 1. https://iotbyhym.ooo/physical-design-of-iot/
- 2. https://www.javatpoint.com/iot-internet-of-things
- 3. https://www.oracle.com/in/internet-of-things/what-is-iot/
- 4. https://www.edureka.co/blog/iot-applications/
- 5. https://www.rfpage.com/applications-of-internet-of-things-iot/

Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, Seminar, Assignment and Quiz.

Course Designer

Ms. R. Soundaria

GENERIC ELECTIVE COURSE – II (GEC)

(For BCA, B.Sc Computer Science with Cognitive, B.Sc IT)

MATHEMATICS FOR COMPETITIVE EXAMINATIONS - II (2022-2023 Onwards)

Semester IV	Internal Marks: 25	External Marks:75		
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
CODE				
22UMA4GEC2	MATHEMATICS FOR	GENERIC	2	2
	COMPETITIVE	ELECTIVE		
	EXAMINATIONS-II			

Course Objective

- **Explain** many short tricks to solve the mathematical problems easily.
- **Apply** the knowledge to **interpret** and **solve** the problems.
- **Explore** the ideas and to solve the Mathematical problems.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain the knowledge of the various techniques of Quantitative Aptitude and Reasoning.	K1, K2
CO2	Apply the concepts in solving mathematical problems to succeed in various Competitive examinations.	К3
CO3	Examine various types of Problems using Arithmetic and Reasoning test.	К3
CO4	Apply the different concepts of Arithmetic and Reasoning test to solve the problems.	К3
CO5	Analyze real-life problems and finding solutions.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	3	2	3	3	3
CO2	3	2	2	2	2	2	3	3	3	3
CO3	3	2	2	2	2	3	3	2	2	3
CO4	3	2	2	2	2	3	3	2	2	2
CO5	3	2	2	2	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
			CO1,	K1,
			CO2,	K2,
I	Decimal Fractions – Simplification.	6	CO3,	K3,
			CO4,	K4
			CO5	
			CO1,	K1,
			CO2,	K1, K2,
II	Square Roots - Cube Roots - Profit & Loss.	6	CO3,	K2, K3,
			CO4,	K3, K4
			CO5	111
			CO1,	K1,
	Ratio & Proportion - Problems on Trains - Boats and Streams.	6	CO2,	K2,
III			CO3,	K3,
			CO4,	K4
			CO5	
		_	CO1,	K1,
		6	CO2,	K2,
IV	Simple Interest - Compound Interest.		CO3,	K3,
			CO4,	K4
			CO5	
			CO1,	K1,
T 7			CO2,	K2,
V	Percentage - Permutations & Combinations.	6	CO3,	К3,
			CO4,	K4
			CO5	
	Self -Study for Enrichment: (Not included for End Somestor		CO1,	K1,
VI	(Not included for End Semester Examination)		CO2, CO3,	K2,
V 1	,	-	CO3,	K3,
	Numbers- Approximation- Average - Time and Work - Odd Man Out & Series		CO4,	K4
	WOIR - Oud Mail Out & Sches		COS	

Text Book

Aggarwal. R.S. (2015). *Quantitative Aptitude For Competitive Examinations (Fully Solved)*. S.Chand & Company Pvt.Ltd.

Chapters and Sections

UNIT-I	Chapter 3, 4	: Pg.No 46 – 116
--------	--------------	------------------

UNIT-II Chapter 5, 11 : Pg.No 117 – 138, 251-293 UNIT-III Chapter 12,18,19 : Pg.No 294-310, 405 - 434

UNIT- IV Chapter 21,22 : Pg.No 445 – 486

UNIT- V Chapter 10,30 : Pg.No 208 - 250, 613 - 620

Reference Books

- 1. Edgar Thorpe. (2000). *Test of Reasoning for Competitive Examinations*. Tata McGraw-Hill Publishing Company Limited, New Delhi, 2nd Edition.
- 2. Sinha. T.K. (2002). 80+ Practice Sets of Quantitative Aptitude for Bank PO Exams. Arihant Publication (India) limited.
- 3. Abhijit Guha.(2014). *Quantitative Aptitude for Competitive Examinations*. McGraw-Hill Publishing Company Limited, New Delhi, 5 th Edition.

Web References

- 1. https://www.youtube.com/watch?v=wR0aaQMfxwI
- 2. https://www.youtube.com/watch?v=Sjpkp8-0t1s
- 3. https://byjus.com/govt-exams/train-problems/
- 4. https://www.sscadda.com/compound-interest-formulas-tricks-and-questions/
- 5. https://www.youtube.com/watch?v=6B-dvOMTeV8
- 6. https://www.youtube.com/watch?v=VSoJwlYdCWM

Pedagogy:

Chalk and Talk, Power point presentation, Group Discussion, Seminar, Assignment and Quiz.

Course Designer:

Dr.L.Mahalakshmi

SKILL ENHANCEMENT COURSE – I (SEC) STATISTICAL TOOLS AND TECHNIQUES - R PROGRAMMING (P)

(2022 - 2023 Onwards)

Semester IV	Internal Marks: 40		External M	arks: 60
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22UMA4SEC1P	STATISTICAL	SKILL		
	TOOLS AND	ENHANCEMENT	2	2
	TECHNIQUES - R	COURSE (SEC)		
	PROGRAMMING (P)			

Course Objectives

- > Understand how to use the R documentation.
- **Describe** key terminologies, concepts and techniques employed in Statistical Analysis.
- > Apply various concepts to write programs and statistical analysis through R language.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Calculate simple arithmetic and statistical operations in R.	K1
CO2	Interpret the R programming language and its programming Environment.	K2
CO3	Apply the Statistical Programming Software.	К3
CO4	Manipulate data within R and to create simple graphs and charts.	К3
CO5	Compute R programming from a statistical Perspective.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	3
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	3	2	3	2	3	2	3	2	2
CO5	2	2	2	2	2	2	2	2	2	2

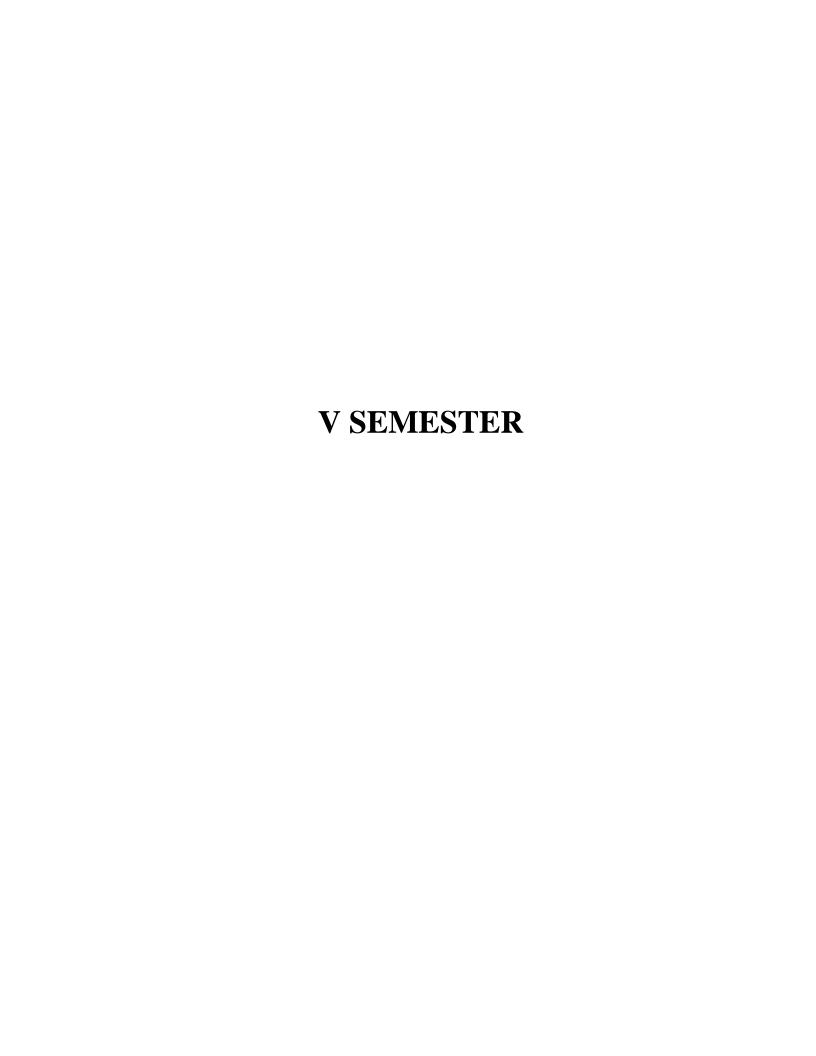
[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

LIST OF PROGRAMS

- 1. Creating and displaying data.
- 2. Matrix Manipulations.
- 3. Creating and manipulating a List and an Array.
- 4. Bar diagrams, Bar plots and subdivided Bar plots.
- 5. Pie diagram, 3D Pie diagram and Histogram.
- 6. Reading a CSV file and Calculating the Measures of Central Tendency.
- 7. String Manipulations.
- 8. Vector Operations.
- 9. Control Statements.
- 10. User defined functions.

Web References


- 1. https://www.w3resource.com/r-programming-exercises/
- 2. https://www.r-project.org/about.html
- 3. https://www.tutorialspoint.com/r/index.htm
- 4. https://modernstatisticswithr.com/introduction.html#welcome-to-r
- 5. https://www.w3schools.com/r/default.asp

Pedagogy

Power point presentations and Illustrations.

Course Designer

Ms. R. Soundaria

CORE COURSE - IX(CC)

ABSTRACT ALGEBRA

(2022-2023 and Onwards)

Semester V	Internal Marks: 25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22UMA5CC9	ABSTRACT ALGEBRA	CORE	6	6	

Course Objectives

- Understand the concepts and properties of algebra and their application.
- **Provide** the principles and practices of algebra.
- Construct a legitimate proof involves different skills and expertise problem solving.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand the basic concept of Group and Ring Theory with examples.	K2
CO2	Illustrate the variety of problem-solving methods used in the relevant field.	K2
CO3	Apply various algebraic terminology.	К3
CO4	Explain the main results of Group and Ring Theory	К3
CO5	Analyse clear and accurate points using the concept of Groups and Rings.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	3	2	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	2	3	3	3
CO4	3	2	3	3	2	2	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	Group Theory:		CO1,	K1
	Definition of a Group- Some Examples of Groups-		CO2,	K2,
	Some Preliminary Lemmas-Subgroups.	18	CO3,	K3,
			CO4,	K4
			CO5	
II	Group Theory:		CO1,	K1
	A Counting Principle – Normal Subgroups and		CO2,	K2,
	Quotient Groups - Homomorphisms.	18	CO3,	K3,
			CO4,	K4
			CO5	
III	Group Theory:		CO1,	K1,
	Automorphisms - Cayley's Theorem - Permutation		CO2,	K2,
	Groups.	18	CO3,	K3,
			CO4,	K4
			CO5	
IV	Ring Theory:		CO1,	K1,
	Definition and Examples of Rings – Some Special		CO2,	K2,
	Classes of Rings – Homomorphisms – Ideals and	18	CO3,	K3,
	Quotient Rings - More Ideals and Quotient Rings.		CO4,	K4
			CO5	
V	Ring Theory:		CO1,	K1,
	The Field of Quotient of an Integral Domain -		CO2,	K2,
	Euclidean Rings – A Particular Euclidean Ring –	18	CO3,	K3,
	Polynomial Rings – Polynomials over the Rational		CO4,	K4
	Field.		CO5	
VI	Self-Study for Enrichment: (Not included for		CO1,	K1,
	End Semester Examinations)		CO2,	K2,
	Set theory – Mappings – Another Counting	-	CO3,	K3,
	Principle – Polynomial Rings Over Commutative		CO4,	K4
	Rings.		CO5	

Text Book

Herstein .I.N (Reprint 2016), *Topics in Algebra* (2nd Edition), Wiley, New Delhi.

Chapters and Sections

UNIT-I	Chapter 2:	Sections 2.1-2.4
UNIT-II	Chapter 2:	Sections 2.5-2.7
UNIT-III	Chapter 2:	Sections 2.8-2.10
UNIT- IV	Chapter 3:	Sections 3.1-3.5
UNIT- V	Chapter 3:	Sections $3.6 - 3.10$

Reference Books

- 1. Arumugam. S & Thangapandi Isaac. A (May 2017), *Modern Algebra*, Scitech Publications India (Pvt) Ltd, Chennai.
- 2. Bhat VK(2014), Modern Algebra and Applications, Narosa Publishing House, New Delhi.
- 3. Santiago M L (2001), *Modern Algebra*, Tata Mcgraw Hill Publishing Company Limited, New Delhi.

Web References

- 1. https://youtu.be/CJpZJLYKk0I
- 2. https://youtu.be/mcX0sMnYyMU
- 3. https://youtu.be/lrQMV4zGF44
- 4. https://youtu.be/7LtpPI46O0Q
- 5. https://youtu.be/K1iuXqHFWRw
- 6. https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designer

Ms. V. ManiMozhi

CORE COURSE - X(CC) REAL ANALYSIS

(2022-2023 and Onwards)

Semester V	Internal Mark	ks: 25	ExternalMa	rks:75
COURSECODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22UMA5CC10	REAL ANALYSIS	CORE	5	5

Course Objectives

- **Enable** the students to understand the basic concepts of Analysis.
- Impart knowledge in concepts of solving various problems regarding field axioms.
- **Construct** a proof that involves different problem solving ideas and expertise in them.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the basic concepts of Sequences and Series.	K1
CO2	Interpret the fundamental ideas in limits and functions.	K2
CO3	Relate the concepts of Continuity with limits.	К3
CO4	Determine the implementation of open sets and closed sets.	K4
CO5	Deduce mathematical notions in Metric Spaces.	K5

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	2	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation ¬

[&]quot;2" - Moderate (Medium) Correlation-

[&]quot;3" – Substantial (High) Correlation ¬

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	SETS AND FUNCTIONS: Operations on sets- Functions — Real-valued functions — Equivalence, Countability — Real numbers - Least upper bounds.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	LIMITS AND METRIC SPACES: Limit of a function on the real line – Metric spaces – Limits in metric spaces.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	CONTINUOUS FUNCTIONS ON METRIC SPACES: Functions continuous at a point on the real line – Reformulation – Functions continuous on a metric space – Open sets – Closed sets.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	CONTINUOUS FUNCTIONS ON METRIC SPACES: Discontinuous functions on R ¹ . CONNECTEDNESS, COMPLETENESS AND COMPACTNESS: More about open sets – Connected sets – Bounded sets and totally bounded sets – Complete metric spaces.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	CONNECTEDNESS, COMPLETENESS AND COMPACTNESS: Compact metric spaces – Continuous functions on compact metric spaces – Continuity of the inverse function – Uniform continuity.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Sets and elements – Definition of a sequence and subsequence -Limit of a sequence- Convergent sequences-Divergent sequences-Monotone sequences.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

1. Richard R. Goldberg (2019), *Methods of Real Analysis*, Oxford & IBH Publishing Co. Pvt.Ltd, New Delhi.

Chapters and Sections

UNIT-I Chapter 1: Sections 1.2 - 1.7
UNIT-II Chapter 4: Sections 4.1 - 4.3
UNIT-III Chapter 5: Sections 5.1-5.5
UNIT-IV Chapter 5: Sections 5.6
Chapter 6: Sections 6.1 - 6.4
UNIT-V Chapter 6: Sections 6.5 - 6.8

Reference Books

- 1. Tom M. Apostol, (2002), *Mathematical Analysis*(second edition), Addison-Wesley Publishing Company.
- 2. Robert G. Bartle, Donald R. Sherbert (2007), *Introduction to Real Analysis*, John Wiley & Sons. Private Ltd.,
- 3. Singal M. K., Asha Rani Singal(2018), *A First Course in Real Analysis*, R. Chand & Co.

Web References

- 1. https://youtu.be/XjiT88Czx5c?t=15
- 2. https://youtu.be/1diSwLMJpvs?t=626
- 3. https://youtu.be/YEG18ISnThE?t=4
- 4. https://youtu.be/4TzGkHFnn7g?t=3
- 5. https://youtu.be/y5tni8My-VY?t=4

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Saridha

CORE COURSE- XII (CC) DISCRETE MATHEMATICS

(2022-2023 onwards)

Semester V	Internal Mar	ks: 25	External Marks: 75		
COURSECODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS	
22UMA5CC12	DISCRETE MATHEMATICS	CORE	5	5	

Course Objectives

- **Understand** the basics of discrete mathematics.
- **Apply** the method of logical reasoning to solve a variety of problems.
- Introduce the concepts of Lattices and Boolean Algebras.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand concepts on statements and truth tables, mathematical logic, mathematical reasoning and to study about the validity of the arguments and also prove mathematical theorems.	К2
CO2	Determine properties of binary relations; identify equivalence and partial order relations, sketch relations and familiarize with algebraic structures.	К2
СОЗ	Convert logical statements from informal language to propositional (and quantified) logic expressions and apply formal methods of symbolic propositional logic, such as calculating validity of formulae and computing normal forms.	К3
CO4	Use truth tables and laws of identity, distributive, commutative, and domination and rules of inference to construct proofs in propositional logic.	К3
CO5	Compute sum of products, product of sum expansions, the inference theory of predicate calculus and its characteristics. Analyze and apply the theory of lattices and Boolean expressions.	К3

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	3	3	3
CO2	3	3	2	1	3	3	2	3	3	3
CO3	3	3	2	2	3	3	3	3	3	3
CO4	3	3	2	2	3	3	3	3	2	3
CO5	3	3	2	2	3	2	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Statements and Notation – Connectives: Negation – Conjunction – Disjunction – Statement formulas and Truth Tables – Conditional and Biconditional – Well-Formed Formulas – Tautologies – Equivalence of formulas – Duality Law – Tautological Implications – Formulas with Distinct Truth Tables – Functionally complete sets of connectives.	15	CO1, CO2, CO3, CO4, CO5	K2, K3
II	Normal Forms: Disjunctive Normal Forms – Conjunctive Normal Forms – Principal Disjunctive Normal Forms – Principal Conjunctive Normal Forms – Ordering and Uniqueness of Normal Forms.	15	CO1, CO2, CO3, CO4,	K2, K3
III	The Predicate Calculus: Predicates – The Statement Function, Variables and Quantifiers– Predicate Formulas – Free and Bound Variables – The Universe of Discourse – Inference Theory of the Predicate Calculus – Valid Formulas and Equivalences – Some Valid Formulas over Finite Universe – Special Valid Formulas Involving Quantifiers – Theory of Inference for the Predicate Calculus –Binary and n-ary Operations – Characteristic Function of a Set.	15	CO1, CO2, CO3, CO4, CO5	K2, K3
IV	Lattices as Partially Ordered Sets: Definition and Examples – Some Properties of Lattices – Lattices as Algebraic Systems – Sub Lattices, Direct Product and Homomorphism – Some Special Lattices.	15	CO1, CO2, CO3, CO4,	K2, K3
V	Boolean Algebra: Definition and Examples – Sub Algebra, Direct Product and Homomorphism – Boolean Functions: Boolean Forms and Free Boolean Algebras – Values of Boolean Expressions and Boolean Functions.	15	CO1, CO2, CO3, CO4, CO5	K2, K3
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Formulas Involving More Than One Quantifier – Hashing Functions – Representation and Minimization of Boolean Functions: Representation of Boolean Functions – Minimization of Boolean Functions.	-	CO1, CO2, CO3, CO4, CO5	K2, K3

Text Books

1. J.P. Trembley & R. Manohar (2011), *Discrete Mathematical Structures With Applications to Computer Science*, Tata McGraw Hill.

Chapters and Sections

UNIT-I Chapter 1: Sections 1.1

Chapter 1: Sections 1.2.1 - 1.2.4, 1.2.6 - 1.2.13

UNIT-II Chapter 1: Sections 1.3.1-1.3.5

UNIT-III Chapter 1: Sections 1.5.1 – 1.5.5, 1.6.1-1.6.5

Chapter 2: Sections 2.4.4-2.4.5

UNIT-IV Chapter 4: Sections 4.1.1 - 4.1.5

UNIT-V Chapter 4: Sections 4.2.1-4.2.2, 4.3.1-4.3.2

Reference Books

- 1. Chandrasekhara Rao K (2012), Discrete Mathematics, Narosa Publishing House, India.
- 2. Thomas Koshy (2012), *Discrete Mathematics with applications*, Elsevier, a division of Reed Elsevier India Private Limited.
- 3. T Veerarajan (2007), *Discrete Mathematics with Graph Theory and Combinatorics*, The McGraw-Hill Companies, New Delhi.

Web References

- 1. https://youtu.be/i3m0hV157Ro
- 2. https://youtu.be/5cyocztOtq4
- 3. https://youtu.be/w9DyAVrU8j0
- 4. https://youtu.be/qPtGlrb_sXg
- 5. https://voutu.be/MH2uTVgG1bo
- 6. https://home.iitk.ac.in/~arlal/book/mth202.pdf
- 7. https://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. G.Janaki

DISCIPLINE SPECIFIC ELECTIVE – I (DSE) OPERATIONS RESEARCH

(2022-2023 Onwards)

Semester V	Internal N	Aarks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	Hours/Week	CREDITS	
22UMA5DSE1A	OPERATIONS RESEARCH	DISCIPLINE SPECIFIC ELECTIVE	5	4	

Course Objectives

- Impart knowledge in concepts and tools of Operations Research.
- Equip mathematical methods formatted for major concepts.
- Apply these techniques constructively to make effective business making.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, the students will be able to	Level
CO1	Understand the objectives, phases, models, used in operation research.	K1,K2
CO2	Construct mathematical model of a particular problem	К3
CO3	Develop analytical problem solving and decision-making thinking.	К3
CO4	Discover the practical skills in problem solving.	K4
CO5	Analyze solutions to real life problems using Operations Research.	K4

Mapping with Programme Outcomes

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation ¬

[&]quot;3" – Substantial (High) Correlation ¬

[&]quot;2" – Moderate (Medium) Correlation ¬

[&]quot;-" indicates there is no correlation.

Svllabus

	abus	HOUDS	CO	COGNITIVE
UNIT	CONTENT	HOURS	COs	LEVEL
I	Operations Research - An Overview: Introduction — Origin and Development of O.R- Nature and Features of O.R-Scientific Method in O.R- Modelling in O.R-Advantages and Limitations of Models —General Solution Methods for O.R models- Methodology of O.R- O.R and Decision Making —Applications of O.R - Opportunities and shortcomings of O.R. Linear Programming Problem: Introduction — Linear Programming Problem — Mathematical formulation of the problem— Illustrations on Mathematical formulation of Linear Programming Problems. Linear Programming Problem-Graphical solution and Extension Introduction — Graphical Solution Method — Some Exceptional Cases — General Linear Programming Problem - Standard Forms of Linear Programming Problem.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
П	Linear Programming Problem-Simplex Method Introduction – Fundamental Properties of Solutions – The Computational Procedure – Use of Artificial Variables. Duality in Linear Programming Introduction-General Primal Dual Pair – Formulating a Dual Problem –Dual simplex method.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Transportation Problem: The Transportation table-Solution of a Transportation Problem – Finding an initial basic feasible solution –Test for optimality-Economic Interpretation of u _j 's and v _j 's- Degeneracy in Transportation Problem-Transportation Algorithm (MODI Method). Assignment problem: Introduction – Mathematical formulation of the problem – Solution Methods of Assignment Problem – Special cases in Assignment Problem – A typical Assignment Problem- The Travelling Salesmen problem.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Sequencing Problem: Introduction- Problem of sequencing- Basic terms used in Sequencing-Processing n jobs through Two Machines - Processing n jobs through k Machines. Games and Strategies: Introduction- Two-Person Zero -sum Games -Some Basic Terms- The Maximin - Minimax Principle -Games without Saddle Points - Mixed Strategies - Graphical Solution of 2 x n and m x 2 games.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Network Scheduling by PERT/CPM: Introduction-Network: Basic components – Logical sequencing – Rules of network construction – Concurrent activities-Critical Path Analysis-Probability Considerations in PERT-Distinction between PERT & CPM-Application of Network Techniques – Advantages of Network Techniques.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

VI	Self Study for Enrichment: (Not included for End Semester Examinations) Canonical Forms- – Degeneracy in Linear ProgrammingUnbalanced Transportation and Assignment Problem- Processing of 2 jobs through k Machine –Limitations	-	CO1, CO2, CO3, CO4,	K1, K2, K3, K4
	Processing of 2 jobs through k Machine –Limitations and difficulties in using Network.		CO ₄ ,	K4

Text Book

1. Kanti Swaroop, Gupta.P.K, & Manmohan (2014 Reprint), Operations Research, 16th Edition, Sultan Chand & Sons.

Chapters and Sections

UNIT-I	Chapter 1:	Sections 1.1-1.11
	Chapter 2:	Sections 2.1- 2.4
	Chapter 3:	Sections 3.1- 3.5
UNIT-II	Chapter 4:	Sections 4.1- 4.4
	Chapter 5:	Sections 5.1-5.3, 5.9
UNIT-III	Chapter 10:	Sections 10.5, 10.8-10.13
	Chapter 11:	Sections 11.1-11.5, 11.7
UNIT-IV	Chapter 12:	Sections 12.1-12.5
	Chapter 17:	Sections 17.1-17.6
UNIT-V	Chapter 25:	Sections 25.1-25.10

Reference Books

- 1. Hamdy A. Taha (2002), Operations Research, Prentice Hall of India.
- 2. Richard Bronson (2001), Theory and Problems of Operations Research, Tata McGraw Hill Publishing Company.
- 3. V Sundaresan, K S Ganapathy Subramanian, K Ganesan (2015), Resource Management Techniques, AR Publications.

Web References

- 1. https://youtu.be/O6QO3J_85as
- 2. https://youtu.be/GhplZYVCPkU
- 3. https://youtu.be/npJNx0jXbNI
- 4. https://youtu.be/FdaXNmUxz_I
- 5. https://youtu.be/vUMGvpsb8dc
- 6. https://youtu.be/hwGFu_M_yHY

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz and Seminar.

Course Designer

Dr. P.SARANYA

DISCIPLINE SPECIFIC ELECTIVE-I (DSE) ASTRONOMY

(2022-2023 Onwards)

Semester V	Internal Marks	:: 25 E	xternal Mark	s:75
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
CODE				
22UMA5DSE1B	ASTRONOMY	DISCIPLINE	5	4
		SPECIFIC		
		ELECTIVE		

Course Objective

- **Explain** the basic concepts of spherical trigonometry in the field of astronomy.
- **Emphasize** the movements of the celestial objects.
- **Explore** the concept of terrestrial latitudes and longitudes.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, the students will be able to	Cognitive Level
CO1	Identify spherical triangle, latitudes, equation of time, heliocentric parallax and age of moon.	K 1
CO2	Explain the concepts of celestial sphere, diurnal motion, twilight, refraction, aberration and eclipses.	K2
CO3	Classify triangles, circumpolar stars, refraction, parallax and eclipses.	К3
CO4	Determine napier's rules, reduction of latitude, laws of refraction, effects of geocentric parallax and elongation.	K 4
CO5	Ascertain diurnal motion , dip of horizon, Kepler's laws, aberration and eclipses.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	3	3	2	2	3
CO2	3	2	2	2	2	3	3	2	2	3
CO3	3	2	2	2	2	3	3	3	3	3
CO4	3	2	2	2	2	3	3	3	2	3
CO5	3	2	2	2	2	3	3	3	2	3

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	Cos	COGNITIVE LEVEL
			CO1,	K1,
I	Spherical Trigonometry – Celestial Sphere, Diurnal		CO2,	K2,
	Motion.	15	CO3,	К3,
			CO4,	K4
			CO5	
			CO1,	K1,
	Zones of Earth- Terrestrial Latitudes and Longitudes –		CO2,	K2,
II	Radius of Earth – Rotation of Earth – Dip of Horizon	15	CO3,	K3,
	– Twilight.		CO4,	K4
			CO5	
			CO1,	K1,
III	Refraction – Kepler's Laws - Equation of Time –		CO2,	K1, K2,
	Seasons.	15	CO3,	K2, K3,
			CO4,	K3, K4
			CO5	174
			CO1,	K1,
	Geocentric Parallax – Heliocentric Parallax –	15	CO2,	K2,
IV	Aberration.		CO3,	K3,
	Additation.		CO4,	K4
			CO5	
			CO1,	K1,
			CO2,	K1, K2,
V	The Moon – Eclipses.	15	CO3,	K2, K3,
			CO4,	K3, K4
			CO5	111
	Self -Study for Enrichment:			
	(Not included for End Semester Examination)			
			CO1,	K1,
	Formulae in plane Trigonometry – Another method		CO2,	K2,
VI	to determine the radius of earth - Arguments in	-	CO3,	K3,
	favour of earth's rotation – Influence of temperature		CO4,	K4
	and pressure of atmosphere on Refraction –		CO5	
	Aberration and stellar parallax compared –Earth			
	shine – The Tides – Occultations.			

Text Book

1. Kumaravelu. S, Susheela Kumaravelu. (2011). *Astronomy* (Revised and enlarged edition). S.Kumaravelu Publications, Nagercoil.

Chapters and Sections

UNIT-I Chapter 1: Art 1- 36,38

Chapter 2: Art 39-86

UNIT-II Chapter 3: Art 87 – 102, 105-116

UNIT-III Chapter 4: Art 117- 133

Chapter 6: Art 146 – 165

Chapter 7: Art 166 - 174

UNIT- IV Chapter 5: Art 135 - 145

Chapter 8: Art 190 - 194

Chapter 9: Art 195 – 201,203

UNIT- V Chapter 12: Art 229 – 253

Chapter 13: Art 256 - 283

Reference Books

1. Dennis Morris (2015). *The Special Theory of Relativity*. Scientific International Pvt Ltd, New Delhi.

- 2. Abhyankar. K. D. (2012). *Astrophysics of the Solar System* (Reprinted 2009,2012). Universities Press. India.
- 3. Padmanabhan. T. (2010). *Theoretical Astrophysics Volume II: Stars and Stellar Systems* (First South Asian edition). Cambridge University Press, Tokyo.

Web References

- 1. https://youtu.be/F2NqTIej98Q?si=ekaNnpb4up1zPvPb
- 2. https://youtu.be/iPp2KZWBR5k?si=japVt5BnqfSnabqo
- 3. https://youtu.be/OBHFjvjsKyA?si=q4ao5liitob998J0
- 4. https://youtu.be/ETzUpoqZIHY?si=vTiFgcY-8ipYh4OC
- 5. https://youtu.be/GnZ3dogED7w?si=jZPZYuJRiNbO8GXW
- 6. file:///C:/Users/Administrator/Downloads/planetary.pdf

Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment.

Course Designers

Dr.S.Premalatha

DISCIPLINE SPECIFIC ELECTIVE – I (DSE) ARTIFICIAL INTELLIGENCE

(2022-2023 Onwards)

Semester V	Internal Marks: 25		Externa	l Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22UMA5DSE1C	ARTIFICIAL	DISCIPLINE	5	4
	INTELLIGENCE	SPECIFIC		
		ELECTIVE		

Course Objective

- **Learn** the methods of solving problems using Artificial Intelligence.
- ➤ **Apply** AI techniques to real-world problems to develop intelligent systems.
- **Develop** an understanding of modern concepts in AI and where they can be used.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Identify problems where artificial intelligence techniques are	K1, K2
	applicable	
CO2	Solve basic AI based problems.	К3
CO3	Explain the concept of Knowledge Representation	К3
CO4	Examine the issues involved in knowledge bases, reasoning systems and planning	K4
CO5	Summarize appropriate AI methods to solve a given problem. Familiar with Artificial Intelligence, its foundation and principles	K5

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	3	3	3
CO2	3	2	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	3	2	3
CO5	3	3	3	3	3	2	3	3	3	3

[&]quot;1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	What is Artificial Intelligence?: The AI Problems - The Underlying Assumption - What is an AI			
	Technique? – The Level of the Model – Criteria for		CO1,	K1,
	Success.		CO2,	K2,
I	Problems, Problems Spaces, and Search: Defining	15	CO3,	K3,
	the Problem as a State Space Search – Production		CO4,	K4,
	Systems – Problem Characteristics – Production		CO5	K5
	System Characteristics – Issues in the Design of			
	Search Programs – Additional Problems.		CO1	TZ 1
	Heuristic Search Techniques: Generate-and-Test –		CO1,	K1,
II	Hill Climbing – Best-first Search – Problem	15	CO2, CO3,	K2,
11	Reduction - Constraint Satisfaction - Means-ends	13	CO3,	K3, K4,
	Analysis.		CO ₄ ,	K4, K5
	Knowledge Representation Issues: Representations		CO3	K3
	and Mappings – Approaches to Knowledge		CO1,	K1,
	Representation.	15	CO2,	K2,
III	Using Predicate Logic: Representing Simple Facts	10	CO3,	K3,
	in Logic – Representing Instance and ISA		CO4,	K4,
	Relationships – Computable Functions and		CO5	K5
	Predicates.			
	Representing Knowledge Using Rules: Procedural			
	Versus Declarative Knowledge – Logic		CO1	17.1
	Programming – Forward Versus Backward		CO1,	K1,
IV	Reasoning – Matching – Control Knowledge.		CO2, CO3,	K2, K3,
1 V	Symbolic Reasoning Under Uncertainty:	15	CO3,	K3, K4,
	Introduction to Nonmonotonic Reasoning - Logics		CO ₄ ,	K4, K5
	for Nonmonotonic Reasoning - Implementation		CO3	KJ
	Issues – Augmenting a Problem-solver.			
	Statistical Reasoning: Probability and Bayes'		CO1,	K1,
	Theorem – Certainty Factors and Rule-based		CO2,	K2,
V	Systems – Bayesian Networks – Dempster-Shafer	15	CO3,	K3,
	Theory.		CO4,	K4,
	Weak Slot-and-Filler Structures: Semantic Nets –		CO5	K5
	Frames			
	Self -Study for Enrichment:		CO1	IZ 1
	(Not included for End Semester Examination) Concentual Dependency Scripts CVC		CO1,	K1,
VI	Conceptual Dependency – Scripts – CYC - Syntactic semantic Spectrum of Penresentation		CO2, CO3,	K2,
VI	Syntactic-semantic Spectrum of Representation – Logic and Slot-and-filler Structures – Other	-	CO3,	K3, K4,
	Representational Techniques – Summary of the		CO4,	K4, K5
	Role of Knowledge			IXJ
	Note of Knowledge			

Text Book

1. Elaine Rich, Kevin Knight and Shivashankar B Nair (2014). *Artificial Intelligence*, Third Edition, McGraw Hill Education (India) Private Limited.

Chapters and Sections

UNIT-I	Chapter 1:	Sections 1.1 – 1.5
	Chapter 2:	Sections 2.1- 2.6
UNIT-II	Chapter 3:	Sections 3.1 – 3.6
UNIT-III	Chapter 4:	Sections 4.1 – 4.2
	Chapter 5:	Sections 5.1 – 5.3
UNIT-IV	Chapter 6:	Sections 6.1 – 6.5
	Chapter 7:	Sections 7.1 – 7.4
UNIT-V	Chapter 8:	Sections 8.1 – 8.4
	Chapter 9:	Sections $9.1 - 9.2$

Reference Books

- 1. Stuart Russell and Peter Norvig (2003). *Artificial Intelligence A Modern Approach*, Pearson Education.
- 2. Patrick Henry Winston (2000). Artificial Intelligence, Pearson Education.
- 3. Dan W. Patterson (2008). *Introduction to Artificial Intelligence and Expert Systems*, Pearson Education.

Web References

- 1. https://www.oracle.com/in/artificial-intelligence/what-is-ai/
- 2. https://www.ibm.com/topics/artificial-intelligence
- 3. https://www.techopedia.com/definition/190/artificial-intelligence-ai
- **4.** https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-artificial-intelligence
- 5. https://www.gartner.com/en/topics/artificial-intelligence

Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, Seminar, Assignment and Quiz.

Course Designer

Ms. R. Soundaria