CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015 Certified TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

M. Sc. MATHEMATICS

AUTONOMOUS SYLLABUS

 $2023-2024 \ and \ onwards$

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

MISSION

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

PROGRAMME EDUCATIONAL OBJECTIVES(PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and tonurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc MATHEMATICS

PO NO.	On completion of M.Sc Mathematics, the students will be able to
	Problem Analysis Provide opportunities to develop innovative design skills, including the ability to formulate problems, to think creatively, to synthesize information, and to communicate effectively.
PO 2	Scientific Skills Create and apply advanced techniques and tools to solve the societal environmental issues.
PO 3	Environment and Sustainability Ascertain eco-friendly approach for sustainable development and inculcate scientific temper in the society.
PO 4	Ethics Imbibe ethical and social values aiming towards holistic development of learners.
PO 5	Life long learning Instill critical thinking, communicative knowledge which potentially leads to higher rate of employment and also for higher educational studies.

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc MATHEMATICS

PSO NO.	The Students of M.Sc Mathematics will be able to	POs Addressed
PSO1	Make a significant contribution to society's development through mathematical study	PO1 PO2 PO3
PSO2	Provide an in-depth and extensive functional understanding of mathematical basics.	PO1
PSO3	Develop the experimental abilities in order to solve scientific and technical problems.	PO1 PO5
PSO4	Promote the learners and explore the potential in emerging fields.	PO4 PO5
PSO5	Enhance problem-solving, thinking, and creative skills through assignments and project work.	PO4 PO5

Cauvery College for Women (Autonomous), Trichy-18 PG & Research Department of Mathematics M.Sc Mathematics Learning Outcome Based Curriculum Framework (CBCS-LOCF) For the Candidates admitted from the Academic year 2023-2024onwards

				k			Exa	am		
er				week			Mar	·ks		
este	~		~ ~ .	/			Int.	Ext.		
Semester	Course	Course Title	Course Code	Inst. Hrs.	Credits	Hrs.			Total	
	Core Course– I (CC)	Algebraic Structures	23PMA1CC1	6	5	3	25	75	100	
	Core Course – II (CC)	Real Analysis I	23PMA1CC2	6	5	3	25	75	100	
Ι	Core Course –III (CC)	Ordinary Differential Equations	23PMA1CC3	6	5	3	25	75	100	
	Core Course - IV (CC)	Probability Theory	23PMA1CC4	6	5	3	25	75	100	
	Discipline Specific Elective Course-I	A. Number Theory and Cryptography	23PMA1DSE1A							
	(DSE)	B. Graph Theory and Applications	23PMA1DSE1B	6	3	3	25	75	100	
		C. Programming in C++ and Numerical Methods								
		Total		30	23	-	-	-	500	

15 Days INTERNSHIP during Semester Holidays

		se Course Title Course Code		ek			Exa	am	
	Course	Course Title	Course Code	We			Mar	·ks	
Semester				Inst. Hrs. / week	Credits	Hrs.	Int.	Ext.	Total
	Core Course–V (CC)	Advanced Algebra	23PMA2CC5	6	5	3	25	75	100
	Core Course – VI (CC)	Real Analysis II	23PMA2CC6	6	5	3	25	75	100
II	Core Course - VII (CC)	Linear Algebra	23PMA2CC7	6	5	3	25	75	100
	Core Choice Course– I	A. Partial Differential Equations	22PMA2CCC1A	6	4	3	3 25	75	100
	(CCC)	B. Mathematical Programming	22PMA2CCC1B						
		C. Difference Equations	22PMA2CCC1C						
	Discipline Specific Elective Course-	A. Computational Mathematics Using MATLAB (P)	22PMA2DSE2AP						
	II (DSE)	B. Advanced Numerical Methods Using MATLAB (P)	23PMA2DSE2BP	6	3	3	40	60	100
		C. Ordinary Differential Equations and Partial Differential Equations Using MATLAB (P)	22PMA2DSE2CP						
	Internship	Internship	22PMA2INT	_	2	_	_	100	100
	Extra Credit Course	SWAYAM	As per UG	C's		cor	nmen		
		Total		30	24	-	-	-	600

ï						Exam			
este	Course	Course Title	Course Code	Irs	its		Mai	rks	-
Semester				Inst.Hrs. week	Credits	Hrs.	Int.	Ext.	Total
	Core Course–VIII (CC)	Topology	22PMA3CC8	6	5	3	25	75	100
	Core Course – IX (CC)	Discrete Mathematics	23PMA3CC9	6	4	3	25	75	100
	Core Course - X (CC)	Measure and Integration	22PMA3CC10	6	5	3	25	75	100
	Core Choice Course– II (CCC)	A. Cyber Security	22PGCS3CCC2A	3(T) + 2(P)	4	3	25	75	100
		B. Introduction to Coding TheoryC. Mechanics	22PMA3CCC2B 22PMA3CCC2C	5	4	5	23	15	100
	Discipline Specific Elective Course-III (DSE)	A. Analytical Skills for Competitive Examinations	22PMA3DSE3A			2	-	100	
		B. Stochastic Processes	22PMA3DSE3B	4 3					100
		C. Fuzzy Sets and their Applications	22PMA3DSE3C			3	25	75	
	Generic Elective Course -I (GEC)	Foundation for Logical Thinking	22PMA3GEC1	3	2	3	25	75	100
	Extra Credit Course	SWAYAM	As per U	GC Re	econ	nm	endat	ion	1
		Total		30	23	-	-	-	600

							Exa	am	
	Course	Course Title Course Code		eek			Mar	·ks	
1				/w/			Int.	Ext.	
Semester				Inst.Hrs./week	Credits	Hrs.			Total
	Core Course– XI(CC)	Complex Analysis	22PMA4CC11	6	5	3	25	75	100
	Core Course - XII(CC)	Functional Analysis	22PMA4CC12	6	5	3	25	75	100
	Core Choice Course–III (CCC)	A. Differential Geometry	22PMA4CCC3A	6	4	3	25	75	100
IV		B. Formal Language and Automata Theory	22PMA4CCC3B		-	5	25	75	100
		C. Fluid Dynamics	22PMA4CCC3C						
	Generic ElectiveOptimizationCourse-IITechniques(GEC)Image: Construction		22PMA4GEC2	3	2	3	25	75	100
	Project	Project Work	23PMA4PW	9	4	-	-	100	100
		Total	1	30	20	-	-	-	500
		120	90	-	-	-	2200		

S. No	Courses	Courses No of Courses				
1.	Core Course– (CC)	12	59	1200		
2.	Core Choice Course– (CCC)	3	12	300		
3.	Discipline Specific Elective- (DSE)	3	3 9			
4.	Generic Elective Course - (GEC)	2	4	200		
5.	Project	1	4	100		
6.	Internship	1	2	100		
	Total	22	90	2200		

Courses & Credits for PG and Research Department of Mathematics

Students will go for an internship after completing the I Semester exams and the internship will be calculated in the II Semester and credits for internship is 02.

For each Semester marks will be 500(600 for II Semester due to internship and 600 for III Semester also)

The internal and external marks for theory and practical papers are as follows:

Subject	Internal	External
Theory	25	75
Practical	40	60

Separate passing minimum is prescribed for Internal and External

For Theory:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks).
- b) The passing minimum for End Semester Examination shall be 40% out of 75 marks (i.e. 30 marks).
- c) The passing minimum not less than 50% in the aggregate.

For Practical:

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. 24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project:

Project	: 100 Marks
Dissertation	: 80 Marks
Viva Voce	: 20 Marks

Semester I	Internal Marks: 2	5 1	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS			
23PMA1CC1	ALGEBRAIC	CORE	6	5			
	STRUCTURES	COURSE					

- Gain expertise and confidence in proving theorems to progress in mathematical studies.
- Acknowledge the students with experience in axiomatic mathematics while keeping in close touch with the computational aspects of the subject.
- Enhance students to understand principles, concepts necessary to formulate, solve and analyze Algebra.

Prerequisite

CO3

CO4

Basic knowledge of sets, relations and functions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Numb		CO Statement On the successful completion of the course, students will be able to									itive vel	
CO1 Apply the Basic Concepts of Counting Principle, Sylow's Theorems, Modules, Linear Transformations and Real Quadratic Forms										K	1, 2, 3	
CO	CO2 Examine in detail about Direct Products, Canonical Forms CanonicalForms, and Normal Transformations										3	
CO	CO3 Solve problems related to Sylow's theorems, Canonical Forms andLinear Transformations								inear	K4		
CO	4	Class	ify the Cour	ting Princip	le, Linear ar	nd Normal T	ransform	ation		K4		
CO		Cano	nical Forms	cepts of Syl Linear and				Radicals,		K5		
Napping COs	PSO		h PO and P PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5	
C01		3	3	3	3	3	3	3	2	2	2	
CO2		3	2	3	3	3	3	3	3	2	3	

CO5	3	2	3	3	
	"1" – S	light (Low)	Correlation	-	"

"2" – Moderate (Medium) Correlation ¬

"3" – Substantial (High) Correlation \neg

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
			CO1,	K1,
			CO2,	K2,
Ι	Counting Principle - Sylow's theorems	18	CO3,	КЗ,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
	Direct products - Finite abelian groups – Modules –		CO2,	K2,
II	Solvability by Radicals	18	CO3,	КЗ,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
	Linear Transformations: Canonical forms :	18	CO2,	K2,
III	Triangular form - Canonical forms : Nilpotent		CO3,	КЗ,
	transformations		CO4,	K4,
			CO5	K5
			CO1,	K1,
	Canonical forms: A Decomposition of V: Jordan		CO2,	K2,
IV	form - Canonical forms : Rational canonical form	18	CO3,	КЗ,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
	Trace and Transpose - Hermitian, Unitary and		CO2,	K2,
V	Normal Transformations - Real Quadratic Forms	18	CO3,	КЗ,
			CO4,	K4,
			CO5	K5
	Self-Study for Enrichment		CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Galois Groups over the Rationals - The Algebra of	-	CO3,	K3,
	Linear Transformation – Characteristics Roots-		CO4,	K4,
	Matrices – Determinants		CO5	K5

Text Book

I.N. Herstein (2016), Topics in Algebra(II Edition), Wiley Eastern Limited, New Delhi.

Chapters and Sections

UNIT- I	Chapter 2: Sections 2.11 and 2.12
UNIT- II	Chapter 2: Section 2.13 and 2.14
	Chapter 4: Section 4.5
	Chapter 5 : Section 5.7
UNIT- III	Chapter 6: Sections 6.4 and 6.5
UNIT- IV	Chapter 6 : Sections 6.6 and 6.7
UNIT- V	Chapter 6 : Sections 6.8, 6.10 and 6.11

Reference Books

- 1. David S. Dummit and Richard M. Foote (2004), *Abstract Algebra*, Wiley and Sons, Third Edition.
- 2. Joseph A. Gallian, (1999), *Contemporary Abstract Algebra*, Narosa Publishing House, Fourth Edition.
- 3. M. Artin, (1991), Algebra, Prentice Hall of India.
- 4. P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul (1997), *Basic Abstract Algebra* (II Edition) Cambridge University Press, Indian Edition

Web References

- 1. <u>https://www.youtube.com/watch?v=g7L_r6zw4-c</u>
- 2. https://www.youtube.com/watch?v=VSB8jisn9xI
- 3. https://www.youtube.com/watch?v=WwndchnEDS4
- 4. <u>http://mathforum.org</u>
- 5. http://ocw.mit.edu/ocwweb/Mathematics
- 6. <u>http://www.opensource.org</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. K. Kalaiarasi

Semester I	Internal Marks:	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
23PMA1CC2	REAL ANALYSIS - I	CORE	6	5

- **Define** the notion of functions of bounded variation, Riemann Stieltjes integration, convergence of infinite series, uniform convergence.
- **Explore** the fundamental concepts of Riemann Stieltjes integration and infinite series.
- Apply the idea of construction of infinite series and power series in various fields.

Prerequisite

UG level real analysis concepts

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
C01	Explain the concepts of functions of bounded variation, Riemann-Stieltjes integral, infinite series, power series, double sequences and sequence of functions.	K2
CO2	Apply the concepts of functions of bounded variation, Riemann-Stieltjes integral, infinite series, power series, double sequences and sequence of functions and its properties in various fields.	K3
CO3	Classify the concepts of functions of bounded variation, Riemann-Stieltjes integral, infinite series, power series, double sequences and sequence of functions.	K4
CO4	Evaluate Riemann-Stieltjes integral, infinite series, power series, double sequences and sequence of functions.	K5
CO5	Construct various mathematical proofs using the properties of Riemann- Stieltjes integral, infinite series, power series, double sequences and sequence of functions.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	3	3	3
CO2	3	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3	2	3	3
CO4	3	3	3	3	3	3	3	2	2	3
CO5	3	3	3	3	3	3	2	3	3	3
					1			11) G		

"1" – Slight (Low) Correlation \neg

"2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation \neg

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 Functions of bounded variation: Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation - Additive property of total variation - Total variation on [a, x] as a function of x - Functionsof bounded variation expressed as the difference of twoincreasing functions - Continuous functions of bounded variation. Infinite Series: 	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
Π	The Riemann - Stieltjes Integral: Introduction - Notation - The definition of the Riemann-Stieltjes integral - Linear Properties - Integration by parts - Change of variable in a Riemann-Stieltjes integral - Reduction to a Riemann Integral – Step functions as integrators – Reduction to a Riemann – Stieltjes integral to a finite sum - Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper and lower integrals - Riemann's condition - Comparison theorems.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
III	The Riemann-Stieltjes Integral: Integrators of bounded variation - Sufficient conditions for the existence of Riemann-Stieltjes integrals - Necessary conditions for the existence of Riemann-Stieltjes integrals - Mean value theorems for Riemann-Stieltjes integrals – The integral as a function of the interval – Second fundamental theorem of integral calculus - Change of variable in a Riemann integral - Second Mean-Value Theorem for Riemann integrals - Riemann-Stieltjes integrals depending on a parameter - Differentiation under integral sign – Interchanging the order of integration – Lebesgue's criterion for existence of Riemann integrals.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
IV	Infinite Series and infinite Products: Double sequences - Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series – Cesaro summability - Infinite products. Power Series: Power series- Multiplication of power series - The Taylor's series generated by a function - Bernstein's theorem - Abel's limittheorem - Tauber's theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
V	Sequences of Functions: Pointwise convergence of sequences of functions - Examples of sequences of real-valued functions – Definition of uniform convergence - Uniform convergence and continuity – The Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Uniform convergence and Riemann- Stieltjes integration – Non uniformly convergence and differentiation - Sufficient conditions for uniform convergence of a series - Mean convergence.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
VI	Self Study for Enrichment:(Not included for End Semester Examinations)Alternating Series – Complex-valued Riemann-Stieltjesintegrals – Euler's product for the Riemann zeta function – Aspace-filling curve – Uniform convergence and double sequences.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6

Text Book

Tom M. Apostol. (2002). Mathematical Analysis (Second Edition). Narosa Publishing House.

Chapters and Sections

UNIT-I	Chapter 6:	Sections $6.1 - 6.8$
	Chapter 8:	Sections 8.5, 8.8, 8.15, 8.17, 8.18
UNIT-II	Chapter 7:	Sections 7.1 – 7.14
UNIT-III	Chapter 7:	Sections 7.15 – 7.26
UNIT- IV	Chapter 8:	Sections 8.20 – 8.26
	Chapter 9:	Sections 9.14, 9.15, 9.19, 9.20, 9.22, 9.23
UNIT- V	Chapter 9:	Sections 9.1 – 9.6, 9.8 – 9.11, 9.13

Reference Books

- Robert G. Bartle and Donald R. Sherbert. (2019). *Introduction to Real Analysis (Fourth Edition)*. Wiley India Pvt. Limited.
- 2. Walter Rudin. (1986). *Principles of Mathematical Analysis (Third Edition)*. McGraw-Hill Book Company.
- 3. Royden H.L. (2003). *Real Analysis (Third Edition, Nineth Reprint)*. PHI Learning Private Limited, New Delhi.

Web References

- 1. https://voutu.be/SMSzqCV91rO
- 2. <u>https://youtu.be/qVaFEF1NpLY</u>
- 3. https://tinyurl.com/yu8vrpnt
- 4. <u>https://voutu.be/8FhIY5kiDaE</u>
- 5. https://youtu.be/Vx004k9r YO
- 6. https://tinvurl.com/236r88xp
- 7. https://tinyurl.com/4y3m4daj

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya

SEMESTER I	INTERNAL MARKS: 25	EXTERNAL N	MARKS:75	
COURSE	COURSE TITLE	CATEGORY	HRS	CREDITS
CODE			/WEEK	
23PMA1CC3	ORDINARY DIFFERENTIAL	CORE	6	5
	EQUATIONS	COURSE		

- Recognize certain basic types of second order homogeneous and non-homogeneous ODEs • for which exact solutions may be obtained and to apply the corresponding methods of solution.
- Qualitative Analysis of Solutions of Initial value problems. •
- Analyze the concepts of existence and uniqueness of solutions. •

Prerequisite

UG level Calculus and Differential Equations

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive
	On the successful completion of the course, students will be able to	Level
C01	Define initial value problems, linear dependence and independence, regular	K1
	singular points, successive approximation of homogeneous and	
	non-homogeneous ordinary differential equations	
CO2	Understand the physical phenomena modeled by ordinary differential	K2
	equations and dynamical systems.	
CO3	Examinethe solutions of ordinary differential equations using	K3
	appropriate methods and give examples.	
CO4	Discriminate the Qualitative properties of solutions for Initial value	K4
	problems, convergence of successive approximations of ordinary	
	differential equations.	
CO5	Analyse initial value problems, regular singular points, successive	K5
	approximations of ordinary differential equations and use various	
	theoretical ideas and results.	

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	3	3	3	3	2	3
CO2	3	2	3	3	3	2	3	3	2	3
CO3	3	2	3	3	3	3	3	3	2	3
CO4	3	2	3	3	3	3	3	3	2	3
CO5	3	2	3	3	3	3	3	2	2	3

"1" – Slight (Low) Correlation \neg "2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Linear equations with constant coefficients: Introduction- The Second order homogeneous equations-Initial value problems for second order equations-Linear dependence and independence- A formula for the Wronskian- The Non-homogeneous equation of order two.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Linear equations with constant coefficients: The Homogeneous equation of order n –Initial value problems for n-th order equations- Equations with real constants- The non-homogeneous equation of order n -A special method for solving the non-homogeneous equation - Algebra of constant coefficient operators.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Linear equation with variable coefficients: Introduction - Initial value problems for the homogeneous equation - Solutions of the homogeneous equation – The Wronskian and linear independence – Reduction of the order of a homogeneous equation – The non-homogeneous equation – Homogeneous equations with analytic coefficients-The Legendre equation.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Linear equation with Regular singular points: Introduction – The Euler equation – Second order equations with regular singular points - an example – Second order equations with regular singular points – the general case- The Exceptional cases – The Bessel equation- The Bessel equation(continued).	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Existence and uniqueness of solutions to first order equations: Introduction - Equation with variables separated – Exact equations – The method of successive approximations – The Lipschitz condition – Convergence of the successive approximations.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment : (Not included for End Semester Examinations) Justification of the power series method- A convergence proof- Regular singular points at infinity-Non-local existence of solutions- Approximations to, and uniqueness of, solutions.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

EarlA. Coddington (2005), A introduction to ordinary differential equations, Prentice-Hall of India Private Ltd., New Delhi.

Chapters and Sections

UNIT- I	Chapter 2:	Sections 1 to 6
UNIT- II	Chapter 2:	Sections 7 to 12
UNIT- III	Chapter 3:	Sections 1 to 8
UNIT- IV	Chapter 4:	Sections 1 to 4 and 6 to 8
UNIT- V	Chapter 5:	Sections 1 to 6

Reference Books

- 1. George F Simmons (1974), Differential equations with applications and historical notes, Tata McGraw Hill, New Delhi.
- 2. M.D.Raisinghania (2001), Advanced Differential Equations, S.Chand& Company Ltd. New Delhi .
- 3. B.Rai, D.P.Choudary and H.I. Freedman (2002), A Course in Ordinary Differential Equations, Narosa Publishing House, New Delhi.

Web References

1. https://youtu.be/xZsniBazjfI?list=PLbwJuBHc3YzUIgPk82CIm-doYjZa_SeKe

- 2. https://youtu.be/CgNVZCog-64?list=PLbwJuBHc3YzUIgPk82CIm-doYjZa_SeKe
- 3. <u>https://youtu.be/dkpeZHeU1xo</u>
- 4. https://www.cs.bgu.ac.il/~leonid/ode_bio_files/Ionascu_LectNotes.pdf
- 5. <u>https://www.math.iitb.ac.in/~siva/afs07.pdf</u>
- 6. <u>https://www.voutube.com/watch?v=IWm6Coa3_bO</u>
- 7.<u>https://www.youtube.com/watch?v=1HUnrokDN0U</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. G. Janaki

Semester I	Internal Mar	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /	CREDITS
			Week	
23PMA1CC4	PROBABILITY THEORY	CORE	6	5

- **Introduce** axiomatic approach to probability theory.
- **Study** some statistical characteristics, discrete and continuous distribution functions and their properties.
- Analyze the characteristic function and basic limit theorems of probability.

Prerequisite

UG level Probability and Statistics.

CourseOutcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Acquire the knowledge of basic probability and probability distributions.	K1
CO2	Understand various theorems on probability and their use in solvingproblems in various diversified situations.	K2
CO3	Calculate moments, Characteristic functions, distribution function, probability generating functions, to solve problems applying characteristic functions	К3
CO4	Illustrate the theory of probability, random variables, probability distribution with suitable examples	K3
CO5	Find solution of real life problems under the concept of probability and probability distributions.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" - Moderate (Medium)Correlation

"-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Random Events and Random Variables: Preliminary remarks - Random events and operations performed on them –The system of axioms of the theory of probability – Application of Combinatorial formulas for computing probabilities – conditional probability – Bayes Theorem – Independent events – The concept of a random variable – Distribution Function – Random variables of the discrete and continuous type - Functions of random variables – Multidimensional random variables – Marginal Distributions – Conditional Distributions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Parameters of the Distribution of a random variable:Expected values - Moments – The Chebyshev inequality – Absolute moments – Order parameters – Moments of random vectors – Regression of the first type.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Characteristic Functions: Properties of characteristic functions – The characteristic function and moments – semi-invariants – The characteristic function of the sum of independent random variables – Determination of distribution function by the Characteristic function – The characteristic function of multidimensional random vectors.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Some Probability Distributions: One-point and two- point distributions – The Bernoulli scheme. The Binomial distribution – The Poisson scheme. The generalized Binomial distribution – The Polya – Hypergeometric distributions – Poisson (discrete) distribution – Uniform – normal – gamma – Beta distributions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Limit Theorems : Preliminary remarks – Stochastic convergence – Bernoulli's law of large numbers – The convergence of a sequence of distribution functions – Levy- Cramer Theorem – de Moivre-Laplace Theorem – Lindeberg- Levy Theorem – LapunovTheroem – Poisson's, Chebyshev's and Khintchin's laws of large numbers.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Independent random variables – Functions of multidimensional random variables - Regression of the second type - Probability generating functions – Cauchy and Laplace distributions – The Gnedenko Theorem – The strong law of large numbers.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

M. Fisz(1963), *Probability Theory and Mathematical Statistics*, John Wiley and Sons, New York. **Chapters and Sections**

UNIT-I	Chapter 1: Sections 1.1 to 1.7, Chapter 2 : Sections 2.1 to 2.7.
UNIT-II	Chapter 3: Sections 3.1 to 3.7.
UNIT-III	Chapter 4: Sections 4.1 to 4.6.
UNIT- IV	Chapter 5: Section 5.1 to 5.9.
UNIT- V	Chapter 6: Sections 6.1 to 6.4, 6.6 to 6.9, 6.11.

Reference Books

- 1. K.L.Chung(1974). A course in Probability, Academic Press, New York.
- 2. V.K.Rohatgi(1988). *An Introduction to Probability Theory and Mathematical Statistics*, Wiley Eastern Ltd., New Delhi, (3rd Print).
- 3. B.R.Bhat(1999).*Modern Probability Theory* (3rd Edition), New Age International (P)Ltd, New Delhi.

Web References

- 1. <u>http://mathforum.org</u>
- 2. <u>http://ocw.mit.edu/ocwweb/Mathematics</u>
- 3. <u>http://www.opensource.org</u>
- 4. <u>http://www.probability.net</u>
- 5. <u>http://onlinecourses.nptel.ac.in/noc22_ma81/preview</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designers

- 1. Dr. S. Premalatha.
- 2. Dr. E. Litta.

Semester - I	Internal Marks: 25	xternal Marks:75		
COURSECODE	COURSE	CATEGORY	HOURS /	CREDITS
	TITLE		WEEK	
23PMA1DSE1A	NUMBER THEORY AND CRYPTOGRAPHY	DISCIPLINE SPECIFIC ELECTIVE	6	3

- Explore fundamental concepts of divisibility, Congruences and primes.
- Analyze the quadratic Residues, The Mobius Inversion formula, Diophantine equations and their problems.
- Apply the ideas of Pythagorean triangle and The Chinese remainder theorem to solve problems

Prerequisite

- Familiarity in concepts of Theory of Numbers
- Familiarity in concepts of Abstract Algebra.
- Coding, Decoding concepts.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand basic concepts of Number theory and Cryptography	K2
CO2	Classify algorithms and formulas based on the concepts of Number theoryand Cryptography.	К3
CO3	Ascertain the notions of Number theory and Cryptography.	K4
CO4	Evaluate the concepts of Number theory and Cryptography in problem solving.	K5
CO5	Develop mathematical ideas in Divisibility concepts, Quadratic residues, Arithmetic functions, Diophantine Equations and cryptography.	K6

Mapping of CO withPO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation \neg

"3" – Substantial (High) Correlation \neg

"2" – Moderate (Medium) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
Ι	DIVISIBILITY AND CONGRUENCES: Divisibility – Congruences – Solutions of Congruences – Chinese Remainder Theorem, Primitive Roots and Power Residues.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Π	QUADRATIC RECIPROCITY AND QUADRATIC FORMS: Quadratic residues – Quadratic reciprocity – The Jacobi symbol - Sum of two squares.	18	C01, C02, C03, C04, C05	K3, K4, K5
III	SOME FUNCTIONS OF NUMBER THEORY: Greatest Integer function-Arithmetic functions – The Mobius Inversion formula.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	SOME DIOPHANTINE EQUATIONS: The equation $ax + by = c - Simultaneous linear equations - Pythagorean triangles - Assorted Examples- Fermat's Last Theorem.$	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Classical Encryption Techniques Symmetric Cipher Model -Cryptography -Cryptanalysis Substitution Techniques- Caesar Cipher – Affine cipher- Monoalphabetic Ciphers -Playfair Cipher -Hill Cipher - Polyalphabetic Ciphers- One-Time Pad -Transposition Techniques Block Ciphers and the Data Encryption Standard Block Ciphers Principles -Stream Ciphers and Block Ciphers-The Feistel Cipher-Feistel Cipher Structure- Feistel Decryption Algorithm Public-Key Cryptography and RSA Principles of Public-Key Cryptosystems- Public-Key Cryptosystems -Applications for Public-Key Cryptography -Public-Key Cryptanalysis The RSA Algorithm- Description of the Algorithm- Computational Aspects -The Security of RSA Key Management; Other Public-Key Cryptosystems Key Management- Distribution of Public Keys - Distribution of Secret Keys Using Public-Key Cryptography Diffie-Hellman Key Exchange -The Algorithm- Key Exchange Protocols - Man-in-the-Middle Attack Elliptic Curve Cryptography-Analog of Diffie-Hellman Key Exchange- Elliptic Curve Encryption/Decryption - Security of Elliptic Curve Cryptography	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Primes – Binary quadratic forms – Recurrence functions – Ternary quadratic forms – Elliptic Curve Arithmetic	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Ivan Niven, Herbert S. Zuckerman & Hugh L. Montgomery (2016) Reprint, An Introduction to the Theory of Numbers, (Fifth Edition, Reprint 2016). Wiley Publishers
- William Stallings (2009), Cryptography and Network Security Principles and Practices, (4thedition), Pearson Education Inc.and Dorling Kindersley Publishing Inc.

Chapters and Sections

UNIT-I	Chapter 1[1]:	Sections 1.2
	Chapter 2[1]:	Sections 2.1-2.3, 2.8.
UNIT-II	Chapter 3[1]:	Sections 3.1-3.3, 3.6
UNIT-III	Chapter 4[1]:	Sections 4.1- 4.3
UNIT-IV	Chapter 5[1]:	Sections $5.1 - 5.3$
UNIT-V	Chapter 2[2]:	Sections 2.1-2.3
	Chapter 3[2]:	Sections 3.1
	Chapter 9[2]:	Sections 9.1-9.2
	Chapter 10[2]:	Sections 10.1, 10.2 & 10.4

Reference Books

- David M. Burton (2012), Elementary Number Theory (Sixth Edition), Tata McGraw Hill Education Private Limited, New Delhi.
- 2. Telang S. G. (2005), Number Theory (Reprint 2001), Tata McGraw Hill Education Private Limited, New Delhi.
- Neal Koblitz (1994), A Course in Number theory and Cryptography, (2nd edition), Springer Verlang Newyork Inc.,

Web References

- 1. <u>https://www.youtube.com/watch?v=ChG_7jeNRHo</u>
- 2. <u>https://www.youtube.com/watch?v=e8DtzQkjOMQ</u>
- 3. <u>https://www.youtube.com/watch?v=3W91U-aNclQ</u>
- 4. <u>https://www.youtube.com/watch?v=bg6CksAkZ-k</u>
- 5. <u>https://www.youtube.com/watch?v=4dVTlX4bwP0</u>
- 6. <u>https://www.youtube.com/watch?v=khfIH1H6iUg</u>
- 7. https://www.youtube.com/watch?v=BC2BdenKsYs
- 8. https://www.tutorialspoint.com/what-is-discrete-logarithmic-problem-in-information-security
- 9. https://www.interviewbit.com/blog/0-1-knapsack-problem/

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P.Saranya

Semester I	Internal Marks: 25	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	HRS / WEEK	CREDITS		
23PMA1DSE1B	GRAPH THEORY AND APPLICATIONS	DISCIPLINE SPECIFIC	6	3		
		ELECTIVE				

- **Explore** the basic concepts of Graph Theory.
- Understand concepts that helps to model real life situation into graphs.
- **Formulate** and prove some theorems about trees, matching, connectivity, colouring and planarity of graphs.

Prerequisite

Basic Knowledge of Graph Theory.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Define the various concepts in Graphs.	K1
CO2	Understand the different terminologies of Graphs.	K2
CO3	Apply the concepts of connectivity, Blocks and Hamilton cycles in the real life.	К3
CO4	Analyze the problems in different aspects and give solutions in their respective streams.	K4
	Assess the concept of both undirected and directed graph which apply in daytoday life.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2	3	2	2	2	3
CO2	2	2	3	2	2	2	2	2	2	3
CO3	3	2	3	2	2	3	2	2	3	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	2	2	2	3	3	2	3	3	2	2

"1" – Slight (Low) Correlation \neg

"2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation –

"-" indicates there is no correlation.

Syllabus				
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Graphs and Subgraphs: - Graphs and Simple Graphs- Graph Isomorphism- The Incidence and Adjacency Matrices -Subgraphs- Vertex Degrees–Paths and Connection– Cycles- The Shortest Path Problem	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Trees: Trees– Cut Edges and Bonds- Cut Vertices – Cayley's Formula- The Connector Problem. Connectivity: Connectivity- Blocks.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Euler Tour and Hamilton Cycles: - Euler Tours- Hamilton Cycles- The Travelling Salesman Problem. Matchings: Matchings- Matchings and Coverings in Bipartite Graphs- Perfect Matchings.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Edge Colourings: Edge Chromatic Number– Vizing's Theorem. Independent Sets and Cliques: Independent Sets. Vertex Colourings: Chromatic Number-Brook's Theorem - Chromatic Polynomials.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	Planar Graphs: Plane and Planar Graphs- Euler's Formula- Bridges- Kuratowski's Theorem- Five Colour Theorem and Four -Colour Conjecture. Directed Graphs: - Directed Graphs-Directed Paths- Directed Cycles.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Sperner's LemmaConstruction of Reliable Communication Networks- The Chinese Postman Problem -Hajo's Conjecture -A Storage Problem- DualGraphs.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

Bondy, J. A. and Murthy, U. S. R,(1976) Graph Theory with Applications, The Macmillan Press Ltd, London and Basingstoke.

Chapters and Sections

UNIT-I	Chapter 1:	Sections 1.1-1.8
UNIT-II	Chapter 2:	Sections 2.1-2.5
	Chapter 3:	Sections 3.1, 3.2
UNIT-III	Chapter 4:	Sections 4.1- 4.2, 4.4
	Chapter 5:	Sections 5.1-5.3
UNIT- IV	Chapter 6:	Sections 6.1, 6.2
	Chapter 7:	Section 7.1
	Chapter 8:	Sections 8.1-8.2, 8.4
UNIT- V	Chapter 9:	Sections 9.1, 9.3 - 9.6
	Chapter 10:	Sections 10.1-10.3

Reference Books

- 1. Reinhard Diestel (2006). Graph Theory, Springer- Verlag, New York.
- 2. Gary Chartrand, Ping Zhang(2006). *Introduction to Graph Theory*, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 3. NarsinghDeo(2022). Graph Theory With Applications To Engineering & Computer Science. Prentice Hall of India, New Delhi.

Web References

- 1. <u>https://www.voutube.com/results?search_query=graph+theory+definitions+and+examples</u>
- 2. <u>https://www.youtube.com/results?search_query=trees+in+graph+theory</u>
- 3. https://www.whitman.edu/Documents/Academics/Mathematics/stevens.pdf
- 4. <u>https://web.itu.edu.tr/gencata/courses/GT/GTlecture9.pdf</u>
- 5. <u>https://youtu.be/ VzHJXwOCpM</u>
- 6. <u>https://youtu.be/U5f-mxGNTuc</u>
- 7. https://youtu.be/kCaR7WMDf60

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Dr. P. Shalini

Semester: I	Internal Marks: 25	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	HRS/ WEEK	CREDITS		
23PMA1DSE1C	PROGRAMMING IN C++ AND NUMERICAL METHODS	DISCIPLINE SPECIFIC ELECTIVE	6	3		

- Gain an appreciation of the concept of error in these methods and need to analyze and predict it.
- Train the students to develop analytical thinking and the study of stability analysis.
- **Provide** the keen knowledge of C++ language and enable the students to write object oriented, platform independent and interactive program.

Prerequisite

Basic Knowledge of Numerical Methods and C Language

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the Successful completion of the course, students will be able to	Cognitive Level
CO1	Implement numerical methods in computer programming using C++ language.	K2,K3
CO2	Classify the various techniques of interpolation and approximation and design different numerical algorithms with respect to accuracy and efficiency of solution.	K2, K3
CO3	Explain and measure errors in numerical computations and outline thebasic concepts of Oops, classes, objects and functions.	K1, K2
CO4	Compute solutions of interpolation problems and exhibit theknowledge of program execution and debugging of C++.	K2, K3
CO5	Apply various methods to solve transcendental and polynomialequations and Illustrate the components of C++ programming.	K3, K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	1	1	2	2	2	3	2
CO2	3	2	3	1	1	3	3	2	3	2
CO3	3	3	3	2	2	3	3	2	3	3
CO4	3	2	3	2	2	2	2	2	3	3
CO5	3	3	3	2	2	3	3	2	2	3

"1" – Slight (Low) Correlation "3"–Substantial(High)Correlation "2" – Moderate(Medium)Correlation "-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Transcendental and Polynomial Equations: Rate of convergence – Polynomial equations: Descartes' Rule of Signs - Iterative Methods: Birge-Vieta method - Bairstow's method.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
п	Interpolation and Approximation: Hermite Interpolations, Piecewise and Spline Interpolation - Bivariate Interpolation.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	 Principles of Object-Oriented Programming: Software Crisis- Software Evolution- A Look at Procedure- Oriented Programming- Object- Oriented Programming Paradigm-Basic concepts of Object- Oriented Programming- Benefits of OOP- Object- Oriented Languages – Application of OOP. Beginning with C++: What is C++ - Applications of C++ - A Simple C++ Program – More C++ Statements An Example with Class – Structure of C++ Program – Creating the Source File – Compiling and Linking. 	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Functions in C++: Introduction – The Main Function–Function prototyping – Call by Reference – Return by Reference – Inline functions– Default Arguments – const Arguments – Recursion - Function overloading.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	Classes and Objects: Introduction – C structures Revisited - Specifying a Class– Defining Member Functions – C++ Program with Class – Making an Outside Function Inline – Nesting of Member Functions – Private Member Functions – Arrays within a Class – Memory allocation for Objects- Static Data Members – Static Member Functions–Arrays of Objects – Objects as Function Arguments – Friendly Functions – Returning Objects – const Member Functions	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self- Study for Enrichment (Not included for End Semester Examinations) Direct Method: Graeffe's root squaring method - Lagrange Bivariate interpolation - Friend & Virtual Functions – Math Library Functions - Pointers to Members – Local Classes	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. M.K. Jain, S.R.K. Iyengar and R.K. Jain (2022), Numerical Methods for Scientific and Engineering Computation, New Age International (P) Limited Publishers, New Delhi, 8th Edition.
- 2. E. Balagurusamy (2018), Object-Oriented Programming with C++, TataMcGrawHill,7thEdition.

Chapters and Sections

UNIT- I	Chapter 2: Section 2.5 & 2.9[1]
UNIT- II	Chapter 4: Section 4.5 – 4.7[1]
UNIT- III	Chapter 1: Section 1.1 – 1.8[2]
	Chapter 2: Section 2.1 – 2.8[2]
UNIT- IV	Chapter 4: Section 4.1 – 4.10[2]
UNIT- V	Chapter 5: Section 5.1 – 5.17[2]

Reference Books

- M.K. Jain (1983), Numerical Solution of Differential Equations, New Age International Pvt Ltd., 2nd Edition,
- 2. Robert L afore (2019), Object Oriented Programming in C++, Pearson Education, 4th Edition.
- 3. Rajesh K. Shukla (2009), Object Oriented Programming in C++, Wilsey India Pvt. Ltd, 1st Edition.

Web References

- 1. <u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjii6KIktjyAhUq7HMBHdg7C5EQFnoECAMQAQ&url=https%3A%2F%2Fwww.math.ust.hk%2F~machas%2Fnumerical-methods.pdf&usg=AOvVaw2XYqzDmJzupEa79S98dhiS</u>
- 2. <u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=</u> 2ahUKEwjT8I2RgtjyAhWC7XMBHZknBY8QFnoECAMQAQ&url=https%3A%2F%2Fwwwpersonal.acfr.usyd.edu.au%2Ftbailey%2Fctext%2Fctext.pdf&usg=AOvVaw1vmjykV3ynWgE-<u>1Ifz4Th5</u>
- 3. http://www.nptelvideos.in/2012/11/numerical-methods-and-programing.html
- 4. <u>http://www.nptelvideos.in/2012/11/numerical-methods-and-computation.html</u>
- 5. https://nptel.ac.in/courses/122106033/
- 6. https://nptel.ac.in/courses/122106033/25

Pedagogy

Chalk and Talk, Power Point Presentations, Group discussion, Seminar & Assignment.

Course Designer

Ms. A. Gowri Shankari

Semester II	Internal Marks: 25	External		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
23PMA2CC5	ADVANCED ALGEBRA	CORE	6	5

- Learn the fundamentals in Galois theory.
- **Expertise** and confidence in proving theorems to progress in Galois theory.
- **Familiarize** the concepts of Galois group.

Prerequisite

Basic knowledge of Algebra.

Course Outcomes

Course Outcome and Cognitive Level Mapping

COs	CO Statement	Cognitive
	On the successful completion of the course, students will be ableTo	Level
CO1	Analyse the important concepts of Galois theory and identify through various examples.	K1, K2, K3
CO2	Predict the notions and their connections of Galois theory.	K3
CO3	Examine the proof of solvability by Galois theory.	K4
CO4	Evaluate clear cut idea in Galois theory extensions and illustrate through examples.	K5
CO5	Learn and conclude Galois theory correspondence theorem of algebra.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	3	2	2	2	3	2	2	2	2
CO2	3	3	3	2	2	3	3	3	2	2
CO3	3	3	3	3	3	3	3	2	3	3
CO4	2	2	3	3	3	2	2	3	3	3
CO5	2	2	3	3	3	2	3	2	3	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation \square

"3" – Substantial (High) Correlation "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
	Quotient Rings - Polynomial Rings over Fields -		CO1,	K1,
Ι	Prime Ideals and Maximal Ideals - Irreducible	10	CO2,	K2,
	Polynomials.	18	CO3,	КЗ,
	i orynomiais.		CO4,	K4,
			CO5	K5
			CO1,	K1,
	Classical Formulas - Splitting Fields.	10	CO2,	K2,
II		18	CO3,	КЗ,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
III	The Galois Group - Roots of Unity -Solvability by	18	CO2,	K2,
111	Radicals.	18	CO3,	K3,
			CO4,	K4,
			CO5	K5
	Independence of Characters - Galois	18	CO1,	K1,
IV			CO2, CO3,	K2, K3,
1 4	Extensions.		CO3, CO4,	кз, К4,
			CO4, CO5	K4, K5
			CO3	KJ K1,
	The Fundamental Theorem of Galois Theory		CO1, CO2,	K2,
V	– Galois's Great Theorem.	18	CO3,	K2, K3,
			CO4,	K4,
			CO5	K5
	Self-Study for Enrichment		CO1,	K1,
	(Not included for End Semester		CO2,	K2,
	Examinations)	-	CO3,	КЗ,
VI	Rings - Domains and Fields - Homomorphism		CO4,	K4,
	0 1		CO5	K5
	and Ideals - QuotientsRings- Polynomial Rings			
	over Fields-			
	Applications			
	ovt Book			

Text Book

Joseph Rotman (2010), *Galois Theory*, 2nd Edition, Springer International Edition.

Chapters and Pages

- **UNIT I** Pages 21 43
- UNIT II Pages 44 58
- UNIT III Pages 59 75
- UNIT IV Pages 76 82
- **UNIT V** Pages 83, 84, 90 95

Reference Books

1. David S. Dummit and Richard M. Foote (2017), Abstract Algebra (Third

Edition), John Wiley & Sons.

- 2. John B. Fraleigh (2003), A First Course in Abstract Algebra (Seventh Edition), Pearson Education.
- 3. I. N. Herstein (2016), Topics in Algebra (3rd Edition), John Wiley & Sons.

Web References

- 1. https://nrich.maths.org/1422
- 2. https://www.math3ma.com/blog/what-is-galois-theory-anyway
- 3. https://people.math.harvard.edu/~elkies/M250.01/galois topix.html
- 4. https://www.maths.ed.ac.uk/~tl/gt/gt.pdf
- 5. <u>https://mathoverflow.net/questions/34125/is-galois-theory-necessary-in-a-basic-graduate-algebra-course</u>

Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. K. Kalaiarasi

Semester II	Internal Marks:2	Internal Marks:25		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS
23PMA2CC6	REAL ANALYSIS II	CORE	6	5

- **Define** the notion of metric space, limits of a function, continuous function and component of a metric space.
- **Explore** the fundamental concepts of derivatives of vector-valued functions.
- Apply the idea of matrix representation using linear function.

Prerequisite

Fundamental concepts of Real Analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain various mathematical proof of basic results in real analysis.	K2
CO2	Apply the properties of real numbers that lead to the formal development of real analysis.	К3
CO3	Ascertain the concepts of different types of derivatives and partial derivatives.	K4
CO4	Evaluate the concepts of limits, continuity and implicit function that canbe applied to important practical problems.	K5
CO5	Develop the important concepts of real analysis.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	3	3	3
CO2	3	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3	2	3	3
CO4	3	3	3	3	3	3	3	2	2	3
CO5	3	3	3	3	3	3	2	3	3	3

"1"-Slight(Low)Correlation

"2"–Moderate(Medium) Correlation \square

"3"-Substantial(High)Correlation

"-"indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Limits: Introduction–Convergent sequences in a metric space – Cauchy sequences – Complete metric spaces – Limit of a function – Limits of complex-valued functions. Continuity: Continuous functions – Continuity of composite functions –Continuous complex-valuedand vector- valued functions – Examples of continuous functions.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
II	Continuity: Continuity and inverse images of open or closed sets – Functions continuous on compact sets – Topological mappings (homeomorphisms) – Bolzano's theorem – Connectedness – Components of a metric space – Arc wise connectedness – Uniform continuity – Uniform Continuity and compact sets – Fixed-point theorem for contractions.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
III	Derivatives: Introduction – Definition of derivative – Derivatives and continuity – Algebra of derivatives – The chain rule – One-sided derivatives and infinite derivatives – Functions with nonzero derivative –Zero derivatives and local extrema – Rolle's theorem – The Mean-Value Theorem for derivatives – Intermediate-value theorem for derivatives – Taylor's formula with remainder – Partial derivatives – Differentation of functions of a complex variable – The Cauchy-Riemann equations.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
IV	Multivariable Differential Calculus:Introduction – The directional derivative –Directional derivatives and continuity – the totalderivative – The total derivative expressed in terms ofpartial derivatives – An application to complex-valuedfunctions – The matrix of a linear function – TheJacobian matrix – The chain rule – Matrix form of thechain rule – The Mean-value Theorem for differentiablefunctions – A Sufficient condition fordifferentiability – A sufficient condition for equality ofmixed partial derivatives.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
V	 Implicit Functions and Extremum Problems Introduction – Functions with nonzero Jacobian determinant The inverse function theorem – The implicit function theorem – Extrema of real-valued functions of one variable – Extrema of real- valued functions of several variables – Extremum problems with side conditions. 	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6

VI	Self Study for Enrichment: (Not included for End Semester Examinations) Limits of vector-valued functions - Discontinuities of real-valued functions - Derivatives of vector-valued functions - Taylor's formula for functions from R^n to R^1	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
----	---	---	-------------------------------------	--------------------------------

Text Book

Tom M. Apostol.(2002).*Mathematical Analysis (Second Edition 20th Reprint)*, Narosa Publishing House.

Chapters and Sections

- UNIT- I Chapter 4: Section 4.1-4.6,4.8-4.11
- UNIT- II Chapter 4: Section 4.12 4.21
- UNIT- III Chapter 5: Section 5.1 5.12,5.14-5.16
- UNIT- IV Chapter 12: Section 12.1 12.13
- UNIT- V Chapter 13: Section 13.1 13.7

Reference Books

- 1. Robert G. Bartle and Donald R. Sherbert. (2019). *Introduction to Real Analysis(Fourth Edition)*. Wiley India Pvt. Limited.
- Royden H. L. (2003). *Real Analysis (Third Edition, Nineth Reprint)*. Prentice-Hallof India Private Limited, New Delhi.
- 3. Walter Rudin. (1986). *Principles of Mathematical Analysis (Third Edition)*. McGraw-Hill Book Company.

Web References

- 1. <u>https://youtu.be/kjpPaKKMJqO?si=zRjTO-30wx-B_3Y-</u>
- 2. https://voutu.be/59tydOl49Mw?si=p31co7vxk9rOqOH
- 3. <u>https://youtu.be/ZVUOow92hpo?si=rdKPGg_76Up5ar19</u>
- 4. https://youtu.be/IFtjDDB8fzo?si=rG1C6fypshWxZBfz
- 5. https://youtu.be/EJZMPdoYWwc?si=81OokEBglkdWRksS
- 6. https://voutu.be/LWk7hvY1Goc?si=u4mGKT7v9OSri15i
- 7. <u>https://youtu.be/mslZz8ydzcM?si=VJrvjcANdq4TqNvf</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P. Shalini

Internal Marks: 25	External Marks: 75				
COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
LINEAR ALGEBRA	CORE	6	5		
_	COURSE TITLE	COURSE TITLE CATEGORY	COURSE TITLE CATEGORY Hrs /Week		

- Acquire knowledge related to basic concepts.
- **Develop** rational thinking patterns in terms of problem-solving in competitive exams.
- Emphasis on knowledge of the various aspects of Linear Algebra.

Prerequisite

Basic Knowledge of algebra and vector space.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
C01	Remember and recall the basic concepts of vector space.	K1
CO2	Illustrate the various techniques of problem-solving in respective stream.	K2
CO3	Apply different terminologies of linear algebra.	K3
CO4	Classify the various properties in transformation.	K4
CO5	Interpret the problems involved in vector spaces.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	2	3	2	3	2	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	2	3	2	3	3	3	2	2	3
CO4	2	2	2	2	3	2	2	2	2	3
CO5	3	3	3	3	3	3	3	3	2	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation \Box

"3" – Substantial (High) Correlation "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Linear Equations: Systems of Linear Equations – Matrices and Elementary Row Operations – Row - Reduced Echelon Matrices – Invertible Matrices – Bases andDimension.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Linear Transformations: Linear Transformations - The Algebra of Linear Transformations – Isomorphism – Representation of Transformations by Matrices – Linear Functionals –The Transpose of a Linear Transformation.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Determinants: Commutative Rings – Determinant Functions - Permutations and the Uniqueness of Determinants – Additional Properties of Determinants.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Elementary Canonical Forms: Characteristic Values – Annihilating Polynomials - Invariant Subspaces – Direct-Sum Decompositions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Operators on Inner Product Spaces: Forms on Inner Product Spaces – Positive Forms – More on Forms – Spectral Theory.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self -Study for Enrichment: (Not included for End Semester Examination) Matrix Multiplication – Vector Spaces - The DoubleDual – Inner Product Spaces - Further Properties of Normal Operators.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

Kenneth Hoffman and Ray Kunze (1975). *Linear Algebra*, Second Edition, PHI Learning Private Limited, New Delhi.

Chapters and Sections

UNIT-I	Chapter 1: Sections 1.2 – 1.4, 1.6
	Chapter 2: Sections 2.3
UNIT-II	Chapter 3: Sections 3.1 – 3.5, 3.7
UNIT-III	Chapter 5: Sections 5.1 – 5.4
UNIT- IV	Chapter 6: Sections 6.2 – 6.4, 6.6.
UNIT- V	Chapter 9: Sections 9.2 - 9.5.

Reference Books

- 1. Kumaresan S(January 2018). *Linear Algebra: A Geometric Approach*, Prentice Hall of India Ltd.
- 2. Keshawa Prasad Gupta(2008). *Linear Algebra*, Pragati Prakashan, Fifteenth Revised Edition.
- 3. Edgar Goodaire G(2014). *Linear Algebra*, Pure & Applied World Scientific, Cambridge University Press India Ltd.

Web References

- 1. <u>https://youtu.be/Pc2dWW3aSrk</u>
- 2. https://youtu.be/shs8lWDOBHO
- 3. <u>https://youtu.be/nPOooyrM5is</u>
- 4. <u>https://youtu.be/uJNQPgYjlQc</u>
- 5. <u>https://youtu.be/6PEKr7vWsrw</u>
- 6. <u>https://ksuweb.kennesaw.edu</u>
- 7. https://www.math.hkust.edu.hk/~mabfchen/Math111/Week13-14.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Ms.V.ManiMozhi

Semester II	Internal Marks: 25	Extern	nal Marks:75	5
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA2CCC1A	PARTIAL DIFFERENTIAL EQUATIONS	CORE CHOICE	6	4

- **Recognize** certain basic types of first and second order PDEs and an in-depth knowledge of solving them by various methods.
- Analyze the Characteristics and Compatibility of PDE's.
- Qualitative Analysis of the solutions of Boundary value Problems.

Prerequisite

Fundamental knowledge of Partial differential equations in UG.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
	Interpret the solutions of hyperbolic, linear and second order partial	
CO1	differential equations, Exterior, Interior and boundary value problems using various Methods.	K2
	Develop the various type of first and second order equations, Interior andExterior value problems and Determine the higher order equations in physics,	
	Characteristics of Equations in Three Variables, Linear Hyperbolic Equations	
CO2	and Elementary Solutions of Laplace's Equation.	K3
	Diagnose the orthogonally, compatibility and characteristics of the partial	
	differential equations with constant and variable coefficients, method of Integral	
CO3	transforms and Families of Equipotential Surfaces.	К3
	Discriminate the solutions of first, second order and hyperbolic equations,	
	Integral Surfaces Passing through a Given Curve, Surfaces Orthogonal to a	
	Given System of Surfaces, Characteristics of Equations in Three Variables, The Solution of Linear Hyperbolic Equations, Separation of Variables	
CO4		K4
	Ascertain the concepts of Laplace equation to find the solution of boundary	
	value problems, Special Types of First-Order Equations, Linear Partial	
	Differential Equations with Constant Coefficients, Equations with Variable	
	Coefficients, the Method of Integral Transforms, Families of Equipotential	
CO5	Surfaces.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	1
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation \neg "2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Partial Differential Equations of The First Order: Partial Differential Equations - Origins of First-order Partial Differential Equations - Cauchy's Problem for First- order Equations - Linear Equations of the FirstOrder - Integral Surfaces Passing through a Given Curve - Surfaces Orthogonal to a Given System of Surfaces.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
Ш	Partial Differential Equations of The First Order: Cauchy's Method of Characteristics - CompatibleSystems of First-order Equations – Charpit's Method -Special Types of First-Order Equations - Jacobi's Method.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
ш	Partial Differential Equations of the Second Order: The Origin of Second-order Equations – Second-order Equations in Physics – Higher-order Equations in Physics - Linear Partial Differential Equations with Constant Coefficients - Equations with Variable Coefficients.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
IV	Partial Differential Equations of the Second Order: Characteristics of Equations in Three Variables - The Solution of Linear Hyperbolic Equations - Separation of Variables - The Method of Integral Transforms.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
V	Laplace's Equation: Elementary Solutions of Laplace's Equation - Families of Equipotential Surfaces - Boundary Value Problems - Separation of Variables.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4
VI	Self Study for Enrichment:(Not included for End Semester Examinations) NonlinearPartial Differential Equations of the FirstOrder -Solutions Satisfying Given Conditions -Characteristic Curves of Second-Order Equations -Nonlinear Equations of the Second Order- Problemswith Axial Symmetry.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4

Text Book

Ian N. Sneddon (2006), *Elements of Partial Differential Equations*, Dover Publication – INC. Mineola, New york.

Chapters and Sections

UNIT- I Chapter 2:	Sections 1 to 6
UNIT- II Chapter 2:	Sections 8 to 11, 13
UNIT- III Chapter 3:	Sections 1 to 5
UNIT- IV Chapter 3:	Sections 7 to 10
UNIT- V Chapter 4:	Sections 2 to 5

Reference Books

- 1. M.D.Raisinghania (2001), Advanced Differential Equations, Eighth Edition, S.Chand and Company Ltd., NewDelhi.
- 2. T.Amarnath (2003), *Elementary Course in Partial Differential Equations*, Second Edition, Narosa Publishing House, New Delhi.
- 3. Sauvigny, Friedrich (2006), A Partial Differential Equations 2: Functional Analytic Methods, Springer, Arizona.

Web References

- 1. https://people.bath.ac.uk/mir20/images/odenotes.pdf
- 2. https://pages.pomona.edu/~ajr04747/Spring2014/Math182/Notes/Math182Spring2014Notes.pdf/
- 3. https://www.youtube.com/watch?v=VBn1diQCykQ/
- 4. https://www.youtube.com/watch?v=f0FeWyloHrs/
- 5. https://nptel.ac.in/courses/111106139/

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. G. Janaki

Semester II	Internal Marks: 2	25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
22PMA2CCC1B	MATHEMATICAL PROGRAMMING	CORE CHOICE	6	4		

- Ability to **Understand** and **Analyze** managerial problems in industry so that they are able touse resources (capitals, materials, staffing, and machines) more effectively.
- **Knowledge** of formulating mathematical models for quantitative analysis of managerial problems in industry.
- Allows a quantitative technique or a scientific approach for making better decisions for operations under the control.

Prerequisite

Basic Knowledge of Operations Research.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
	······································	
C01	Recognize the importance and value of Operations Research and mathematical modeling in solving practical problems in industry	K1, K2
CO2	Know how to use variables for formulating complex mathematical models in management science, industrial engineering and Transportation science and in real life.	К3
CO3	Analyze a managerial decision problem and formulate into a mathematical model	K4
CO4	To design, improve and operate complex systems in the best possible way	K4, K5
CO5	Determine the solution of Non Linear Programming based on Various Method.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	2	3
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	2	3	3	3	2	3	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Advanced Linear Programming:		CO1,	K1,
	From Extreme Points to Basic Solutions -		CO2,	K2,
Ι	Generalized Simplex Tableau in Matrix form -Development	17	CO3,	КЗ,
	of the Optimality and Feasibility		CO4,	K4,
	Conditions - Revised Simplex Algorithm.		CO5	K5
	Integer Linear Programming:		CO1,	K1,
	Integer Programming Algorithms – CuttingPlane		CO1, CO2,	K1, K2,
II	Algorithm.	18	CO2, CO3,	K2, K3,
11	DeterministicDynamic Programming:	10	CO3, CO4,	К3, К4,
	Recursive Nature of Dynamic Programming(DP)		CO4, CO5	K4, K5
	Computations.		005	КJ
	Simulation Modeling :		CO1,	K1,
	Monte Carlo Simulation – Types of		CO2,	K2,
III	Simulation – Sampling from ProbabilityDistribution.	18	CO3,	КЗ,
			CO4,	K4,
			CO5	K5
	Classical Optimization Theory:		CO1,	K1,
	Unconstrained Problems – Necessary and Sufficient		CO2,	K2,
IV	Conditions – The Newton – Raphson Method – Constrained	18	СОЗ,	КЗ,
	Problems – Equality		CO4,	K4,
	Constraints (Jacobi Method).		CO5	K5
	Non Linear Programming Algorithms:		CO1,	K1,
	Unconstrained Algorithms – Direct Search		CO2,	К2,
V	Method – Gradient Method - Constrained Algorithms –	19	СОЗ,	КЗ,
	Quadratic Programming.		CO4,	K4,
			CO5	K5
	Self -Study for Enrichment:			
	(Not included for End Semester Examinations) Duality		CO1,	K1,
	– Matrix Definition of the Dual Problem –Optimal Dual		CO2,	K2,
VI	Solution – Forward and Backward Recursion –		СОЗ,	КЗ,
	Generation of Random Numbers – Equality Constraints		CO4,	K4,
	(Lagrangean Method) –		CO5	K5
	Chance-Constrained Programming.			

Text Book

Hamdy A.Taha, Nineth Edition, (2014), *Operations Research*, Dorling Kindersley (India) Pvt. Ltd.

Chapters and Sections

UNIT-I	Chapter 7:	Sections 1.1, 1.2, 2.1 - 2.2 (Page No. 299 - 313)
UNIT-II	Chapter 8: Chapter 11:	Sections 2, 2.2 (Page No. 355, 364 - 373), Sections1 (Page No. 461 - 464)
UNIT -III UNIT- IV	Chapter 17: Chapter 18:	Sections 1, 2, 3.2 (Page No. 681 – 686, 688 - 694) Sections 1, 1.1, 1.2, 2, 2.1(Page No. 713 - 726)
UNIT- V	Chapter 19:	Sections 1, 1.1, 1.2, 2, 2.2 (Page No. 737 – 744, 753 – 758)

Reference Books

- 1. KantiSwarup, P.K. Gupta, ManMohan, Nineteenth Edition (2017), *Operations Research*, Sultan Chand and Sons Publishers.
- 2. J.K. Sharma, Fourth Edition (2009), *Operations Research Theory and Applications*, Macmillan India Limited.
- 3. S.S. Rao, Second Edition (1985), Optimization Theory and Applications, New Age International Ltd.

Web References

- 1. <u>https://www.youtube.com/watch?v=ii_oSKROeRI</u>
- 2. https://www.youtube.com/watch?v=NSrIb7mKtwg
- 3. <u>https://faculty.ksu.edu.sa/sites/default/files/index.pdf</u>
- 4. <u>https://www.youtube.com/watch?v=eo2tOPV3AoE</u>
- 5. <u>https://www.youtube.com/watch?v=9ESUw4azhKE</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. E. Litta.

Semester II	Internal Ma	arks: 25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS /WEEK	CREDITS	
22PMA2CCC1C	DIFFERENCE EQUATIONS	CORE CHOICE	6	4	

- Analyze the linear difference equations of higher order.
- Understand the implementation of nonlinear difference equations..
- Summarize the results of oscillation for linear difference equations with systems of variables..

Prerequisite

Classification of linear difference equations.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall and Classify the models through linear difference equations of high-	K1,
	order	K2
CO2	Interpret the systems of two or more dependent variables for various models.	K2
CO3	Solve the Planetary motions through the study of a linear difference or differential equations to examination of an associated complex function	К3
CO4	Analyze the basic concepts of Difference equations.	K4
CO5	Determine various types of models through the solutions oscillate around zeroor eventually positive or eventually negative and also oscillation theory for self- adjoint equations	K5

Mapping of CO with POs and PSOs

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	3	2	2	2	3
CO2	2	3	3	2	2	2	3	2	2	3
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	3	2	2	3	3	3	3	2	2
CO5	2	2	3	3	2	3	2	2	2	3

"1" – Slight (Low) Correlation \neg "2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Linear Difference Equations of Higher Order			
Ι	 Difference Calculus: The power Shift, Factorial Polynomials and The Antidifference Operator - GeneralTheory of Linear Difference Equations - Linear Homogeneous Equations with Constant Coefficients Nonhomogeneous Equations: Method of Undetermined coefficients : The Method of Variation ofConstants (Parameters) 	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
	System of Linear Difference Equations			
Π	Autonomous (Time –Invariant) Systems : The Discrete Analogue of the Putzer Algorithm, The Development of the Algorithm for A ⁿ – the Basic Theory The Jordan form: Autonomous (Time –Invariant) Systems Revisited : Diagonalizable Matrices, The Jordan Form and Block-Diagonal Matrices.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
	The Z-Transform Method and Volterra Difference			
ш	Equations Definition and Examples : Properties of the Z-Transform – The Inverse Z-transform and Solutions of Difference Equations : The Power Series Method, The Partial Fractions Method and The Inversion Integral Method Volterra Difference Equations of convolution types: The Scalar Case.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
	Oscillation Theory		CO1,	K1,
IV	Oscillation Theory Three-Term Difference Equations – Self-Adjoint Second- Order Equations.	17	CO2, CO3, CO4, CO5	K2, K3, K4, K5
	Asymptotic Behavior of Difference Equations		CO1,	K1,
v	Tools and Approximation – Poincare's theorem : Infinite Products and Perron's Example – Asymptotically Diagonal Systems – High- Order Difference Equations	17	CO2, CO3, CO4, CO5	K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Limiting behavior of solutions – Linear Periodic System - Volterra Systems - Nonlinear Difference Equations - Second-Order Difference Equations : AGeneralization of the Poincare Perron Theorem.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

Saber N Elaydi, Third Edition, (2004), *An Introduction to Difference Equations*, Springer Verlag, New York. **Chapters and Sections**

UNIT-I	Chapter 2	Section 2.1 - 2.4
UNIT-II	Chapter 3	Sections 3.1 - 3.3
UNIT-III	Chapter 6	Sections 6.1 - 6.3
UNIT- IV	Chapter 7	Sections 7.1 & 7.2 (Page No. 313 - 320)
UNIT- V	Chapter 8	Sections 8.1 - 8.4

Reference Books

- 1. Ravi P.Agarwal and Kanishka Perera, Reprint, (2006), *Proceedings of the Conference on Differential and Difference Equations and Applications*, Hindawi Publishing Corporation.
- 2. Ravi P.Agarwal, Second Edition, (2000), *Difference Equations and Inequalites*, Marcel Dekker, Inc., New York.
- 3. Klaus Neusser, Reprint, (2021), Difference Equations for Economists RePEc/ IDEAS.

Web References

- 1. <u>https://www.voutube.com/watch?v=zw8xM5GHvZO</u>
- 2. https://www.voutube.com/watch?v=MtHpbGUIGaA
- 3. <u>https://www.youtube.com/watch?v=ESKx8PEJCB4</u>
- 4. <u>https://www.youtube.com/watch?v=_Xub0zCmlXk</u>
- 5. https://www.youtube.com/watch?v=IKtROKsWVR4
- 6. https://eprints.kfupm.edu.sa/id/eprint/9906/1/9906.pdf

Pedagogy

Power point Presentations, Group Discussions, Seminar, Quiz, Assignment and Smart Classroom.

Course Designer

Dr R. Buvaneswari.

Semester II	Internal Marks: 40	ExternalMarks:60					
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS			
22PMA2DSE2AP	COMPUTATIONAL MATHEMATICS USING MATLAB(P)	DISCIPLINE SPECIFIC ELECTIVE	6	3			

- To Provide Software that can be used to explore and experiment with Mathematical Constructions.
- Flexible for users to solve the various system of equations.
- To attain a high level of user support.

Prerequisite

• Basic knowledge of Higher Mathematics

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember the concepts of Algebra, Geometry, Numerical Analysis, Calculus, etc.	K1
CO2	Understand the calculation by reading documented source code	K2
CO3	Relate the mathematical thinking that is applicable to daily life	К3
CO4	Associate technological tools for graphical visualization	K4
CO5	Develop skills with core elements of MATLAB and gain an appreciation of social scientific work	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	3
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	3	2	3	2	3	2	3	2	2
CO5	2	2	2	2	2	2	2	2	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

LIST OF PROGRAMS

- 1. Mathematical operations
- 2. Finding GCD and LCM
- 3. Finding roots and solving the system of equations
- 4. Matrix Operations
- 5. Decision Making
- 6. Loop Types
- 7. Vector Operations
- 8. Working with Arrays
- 9. Plotting 2D Graphs
- 10. Plotting 3D Graphs
- 11. Importing and Exporting data in Excel
- 12. Integration
- 13. Differentiation and Finding Maxima and Minima
- 14. Manipulating strings
- 15. Laplace Transform and Fourier Transform

Web References

- 1. https://www.mathworks.com/products/matlab.html
- 2. <u>https://www.mathworks.com/help/matlab/ref/plot.html</u>
- 3. https://www.mathworks.com/help/stateflow/ug/operations-for-vectors-and-matrices.html
- 4. https://www.tutorialspoint.com/matlab/matlab_matrics.htm
- 5. https://www.javatpoint.com/matlab-numerical-integration

Pedagogy

Power point presentations and Assignment.

Course Designers

- 1. Dr. S. Sasikala
- 2. Ms. R. Soundaria.

Semester II	Internal Marks:40	External Marks:60			
COURSECODE	COURSETITLE	CATEGORY	CREDITS		
			Week		
23PMA2DSE2BP	ADVANCED	DISCIPLINE			
	NUMERICAL	SPECIFIC	6	3	
	METHODSUSING	ELECTIVE			
	MATLAB(P)	COURSE - II			

- To provide software that enables the investigation and testing of mathematical structures.
- It is versatile for users to solve various equation systems.
- To gain powerful user support.

Pre requisite

Basic knowledge of Higher Mathematics

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will beable to	Cognitive Level
CO1	Remember the concepts of Numerical Analysis	K1
CO2	Compute the numerical integration problems	K3
CO3	Apply the knowledge of various methods to solve numericalintegration problems	K3
CO4	Relate the mathematical thinking that is applicable to daily life	K3
CO5	Develop skills with core elements of MATLAB	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	3	2	2	2	3	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	3
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	3	2	3	2	3	2	3	2	2
CO5	2	2	2	2	2	2	2	2	2	2

"1"-Slight Low) Correlation

"2"-Moderate (Medium) Correlation

"3"-Substantial(High) Correlation

"-"indicates there is no correlation.

LIST OF PROGRAMS

- 1. Birge-Vieta method
- 2. Bairstow's method.
- 3. Power Method
- 4. Horner's Method
- 5. Singular valued Decomposition
- 6. QR factorization
- 7. Characteristic Equation
- 8. Eigen values and Eigen vectors
- 9. Adams-Bash forth predictor corrector Method
- 10. Milne's predictor corrector Method
- 11. Errors of Newton Raphson Method
- 12. Lobatto Integration Method

Web References

- 1. <u>https://www.mathworks.com/matlabcentral/fileexchange/21013-iterative-adaptive-simpson-and-lobatto-quadrature</u>
- 2. https://www.mathworks.com/matlabcentral/answers/308414-newton-raphsonmethod-errors
- 3. <u>https://www.mathworks.com/matlabcentral/answers/17931-bairstow-</u> method-to-find-polynomial-roots-matlab-code-
- 4. <u>https://www.mathworks.com/matlabcentral/fileexchange/63034-adams-bashforth-moulton-method</u>
- 5. https://www.mathworks.com/matlabcentral/fileexchange/99604-milne-s-method

Pedagogy

Power point presentations and Assignment.

Course Designer

Dr.R.Radha

Semester II	Internal Marks:40	External Ma	arks:60	
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/ WEEK	CREDITS
22PMA2DSE2CP	ORDINARY DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONSUSING MATLAB (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To identify different ordinary and partial differential equation problems and reformulate them in a way that is appropriate for using MATLAB.
- Use functions from the programming language library for efficient calculations and visualization.
- Solve problems systematically and implement the solution in MATLAB.

Prerequisite

Fundamental knowledge of ordinary and partial differential equations.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be ableto	Cognitive Level
CO1	Describe the use of fundamental data structures	K3
CO2	Apply MATLAB effectively to analyze and visualize data	K4
CO3	Solve scientific and mathematical problems	K4
CO4	Apply basic functions for ordinary and partial differential equations	K3
CO5	Compute programs in MATLAB	К5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	2	2	2	3	2	2	3
CO2	3	2	3	2	3	2	3	3	3	3
CO3	3	3	3	2	3	2	3	3	3	2
CO4	3	3	2	3	3	3	2	3	3	3
CO5	3	3	2	3	3	3	2	3	3	3

"1"–Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"- Substantial (High)Correlation

"-" indicates there is no correlation.

LIST OF PROGRAMS

- 1. Computing the solutions of First Order Differential Equations.
- 2. Determine the solutions to Initial Value Problems.
- 3. Plotting the solutions of First Order Differential Equations.
- 4. Plotting the solution of the second-order equations.
- 5. Computing the Solutions of the heat equations.
- 6. Finding the solutions of the Poisson equations.
- 7. Determine the solutions of Laplace Equations by Direct Method.
- 8. Computing the solutions of Laplace Equations by Iterative Method.
- 9. Solving the nonlinear system of Partial Differential Equations.
- 10. Plotting for the single Partial Differential Equations with the initial conditions.

Web References

- 1. https://in.mathworks.com/help/matlab/math/partial-differential-equations.html
- 2. <u>https://www.math.tamu.edu/reu/comp/matode.pdf</u>
- 3. <u>https://www.math.tamu.edu/~phoward/m401/pdemat.pdf</u>
- 4. <u>https://www.youtube.com/watch?v=-DmTK868J4A</u>
- 5. <u>https://www.youtube.com/watch?v=rwC7YU2WUf4</u>

Pedagogy

Power point presentations, Live Demo, Hands on training.

Course Designers

- 1. Dr. G. Janaki
- 2. Ms. A. Gowri Shankari.

Semester III	Internal Marks:	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA3CC8	TOPOLOGY	CORE	6	5

- **Define** the notion of topological spaces and characterize the properties of convergence, continuity, connectedness and compactness of the spaces.
- **Explore** the fundamental concepts of Product topology and box topology.
- Apply the idea of construction of the continuous real valued functions on normal spaces.

Prerequisite

•

Basic Knowledge of Real Analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Describe the basic concepts of topological spaces, continuous functions, connectedness, compactness, countability and separation axioms.	K2
CO2	Apply the topological concepts in various fields.	К3
CO3	Ascertain the notions of topological concepts, continuous functions, connectedness, compactness, countability and separation axioms.	K4
CO4	Evaluate the concepts of topological spaces, continuous functions, connectedness, compactness, countability and separation axioms.	K5
CO5	Develop the ideas involving topological spaces, continuous functions, connected ness, compactness, countability and separations axioms in different proofs.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	3
CO3	3	3	3	3	3	3	2	2	3	3
CO4	3	3	3	3	3	3	2	2	3	3
CO5	3	3	3	3	3	3	2	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Topological Spaces: Topological Spaces - Basis for a Topology - The Order Topology - The Product Topology on X x Y - The Subspace	18	CO1, CO2, CO3, CO4,	K2, K3, K4, K5,
	Topology - Closed Sets and Limit Points.		CO5 CO1,	K6 K2,
II	Continuous Functions: Continuous Functions - The Product Topology - The Metric Topology – The Metric Topology (continued).	18	CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
III	Connectedness: Connected Spaces - Connected Subspaces of the RealLine - Components and Local Connectedness.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
IV	Compactness: Compact Spaces - Compact Subspaces of the Real Line - Limit Point Compactness.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
V	Countability and Separation Axioms: The Countability Axioms - The Separation Axioms - Normal Spaces - The Urysohn Lemma - The Urysohn Metrization Theorem - The Tietze Extension Theorem – The Tychonoff Theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Topological Groups – The Quotient Topology –Nets - Local Compactness – Imbeddings of Manifolds.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5, K6

Text Book

James R. Munkres (2013). Topology (Second Edition). PHI Learning Private Limited, New Delhi.

Chapters and	d Sections	
UNIT-I	Chapter 2:	Sections 12 - 17
UNIT-II	Chapter 2:	Sections 18 - 21
UNIT-III	Chapter 3:	Sections 23 - 25
UNIT- IV	Chapter 3:	Sections 26 - 28
UNIT- V	Chapter 4:	Sections 30 – 35
	Chapter 5:	Section 37

Reference Books

- Mangesh G. Murdeshwar. (1999). *General Topology (Second Edition)*. New Age International (P) Limited, New Delhi.
- George F. Simmons. (2016). Introduction to Topology and Modern Analysis (26th Reprint). McGraw Hill Education (India) Private Limited, New Delhi.
- 3. Stephen Willard. (1998). General Topology. Dover Publications, INC, Mineola, New York.

Web References

- 1. https://youtu.be/jHQ7qEPkKkw
- 2. https://youtu.be/6-J75PtYC5E
- 3. https://tinyurl.com/yk65k76h
- 4. https://youtu.be/VDifg7aTXzg
- 5. https://youtu.be/bAkevWcBsxs
- 6. https://youtu.be/CGADr19iWSo
- 7. https://tinyurl.com/32cbv45m

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya

Semester - III	Internal Marks: 25	nternal Marks: 25 ExternalMarks:75			
COURSECODE	COURSETITLE	COURSETITLE CATEGORY			
23PMA3CC9	DISCRETE MATHEMATICS	CORE	6	4	

- **Develop** the mathematical concepts and technique which should serve as a preparation for more advanced quantitative courses.
- Analyze the method of logical reasoning to solve variety of problems.
- Apply mathematically correct terminology and notation.

Prerequisites

- Familiarity of concepts of statements logic and truth tables, sets, functions and relations.
- Counting principles, permutations and combinations.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand basic concepts in formal languages and computability, permutations, combinations, relations and functions, finite state machines, Boolean algebras.	K2
CO2	Classify algorithms based on the concepts of discrete Mathematics.	К3
CO3	Ascertain the notions of discrete Mathematics.	K4
CO4	Evaluate the concepts of discrete mathematics in problem solving.	K5
CO5	Deduce mathematical ideas in computability, permutations, combinations, relations and functions, finite state machines, Boolean algebras.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation \neg

"3" – Substantial (High) Correlation \neg

"2" – Moderate (Medium) Correlation \neg "-" indicates there is no correlation. Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	COMPUTABILITYANDFORMALLANGUAGES:Introduction-Russell's Paradox and Non computability- Languages-Phrase Structure Grammars- Types of Grammars and Languages.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY: Introduction- The Rules of Sum and Product – Permutations – Combinations – Generations of Permutations and Combinations - Discrete Probability – Conditional Probability.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	RELATIONS AND FUNCTIONS: Introduction – Relational Model for Data Bases – Properties of Binary Relations – Equivalence Relations and Partitions – Partial Ordering Relations and Lattices – Chains and Antichains- A job - Scheduling Problem.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	FINITE STATE MACHINES: Introduction – Finite State Machines – Finite State Machines as Models of Physical Systems – Equivalent Machines – Finite State Machines as Language Recognizers.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	BOOLEAN ALGEBRAS: Lattices and Algebraic System – Principle of Duality – Basic properties of Algebraic Systems defined by Lattices – Distributive and Complimented Lattices- Boolean Lattices and Boolean Algebras- Uniqueness of Finite Boolean Algebras - Boolean Functions and Boolean Expressions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Ordered sets - Information and Mutual Information -Functions and the Pigeonhole Principle - Finite StateLanguages and Type-3 Languages - Propositional Calculus	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

C.L.Liu, (2000), *Elements of Discrete Mathematics*(Second Edition), Tata McGraw-Hill Publishing Company

Limited.

Chapters and SectionsUNIT-IChapter 2:Sections 2.1, 2.2, 2.4-2.6.UNIT-IIChapter 3:Sections 3.1-3.7UNIT-IIIChapter 4:Sections 4.1-4.7

- UNIT-IV Chapter 7: Sections 7.1 7.5
- UNIT-V Chapter 12: Sections 12.1-12.7

Reference Books

- 1. J.P.Tremblay, R.Manohar,(2011), *Discrete Mathematical, Structures with Applications to Computer Science*, Tata McGraw Hill.
- 2. Ralph P. Grimaldi, B. V. Ramana(2006), Discrete and Combinatorial Mathematics, Pearson Education,.
- 3. Kenneth H. Rosen, (2008), *Discrete Mathematics & its Applications with combinatorics and graph theory*, Tata McGraw Hill Company Limited, New Delhi.

Web References

- 1. https://gyires.inf.unideb.hu/GyBITT/14/ch02s03.html
- 2. <u>https://www.youtube.com/watch?v=_rSBC86Tdkw</u>
- 3. https://www.youtube.com/watch?v=0HiMb-yf-nI
- 4. <u>https://www.youtube.com/watch?v=XJnIdRXUi7A</u>
- 5. <u>https://www.youtube.com/watch?v=wbBY2tTqXDA</u>
- 6. https://www.youtube.com/watch?v=Qa6csfkK7_I
- 7. https://plato.stanford.edu/entries/russell-paradox/
- 8. <u>https://youtu.be/WW-NPtIzHwk</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. P. Saranya.

Semester III	Internal Marks:25	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS		
22PMA3CC10	MEASURE AND INTEGRATION	CORE	6	5		

- Gain the knowledge to construct Lebesgue measure and its properties.
- Compute Lebesgue integrals by convergence theorems and Fubini's theorem.
- Familiarize the concepts of Measure theory.

Prerequisite

Basic knowledge in Real Analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe fundamental concepts of Measure and Integration through examples.	K2
CO2	Predict the important notions and their connections of Measure theory.	K3
CO3	Ascertain the concepts of Measure in real line, abstract spaces, product spaces, integration of functions of a real variables and convergence	K4
CO4	Evaluate mathematical proofs of results in Measure and Integration.	K5
CO5	Examine the methods of analysis that can be applied to real world problems.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	2	3
CO2	3	2	3	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	2	2
CO4	3	2	2	3	3	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	2	2

"1" – Slight (Low) Correlation \neg "2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Measure On the Real Line : Lebesgue Outer Measure – Measurable Sets – Regularity – Measurable Functions – Borel and Lebesgue Measurability	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
II	Integration of Functions of a Real variable : Integration of Non-negative Functions – TheGeneral Integral – Riemann and Lebesgue Integrals.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
ш	Abstract Measure Spaces : Measures and outer measures – Extension of a Measure – Uniqueness of the Extension – Completion of a Measure	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
IV	Inequalities and the L ^p spaces : The L ^p Spaces – Convex Functions. Convergence : Convergence in Measure – Almost UniformConvergence.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
V	Signed Measures and their Derivatives : Signed Measures and the Hahn Decomposition –The Jordan decomposition Measure and Integration in a Product Space : Measurability in a Product Space – The productmeasure and Fubini's theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
VI	 Self-Study for Enrichment (Not included for End Semester Examination) Hausdorff Measures on the Real line – Integration of Series Measure spaces – Integration with respect to a Measure – The Radon-Nikodym theorem – Lebesgue Measure in Euclidean space. 	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

Text Book

G.De Barra, (2003). Measure Theory and Integration, New Age International (P) Limited.

Chapters and Sections

UNIT–I UNIT II	Chapter 2: Chapter 3:	Sections 2.1 to 2.5 Sections 3.1, 3.2 and 3.4
UNIT-III	Chapter 5:	Sections 5.1 to 5.4
UNIT-IV	Chapter 6:	Sections 6.1, 6.2
	Chapter 7:	Sections 7.1, 7.2
UNIT-V	Chapter 8:	Sections 8.1, 8.2
	Chapter 10:	Sections 10.1, 10.2

Reference Books

- 1. Munroe. M.K. (1971). *Measure and Integration*, Addison Wesley Publishing Company.
- 2. Jain, P.K, Gupta, V.P. (2003). *Lebesgue Measure and Integration*, New Age International Pvt Limited Publishers New Delhi.
- 3. Richard L. Wheeden and Antoni Zygmund (1977). *Measure and Integral: An Introduction to Real Analysis*, Marcel Dekker Inc.
- 4. Inder, K. Rana (1997). An Introduction to Measure and Integration, Narosa Publishing House, New Delhi.

Web References

- 1. <u>https://www.youtube.com/watch?v=TG67nsccqeQ</u>
- 2. <u>https://www.youtube.com/watch?v=PGPZ0P1PJfw</u>
- 3. <u>https://www.youtube.com/watch?v=qAYX9Koo87o</u>
- 4. <u>https://www.youtube.com/watch?v=eu-6_wpTE-A</u>
- 5. <u>https://link.springer.com/book/10.1007/978-3-540-34514-5</u>
- 6. http://www.math.chalmers.se/~borell/MeasureTheory.pdf

Pedagogy

Assignment, Seminar, Lecture, Quiz, Group discussion, Brain storming, e-content.

Course Designer

Dr. V. Geetha

Semester : III	Internal Marks:	25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22PGCS3CCC2A	CYBER SECURITY	CORE CHOICE	3(T) + 2(P)	4	

- To develop skills in students that can help them plan, implement, and monitor cyber security mechanisms to ensure the protection of information technology assets.
- To expose students to governance, regulatory, legal, economic, environmental, social, and ethical contexts of cyber security.
- To expose students to the responsible use of online social media networks.
- To systematically educate the necessity to understand the impact of cyber-crimes and threats with solutions in a global and societal context.
- To select suitable ethical principles, commit to professional responsibilities and human values, and contribute value and wealth for the benefit of society

Prerequisite

Basic Knowledge of Cyber Security

Course Outcomes and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand the cyber security threat landscape	K1,K2
CO2	Develop a deeper understanding and familiarity with various types, cyber crimes, vulnerabilities, and remedies thereto.	K2, K3
CO3	Analyse and evaluate existing legal frameworks and laws on cyber security.	K4, k5
CO4	Analyse and evaluate the digital payment system security and remedial measures.	K4, K5
CO5	Analyse and evaluate the cyber security risks, plan suitablesecurity controls	K4, K5

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	P0 1	PO 2	PO 3	PO 4	PO 5	
CO1	3	3	3	3	3	3	3	3	3	3	
CO2	3	3	3	3	3	3	3	3	3	3	
CO3	3	3	3	3	2	3	3	3	3	2	
CO4	3	3	3	3	2	3	3	3	3	2	
CO5	3	3	3	3	2	3	3	3	3	2	

"1" – Slight (Low) Co relation "3" – Substantial (High) Correlation

"2" – Moderate (Medium)Correlation "-" indicates there is no correlation

SyllabusTheory

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Overview of Cyber Security: Cyber security increasing threat landscape, -Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism, Protection of end user machine, Critical IT and National Critical Infrastructure, Cyber warfare, Case Studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Cyber Crimes: Cyber Crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cyber-squatting, Pharming, Cyber espionage, Crypto jacking, Darknet- illegal trades, drug trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams, misinformation, fake news cyber crime against persons –cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Cyber Law: Cyber Crime and legal landscape around the world, IT Act, 2000 and its amendments. Limitations of IT Act, 2000. Cyber Crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies- AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Data Privacy and Data Security: Defining data, meta-data, big data, non-personal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data Protection Regulations(GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA). Social media- data privacy and security issues.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Cyber security Management, Compliance and Governance: Cyber security Plan-cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

VI	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Case Studies: Largest Cyber Attacks : Yahoo Data		CO3,	КЗ,
	Breach, Equifax Data Breach, WannaCry Malware Attack,		CO4,	K4,
	Simple Locker.		CO5	K5

Reference Books

- 1. Vivek Sood, (2017). Cyber Law Simplified. McGraw Hill Education
- 2. Sumit Belapure and Nina Godbole, (2011). *Computer Forensics and Legal Perspectives*. Wiley India Pvt. Ltd.
- 3. Dorothy F. Denning, (1998). Information Warfare and Security. Addison Wesley.
- 4. Henry A. Oliver, (2015). *Security in the Digital Age: Social Media Security Threats and Vulnerabilities*. Create Space Independent Publishing Platform.
- 5. Natraj Venkataramanan and Ashwin Shriram, (2016). *Data Privacy Principles and Practice*. 1st Edition, CRC Press.
- 6. W.Krag Brothy, (2008). *Information Security Governance, Guidance for Information Security Managers*. 1stEdition, Wiley Publication.
- 7. Martin Weiss, Michael G.Solomon, (2015). *Auditing IT Infrastructures for Compliance*. 2nd Edition, Jones & Bartlett Learning.

Web References

- 1. https://www.tutorialspoint.com/principles-of-information-system-security
- 2. https://www.geeksforgeeks.org/principle-or-information-system-secutiry/
- 3. https://www.techtarget.com/searchsecurity/definition/cybersecurity
- 4. https://www.ukessays.com/essays/computer-science/analysis-of-the-yahoo-data-breaches.php
- 5. https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
- 6. https://www.techtarget.com/searchsecurity/definition/WannaCry-ransomware
- 7. https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

Practicals:

List of Exercises (Not included for End Semester Examinations)

- 1. Platforms for reporting cyber crimes.
- 2. Checklist for reporting cyber crimes online
- 3. Setting privacy settings on social media platforms.
- 4. Do's and Don'ts for posting content on Social media platforms.
- 5. Registering complaints on a Social media platform.
- 6. Prepare password policy for computer and mobile device.
- 7. List out security controls for computer and implement technical security controls in the personal computer.
- 8. List out security controls for mobile phone and implement technical security controls in the personal mobile phone.
- 9. Log into computer system as an administrator and check the security policies in the system.

Web References

- 1. https://cybercrime.gov.in/
- 2. https://cybercrime.gov.in/webform/crime_onlinesafetytips.aspx
- 3. https://www.digitalvidya.com/blog/social-media-dos-and-donts/
- 4. https://www.medianama.com/2023/02/223-platform-grievance-appellate-committees-social-media/
- 5. https://www.ibm.com/topics/security-controls
- 6. https://docs.oracle.com/cd/E19683-01/817-0365/concept-2/index.html

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment.

Course Designer

From UGC SYLLABUS

Semester III	Internal Marks: 25	Externa		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA3CCC2B	INTRODUCTION TO CODING THEORY	CORE CHOICE	5	4

- Apply the coding theory to code an information using linear codes and cyclic codes.
- Acquire the knowledge of decoding the codes received and retrieve the original information.
- Find various bounds for various types of codes.

Prerequisite

Basic Knowledge in Algebra.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the concept of coding.	K2
CO2	Classify the Communication Channels and give the datas in arequired format.	K3
CO3	Determine the bounds on various coding.	K4
CO4	Examine some methodologies for the coding and decoding in an effective manner.	K4
CO5	Compare the notions of distinct codes and represent the data in a easyway.	К5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2	3	2	2	2	3
CO2	2	2	3	2	2	2	2	2	2	3
CO3	3	2	3	2	2	3	2	2	3	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	2	2	2	3	3	2	3	3	2	2

"1" – Slight (Low) Correlation \neg

"2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation \neg

"-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Error detection, correction and decoding:-		CO1, CO2,	K1, K2,
Ι	Communication Channels- Maximum likelihood	18	CO3,	K3,
	decoding- Hamming distance –Nearest		CO4,	K4,
	neighbor/minimum distance decoding.		CO5	K5
	Finite Fields, Fields, Delynomial rings, Structure of finite		CO1,	K1,
	Finite Fields: Fields- Polynomial rings–Structure of finite fields-Minimal Polynomials.		CO2,	K2,
II	Linear Codes: Vector spaces over finite fields- Linear	18	CO3,	КЗ,
	codes-Hamming weight-bases for linear codes.		CO4,	K4,
			CO5	K5
	Linear Codes: Equivalence of linear codes-Encoding with		CO1,	K1,
	linear code-Decoding of linear codes: Cosets- Nearest	18	CO2,	K2,
III	neighbor decoding for linear codes. Bounds in coding		СОЗ,	КЗ,
	theory: The main coding theory problem– Lowerbounds-		CO4,	K4,
	Hamming bound and perfect codes.		CO5	K5
			CO1,	K1,
	Bounds in coding theory: Singleton bound and MDS	18	CO2,	K2,
IV	codes-Plotkin bound-Nonlinear codes-griesmer bound.		СОЗ,	КЗ,
			CO4,	K4,
			CO5	K5
			CO1,	K1,
	Construction of cyclic codes: Definition-Generator	10	CO2,	K2,
V	polynomials-generator and parity check matrices-	18	CO3,	K3,
	Decoding of cyclic codes.		CO4,	K4,
			CO5	K5
	Self Study for Enrichment:		CO1,	K1,
X 7 T	(Not included for End Semester Examination) Distance of		CO2,	K2,
VI	a Code – Generator Matrix and parity-checkmatrix-	-	CO3,	K3,
	Syndrome decoding- Linear Programming bound – Brust-		CO4,	K4,
	error-correcting codes.		CO5	K5

Text Book

San Ling Chaoping Xing.(2004), Coding Theory: A First Course, The Cambridge University Press,

United States of America.

Chapters and Sections

UNIT-I UNIT-II	Chapter 2 Chapter 3 Chapter 4	Sections 2.1-2.4 Sections 3.1-3.4 Sections 4.1-4.4
UNIT-III	Chapter 4 Chapter 5	Sections 4.5- 4.8 Sections 5.1- 5.3
UNIT- IV UNIT- V	Chapter 5 Chapter 7	Sections $5.4 - 5.7$ Sections 7.1 to 7.4.

Reference Books

- 1. Lint Van J. H (2004). A Introduction to Coding Theory, Springer- Verlag, Berlin.
- Mary J Jones and Gareth A Jones(2004). *The Information and Coding Theory*, Springer- Verlag, Berlin.
- 3. Woungang I, Misra S & Misra S. C(2010). *Selected Topics in Information and Coding Theory*, Prentice Hall of India, New Delhi.

Web References

- 1. <u>https://www.youtube.com/watch?v=5wDVsXrDFoO</u>
- 2. https://www.youtube.com/watch?v=NULv-dp-UzO_
- 3. <u>https://www.youtube.com/watch?v= cdSLHfRN o</u>
- 4. https://u.cs.biu.ac.il/~lindell/89-662/coding_theory-lecture-notes.pdf
- 5. <u>https://users.math.msu.edu/users/halljo/classes/codenotes/Topstuff.pdf</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Dr. S. Saridha

Semester III	III Internal Marks: 25 External Marks:75			75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA3CCC2C	MECHANICS	CORE	5	4
		CHOICE		

- State the basic concepts of Lagrangian and Hamiltonian approaches to classical mechanics.
- **Explore** different applications of these concepts in mechanics.
- Analyze the methods of solving central force problems.

Prerequisite

Mechanics and differential equations at UG level.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe the fundamental concepts of Mechanics.	K2
CO2	Interpret and illustrate the knowledge of core principles in mechanics.	K3
CO3	Ascertain the analytical techniques for solving some partial differential equations that frequently occur in applications.	K4
CO4	Test for the importance of concepts such as generalized coordinates and constrained motion.	K4
C05	Build up an understanding of kinetic and potential energies of a system, the Lagrangian and Hamiltonian functions of systems will be set up in order to arrive at the equations of motion and to realize the reduction of a two-body problem to a one-body problem in a central force system.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	3
CO3	3	3	3	3	3	3	2	2	3	3
CO4	3	3	3	3	3	3	2	2	3	3
CO5	3	3	3	3	3	3	2	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	SURVEY OF THE ELEMENTARY PRINCIPLES Mechanics of a Particle– Mechanics of a System of Particles – Constraints– D'Alembert's Principle and Lagrange's Equations – Velocity-Dependent Potentialsand the Dissipation Function.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
Π	VARIATIONALPRINCIPLESANDLAGRANGE'S EQUATIONSHamilton's Principle – Some Techniques of the Calculus ofVariations – Derivation of Lagrange's Equations fromHamilton's Principle – Advantages of a Variational PrincipleFormulation – Conservation Theorems andSymmetry Properties – Energy Function and theConservation of Energy.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
III	THE CENTRAL FORCE PROBLEM Reduction to the Equivalent One-Body Problem– The Equations of Motion and First Integrals – The Equivalent One-Dimensional Problem and Classification of Orbits – The Virial Theorem.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
IV	THE CENTRAL FORCE PROBLEM The Differential Equation for the Orbit and Integrable Power- Law Potentials – Conditions for Closed Orbits (Bertrand's Theorem) – The Kepler Problem: Inverse Square Law of Force – The Motion in Time in the Kepler Problem – The Laplace-Runge-Lenz vector.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
V	THE HAMILTON EQUATIONS OF MOTION Legendre Transformations and the Hamilton Equations of Motion– Cyclic Coordinates and the Conservation Theorems – Routh's Procedure – Derivation of Hamilton's Equations from a Variational Principle – The Principle of Least Action.	15	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Simple Applications of the Lagrangian Formulation–Extending Hamilton's Principle to systems with constraints– Scattering in a Central Force Field– Transformation of the Scattering Problem to Laboratory Coordinates – The Hamiltonian Formulation of Relativistic Mechanics.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K6

Text Book

Herbert Goldstein, Charles P.Poole, John Safko (2011). *Classical Mechanics (Third Edition)*. Darling Kindersley, India.

Chapters and Sections

UNIT-I	Chapter 1	Sections 1.1 – 1.5
UNIT-II	Chapter 2	Sections 2.1 – 2.3, 2.5 – 2.7
UNIT-III	Chapter 3	Sections $3.1 - 3.4$
UNIT- IV	Chapter 3	Sections 3.5 – 3.9
UNIT- V	Chapter 8	Sections 8.1 – 8.3, 8.5, 8.6

Reference Books

- 1. S.K.Sinha (2009). Classical Mechanics. Narosa Publishing House, New Delhi.
- 2. J.C.Upadhaya (2003). Classical Mechanics. Himalaya Publishing House, New Delhi.
- 3. D.Greenwood(1985). Classical Dynamics. Prentice hall of India, New Delhi.

Web References

- 1. https://youtu.be/-9g3bqbZHCI
- 2. https://youtu.be/ONese 4PSeM
- 3. https://youtu.be/OWTaGzLeRpE
- 4. https://youtu.be/Wrr4d2De5IE
- 5. https://youtu.be/weiAz4hIVUI
- 6. https://youtu.be/2DvvSvUj Og
- 7. https://sites.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. C.Saranya

Semester III	Internal Mark	Internal Marks: -		:100
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA3DSE3A	ANALYTICAL SKILLS FOR COMPETITIVE EXAMINATIONS	DISCIPLINE SPECIFIC ELECTIVE	4	3

- Analyse the concepts concerned with linear and algebraic properties that are preserved under continuous deformations of objects.
- Enhance the students to develop analytical thinking and the study of continuity and connectivity
- Motivate the advance treatment of theory at a fairly understandable level.

Prerequisite

Basic Knowledge of algebra and vector spaces.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO 1	Remember the basic concepts and objective of algebra and vector spaces.	K1
CO 2	Illustrate the properties of algebra and vector spaces to find the solution.	K2
CO 3	Apply different terminologies of algebra and linear algebra	K3
CO 4	Classify the various properties in algebra and transformation	K4
CO 5	Interpret the problems involved in algebra and vector spaces	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	 Permutations - Combinations - Pigeon-hole Principle - Inclusion-Exclusion Principle - Derangements - Fundamental Theorem of Arithmetic - Divisibility in Z - Congruences - Chinese Remainder Theorem - Euler's Ø- Function - Primitive Roots. 	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Vector Spaces – Subspaces – Linear dependence – Basis – Dimension – Algebra of linear transformations.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Algebra of matrices – Rank and Determinant of matrices – Linear equations - Eigenvalues - Eigenvectors – Cayley –Hamilton theorem.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Matrix representation of linear transformations – Change of basis - Canonical forms – Diagonal forms – Triangular forms –Jordan forms.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Inner product spaces – Ortho normal basis – Quadratic forms –Reduction and Classification of Quadratic forms.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) The Double Dual - Lagrange Interpolation –Modules – Direct-Sum Decomposition Theorem – Operators on Inner Product Spaces.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- [1] Joseph A. Gallian, (1999), Contemporary Abstract Algebra, Narosa Publishing House, Fourth Edition.
- [2] David M. Burton (2012), Elementary Number Theory (Sixth Edition), Tata McGraw Hill Education Private Limited, New Delhi.
- [3] Kumaresan.S (2000), Linear Algebra: A Geometric Approach , Prentice hall.
- [4] Seymour Lipschutz (2001), Marc Lipson, Schaum's outlines- Linear Algebra ,Mcgraw Hill Education, Third Edition.
- [5] Krishnamurthy, Mainra V P and Arora JL (1976), Introduction to linear Algebra, East West Press, New Delhi.
- [6] Vasistha. A. R, Linear Algebra (2006), Krishna Prakashan media (P).
- [7] Stephen. H, Friedberg (2004), Linear Algebra, Prentice Hall of India Pvt Ltd.

Reference Books

- [1] Telang S. G. (2005), Number Theory (Reprint 2001), Tata McGraw Hill Education Private Limited, New Delhi.
- [2] David S. Dummit and Richard M. Foote, (2004), Abstract Algebra, Wiley and Sons, Third Edition.
- [3] Kenneth Hoffman and R. Kunze (1984): Linear Algebra, Phi Learning Private Limited, 2nd Edition.

Web References

- 1. <u>https://www.google.com/search?q=csir+net+mathematical+science+solved+question+papers&tbm=vid&ei=FeE0ZI7uILqOseMP_oSWyAw&start=10&sa=N&ved=2ahUKEwjOzIv8_aDAhU6R2wG HX6CBckQ8tMDegQIFhAE&biw=1366&bih=600&dpr=1#fpstate=ive&vld=cid:ee12b87c,vid:6iC mTnhgM0Y.</u>
- 2. <u>https://www.google.com/search?q=csir+net+mathematical+science+solved+linear+algebra+question+papers&biw=1366&bih=600&tbm=vid&ei=UeI0ZOmOLuWcseMP_IXwA4&ved=0ahUKEwipS_6DAhVITmwGHfzHBeg4FBDh1QMIDQ&uact=5&oq=csir+net+mathematical+science+solved+linear+algebra+question+papers&gs_lcp=Cg1nd3Mtd2l6LXZpZGVvEAM6BAgAEB46CAgAEIoFEIYDOgYIABAeEA06CgghEKABEMMEEAo6CAghEKABEMMEOgQIIRAKULwGWM0tYLY6aABwAHgAgAGAA4gBsheSAQgwLjEyLjIuMpgBAKABAcABAQ&sclient=gws-wiz-video#fpstate=ive&vld=cid:dffaef48,vid:ItF4GBWtdwQ</u>
- 3. <u>https://www.google.com/search?q=csir+net+mathematical+science+solved+linear+algebra+questio</u> <u>n+papers&biw=1366&bih=600&tbm=vid&ei=UeI0ZOmOLuWcseMP_IXwA4&ved=0ahUKEwipS</u> <u>6DAhVITmwGHfzHBeg4FBDh1QMIDQ&uact=5&oq=csir+net+mathematical+science+solved+lii</u> <u>near+algebra+question+papers&gs_lcp=Cg1nd3Mtd2l6LXZpZGVvEAM6BAgAEB46CAgAEIoFE</u> <u>IYDOgYIABAeEA06CgghEKABEMMEEAo6CAghEKABEMMEOgQIIRAKULwGWM0tYLY6</u> <u>aABwAHgAgAGAA4gBsheSAQgwLjEyLjIuMpgBAKABAcABAQ&sclient=gws-wiz-</u> <u>video#fpstate=ive&vld=cid:20257e30,vid:okGkqdNAyuQ</u>
- 4. <u>https://www.youtube.com/watch?v=bbQ0uPTLZzo</u>
- 5. https://www.youtube.com/watch?v=3KqG8Mc6C40
- 6. https://www.youtube.com/watch?v=RoYIu6LbSnI
- 7. <u>https://www.youtube.com/watch?v=rgxyxcTwvuo</u>
- 8. <u>https://www.youtube.com/watch?v=y_57UcnWHfU</u>
- 9. https://www.cuemath.com/numbers/the-fundamental-theorem-of-arithmetic/
- 10. <u>https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/euler-s-totient-function-phi-function</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignments.

Course Designer

Ms. V. ManiMozhi

Semester III	Internal Marks:25		External Marks:75	
COURSE CODE	COURSE TITLE CATEGORY		Hrs/Week	CREDITS
22PMA3DSE3B	STOCHASTIC PROCESSES	DISCIPLINE SPECIFIC ELECTIVE	4	3

- Acquire the basic concepts of stochastic processes and their applications.
- **Understand** the fundamental of renewal processes.
- **Explore** fundamental concepts in queuing theory.

Prerequisite

Basic knowledge in Probability

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember and recall the basic concept of probability	K1
CO2	Interpret the various states space and chains of the Stochastic Processes.	K2
CO3	Analyze the different techniques of Stochastic Processes.	К3
CO4	Classify the solution of mathematical problems using various techniques	K4
CO5	Examine the solution of various state space.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	2	2
CO4	3	2	2	3	3	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 Stochastic Processes: Some Notions : Introduction- Specification of Stochastic processes – Stationary processes Markov Chains: Definitions and examples – Higher Transition Probabilities – Generalization of Independent Bernoulli Trials: Sequence of Chain – Dependent Trials. 	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
п	Markov chains: Classification of States and Chains – Determination of Higher Transition Probabilities – Stability of a Markov System – Graph Theoretic Approach – Markov Chain with Denumerable Number of States- Reducible Chains – Markov Chains with Continuous State Space.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
ш	Markov Processes with Discrete State Space : Poisson Process and its Extensions – Poisson Process -Poisson Process and Related Distributions – Generalisations of Poisson Process-Birth and Death Process	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Renewal processes and Theory : Renewal Process – Renewal Processes in Continuous Time – Renewal Equation – Stopping time: Wald's Equation – RenewalTheorems.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Stochastic Processes in Queueing and Reliability – Queueing Systems: General Concepts – The Queueing Model M/M/1: Steady State Behaviour – Transient Behaviour of M/M/1 Model – Non-Markovian Queueing Models.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self-Study for Enrichment (Not included for End Semester Examination) Martingales – Non-Homogeneous chain– Markov Processes with Discrete State Space (Continuous Time Markov Chains) – Delayed and Equilibrium Renewal Processes – The Model GI/M/1.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Book

J. Medhi (1984), Stochastic Processes, New Age International (P) Limited, Publishers, New Delhi–Second Edition.

Chapters and Sections

UNIT I Chapter 2: Section 2.1 - 2.3Chapter 3: Section 3.1 - 3.3UNIT II Chapter 3: Section 3.4 - 3.9 and 3.11UNIT III Chapter 4: Section 4.1 - 4.4UNIT IV Chapter 6: Section 6.1 - 6.5UNIT V Chapter 10: Section 10.1 - 10.3 and 10.7

Reference Books

- 1. B.R.Bhat, Stochastic Models Analysis and Applications ,New Age International(P) Limited Publishers, New Delhi,2004
- Biswas, Suddhendu, Stochastic Processes in Demography and Applications, New Central Book Agency Calcutta, 2006.
- 3. T.Veerarajan, Probability, Statistics and Random Processes, Tata McGraw Hill Education Private Limited, New Delhi,2010.

Web References

- 1. <u>https://www.google.com/url?q=https%3A%2F%2Fmpaldridge.github.io%2Fmath27</u> 50%2FP04.html&sa=D&sntz=1&usg=AOvVaw1alFxYapjLEFq-K2MNhOjT
- 2. <u>https://images.app.goo.gl/8tiFh5mvAGGamRV86</u>
- 3. <u>https://www.google.com/url?q=https%3A%2F%2For.stackexchange.com%2Fquestions%2</u> <u>F4882%2Fhow-do-derive-the-steady-state-probabilities-m-m-1-k-queueing-</u> system&sa=D&sntz=1&usg=AOvVaw3OpFUoK7nMmoVMCKeClnlU
- 4. https://youtu.be/i3AkTO9HLXo
- 5. https://youtu.be/sb4jo4P4ZLI
- 6. https://youtu.be/L1fK3p5U4x0
- 7. https://youtu.be/xGkpXk-AnWU
- 8. <u>https://youtu.be/AOcCMi7SPqM</u>

Pedagogy

Assignment, Seminar, Group discussion, Brain storming, e-content.

Course Designer

Dr. S. Sasikala

Semester III	Internal Marks:	Internal Marks: 25 Ex		
COURSE CODE	COURSETITLE	CATEGORY	Hrs /WEEk	CREDITS
22PMA3DSE3C	FUZZY SETS AND THEIR APPLICATIONS	Discipline Specific Elective Course	4	3

- Introduce the concept of fuzzy set theory and study its application in real problems.
- Acquire knowledge of the uncertainty environment through the fuzzy logic that incorporates imprecision and subjectivity.
- **Provide** a good outline of a model formulation and solution process.

Prerequisite

Basic Knowledge of Algebra, Logic and Graph Theory.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Identify and Explain the basic concepts of Fuzzy sets and its properties	K1,K2
CO2	Classify the operations on Fuzzy sets	K3,K4
CO3	Explain and Relate Fuzzy sets and its Graphs	K3,K4
CO4	Distinguish clear and accurate results to assess the concepts of Fuzzy inference systems	K4,K5,K6
CO5	Develop and Define Fuzzy concepts to compute Design procedure forFuzzy expert systems	K5,K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	1	1	3	3	2	2	1
CO2	3	3	2	2	1	3	3	2	2	2
CO3	2	3	3	3	2	3	3	3	2	2
CO4	1	2	2	3	3	3	3	2	3	3
CO5	1	2	3	3	3	3	3	2	2	3

"1" – Slight (Low) Correlation \neg

"2" – Moderate (Medium) Correlation ¬

"3" – Substantial (High) Correlation \neg

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 FUZZY SETS : Sets - Operation of Sets -Characteristics of Crisp Set -Definition of Fuzzy Set -Expanding Concepts of Fuzzy Set - StandardOperation of Fuzzy Set THE OPERATION OF FUZZY SET : Standard Operations of Fuzzy Set Fuzzy Complement - 	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
	Fuzzy Union - Fuzzy Intersection - Other OperationsIn Fuzzy Set - T-norms and T-conorms			
II	FUZZY RELATION AND COMPOSITION :Crisp Relation -Properties of Relation on a Single Set- Fuzzy Relation - Extension of Fuzzy SetFUZZY GRAPH AND RELATION: Fuzzy Graph-Characteristics of Fuzzy Relation -Classification ofFuzzy Relation -Other Fuzzy Relations	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	FUZZY NUMBER: Concept of Fuzzy Number - Operation of Fuzzy Number -Triangular Fuzzy Number -Other Types of Fuzzy Number FUZZY FUNCTION: Kinds of Fuzzy Function - Fuzzy Extrema of Function -Integration and Differentiation of Fuzzy Function	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	PROBABILITYANDUNCERTAINTY:Probability and Possibility -Fuzzy Event -Uncertainty -Measure of Fuzziness-UncertaintyFUZZYLOGIC : Classical Logic -Fuzzy Logic - Linguistic Variable - Fuzzy Truth Qualifier - Representation of Fuzzy Rule	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	 FUZZY INFERENCE: Composition of Rules - Fuzzy Rules and Implication - Inference Mechanism Inference Methods FUZZY CONTROL AND FUZZY EXPERT SYSTEMS -Fuzzy Logic Controller -Fuzzification Interface Component - Knowledge Base Component Inference (Decision Making Logic) - Defuzzification - Design Procedure of Fuzzy Logic Controller - Application Example of FLC Design - Fuzzy Expert Systems 	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment: (Not included for End Semester Examination)Fusion of fuzzy system and neural networks - Neural Networks - Fusion With Neural Networks -Fusion of fuzzy system and genetic algorithms - Genetic Algorithms -Fusion With Genetic Algorithms	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Book

Chapters and Sections

Reference Bo	ooks	
UNIT- V	Chapter IX & X	Sections: 9.1 – 9.4 & 10.1 – 10.8
UNIT- IV	Chapter VII & VIII	Sections: 7.1 – 7.4 & 8.1 – 8.5
UNIT-III	Chapter V & VI	Sections: 5.1 – 5.4 & 6.1 & 6.3
UNIT-II	Chapter III & IV	Sections: 3.1 – 3.4 & 4.1 – 4.4
UNIT-I	Chapter I & II	Sections: 1.1 – 1.6 & 2.1 – 2.6

- Zimmermann H.J. (2006). Fuzzy Set Theory and its Applications. Fourth Edition. Springer(India) Private Limited.
- 2. Klir G. J. and Yuan B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice-Hall of India.
- 3. Ganesh M. (2006). Introduction to Fuzzy Sets and Fuzzy Logic. Prentice-Hall of India.

Web References

- 1. <u>https://www.tutorialspoint.com/fuzzy_logic/fuzzy_logic_introduction.htm</u>
- 2. <u>https://nitsri.ac.in/Department/Computer%20Science%20&%20Engineering/FuzzyLogic.pdf</u>
- 3. <u>http://site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf</u>
- 4. https://codecrucks.com/fuzzy-inference-system-concepts-foundation/
- 5. http://fuzzy.cs.ovgu.de/wiki/uploads/Lehre.FS0910/fs0910lecture07.pdf

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. K. Kalaiarasi

Semester III	Internal Mar	rks: 25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22PMA3GEC1	FOUNDATION FOR LOGICAL THINKING	GENERIC ELECTIVE	3	2	

- Explain many short tricks to solve mathematical problems easily.
- **Apply** the knowledge to **interpret** and **solve** the problems.
- **Predict** elite knowledge in verbal reasoning.

Prerequisite

Knowledge of basic mathematics

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the knowledge of the various techniques of quantitative aptitude and reasoning.	K1, K2
CO2	Apply the concepts in solving mathematical problems to succeed in various competitive examinations.	К3
CO3	Examine various types of Problems using arithmetic and reasoning test.	К3
CO4	Apply the concept obtained in the course to solve the problems.	K3
CO5	Analyse real-life problems and find solutions.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Arithmetical Ability:	9	CO1,	K1
	Surds and indices - Logarithms – Alligation or Mixture		CO2,	K2,
			CO3,	КЗ,
			CO4,	K4
			CO5	
II	Probability – Heights and Distances – Odd Man Outand	9	CO1,	K1
	Series		CO2,	K2,
			CO3,	КЗ,
			CO4,	K4
			CO5	
III	Data Interpretation:	9	CO1,	K1,
	Bar Graphs - Pie Chart - Line Graphs.		CO2,	K2,
			CO3,	КЗ,
			CO4,	K4
			CO5	
IV	Reasoning Test:	9	CO1,	K1,
	Relationship –Direction Sense Test - Problems basedon		CO2,	K2,
	Alphabet.		CO3,	КЗ,
			CO4,	K4
			CO5	
V	Logical Reasoning	9	CO1,	K1,
			CO2,	K2,
			CO3,	КЗ,
			CO4,	K4
			CO5	
VI	Self-Study for Enrichment: (Not included for End	-	CO1,	K1,
	Semester Examinations)		CO2,	K2,
	Arithmetical Ability: Permutation and Combination-		CO3,	КЗ,
	Clocks – Calendar.		CO4,	K4
	Verbal Reasoning: Analogy- Classification.		CO5	

Text Books

- R.S.Aggarwal (Reprint 2017), *Quantitative Aptitude for Competitive Examinations (Fully Solved)*, S.Chand and Company Ltd., New Delhi.
- 2. Dr. Lal, Jain and Dr. K. C. Vashisthu (2018), UGC NET/JRF/ SET Teaching & Research Aptitude, Upkar Prakashan, Agra.

Chapters and Sections

- UNIT-I Section I (9, 10, 21) [1]
- UNIT-II Section I (31, 34, 35) [1]
- UNIT-III Section II (37, 38, 39) [1]
- UNIT- IV Section I (1, 5, 7) [2]
- UNIT- V Section II [2]

Reference Books

- Dinesh Khattar (2016), Pearson Guide to Quantitative Aptitude for Competitive Examinations, Pearson Publication, 3rd Edition.
- 2. Lal, Jain and Vashisthu .K .C (2018), UGC NET/JRF/SET Teaching Research Aptitude.
- Abhijit Guha (2014), *Quantitative Aptitude for Competitive Examinations*, Mcgraw Hill Education Private Limited, New Delhi, 5th Edition.

Web References

- 1. https://www.indiabix.com/aptitude/questions-and-answers/
- 2. <u>https://www.youtube.com/watch?v=lFHjNbSmsCE</u>
- 3. <u>https://www.sawaal.com/aptitude-reasoning/quantitative-aptitude-arithmetic-ability-questions-and-answers.html</u>
- 4. <u>https://www.youtube.com/watch?v=xRLNYich5Ls</u>
- 5. <u>https://www.youtube.com/watch?v=qwHJtfEUCgE</u>
- 6. <u>https://www.youtube.com/watch?v=g0_1ZhueCcE</u>
- 7. https://www.indiabix.com/logical-reasoning/questions-and-answers/
- 8. https://byjus.com/govt-exams/logical-reasoning/

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designer

Ms. V. ManiMozhi

Semester IV	Internal Marks: 25	Externa	l Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA4CC11	COMPLEX ANALYSIS	CORE	6	5

Define analytic functions, linear transformations, Harmonic functions and power series.

- **Explore** the fundamental concepts of Cauchy's theorem, Cauchy's integral formula and the calculus of residues.
- Apply the idea of removable singularities, zeros and poles in various fields.

Prerequisite

Fundamental concepts in Real Analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the fundamental concepts of conformality, Analytic functions, complex integration and series.	K2
CO2	Apply the various concepts of complex integration in different fields.	K3
CO3	Ascertain the notion of complex integration, series, conformality and linear transformations.	K4
CO4	Evaluate the problems in complex integration using various concepts.	K5
CO5	Develop the basic concepts of complex integration, conformality, series in various fields.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	3	3
CO2	3	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3	2	3	3
CO4	3	3	3	3	3	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Conformality and Linear Transformations:		CO1,	K2,
			CO2,	КЗ,
Ι	Arcs and closed curves – Analytic Functions in Regions –	18	CO3,	K4,
	Conformal Mapping – Length and Area – The Linear Group –		CO4,	K5,
	The Cross Ratio – Symmetry.		CO5	K6
	Fundamental Theorems and Cauchy's Integral			
	Formula:		CO1	КЭ
			CO1,	K2,
т	Line Integrals – Rectifiable Arcs – Line Integrals as	10	CO2,	K3,
II	Functions of Arcs – Cauchy's Theorem for a Rectangle	18	CO3,	K4,
	- Cauchy's Theorem in a Disk – The Index of a Pointwith		CO4,	K5,
	Respect to a Closed Curve – The Integral Formula		CO5	K6
	– Higher Derivatives.			
	Local Properties of Analytical Functions:		CO1,	K2,
	L V		CO2,	K3,
III	Removable Singularities. Taylor's Theorem – Zeros and	18	CO3,	K4,
	Poles – The Local Mapping – The Maximum Principle.		CO4,	K5,
			CO5	K6
	The General Form of Cauchy's Theorem and The		005	
	Calculus of Residues:			
	Calculus of Residues.		CO1,	K2,
	Chains and Cycles – Simple Connectivity – Homology –		CO2,	КЗ,
IV	The General Statement of Cauchy's Theorem - Proof of	18	CO3,	K4,
	Cauchy's Theorem – Locally Exact Differentials – The		CO4,	K5,
	Residue Theorem – The Argument Principle – Evaluation of		CO5	K6
	Definite Integrals.			
	However, Eventions and Down Contractions			
	Harmonic Functions and Power Series Expansions:		CO1,	K2,
	Definition and Basic Properties – The Mean-value		CO2,	K3,
V	Property – Poisson's Formula – Schwarz's Theorem – The	18	CO3,	K4,
	Reflection Principle – Weierstrass's Theorem – The Taylor	10	CO4,	K5,
	Series – The Laurent Series.		CO5	K6
	Self Study for Enrichment:		CO1,	K2,
171	(Not included for End Semester Examinations)		CO2,	КЗ,
VI	Elementary Point Set Topology - Oriented Circles -	-	СОЗ,	K4,
	Families of Circles - Multiply Connected Regions.		CO4,	K5,
			CO5	K6

Text Book

Lars V. Ahlfors. (1979). *Complex Analysis* (Third Edition). McGraw-Hill International Editions.

Chapters and Sections

UNIT-I	Chapter 3: Sections 2.1 – 2.4, 3.1 – 3.3
UNIT-II	Chapter 4: Sections 1.1 – 1.5, 2.1 – 2.3
UNIT-III	Chapter 4: Sections $3.1 - 3.4$
UNIT- IV	Chapter 4: Sections 4.1 – 4.6, 5.1 – 5.3
UNIT- V	Chapter 4: Sections $6.1 - 6.5$
	Chapter 5: Sections $1.1 - 1.3$

Reference Books

- Serge Lang. (2005). *Complex Analysis* (Fourth Edition, First Indian Reprint). Springer International Edition.
- Ponnusamy S. (2007). Foundations of Complex Analysis (Second Edition, First Reprint). Narosa Publishing House Pvt. Ltd.
- John B. Conway. (2002). Functions of One Complex Variable (Second Edition, Sixteenth Reprint). Narosa Publishing House.

Web References

- 1. https://youtu.be/3rOjkI9G8TO
- 2. <u>https://tinyurl.com/45me9mx6</u>
- 3. https://tinyurl.com/yrmka7d9
- 4. https://youtu.be/OCnFnBtlg-c
- 5. https://tinyurl.com/3mthbnsp
- 6. <u>https://tinyurl.com/52y5mmpw</u>
- 7. https://tinyurl.com/58p5c888

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya

Semester IV	Internal Marks: 25	Extern	nal Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PMA4CC12	FUNCTIONAL ANALYSIS	CORE COURSE	6	5

- Explore Banach spaces, Hilbert spaces and their properties.
- **Compose** clear, accurate proof of Hahn Banach Theorem, Open Mapping Theorem using continuous linear transformation and Conjugate of an operator.
- Analyze the structure of Commutative Banach Algebras to prove the Gelfand Neumark theorem.

Prerequisite

Topology and Linear algebra at PG level.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be ableto	Cognitive Level
CO1	Explain Banach spaces, Hilbert spaces, Banach algebras, commutative banach algebra and interpret their properties withother type of spaces.	K2
CO2	Apply the analytical techniques and theoretical knowledge in Banach spaces, Hilbert spaces, Banach algebras, commutativebanach algebras.	K3
CO3	Construct banach algebras, Commutative banach algebra through banach spaces and determine orthonormal sets in Hilbert spaces.	K4
CO4	Analyze the properties of the operators defined on these spaces.	K4
CO5	Attain knowledge and experience of working with many pure mathematical problems.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	3	2	2	2	3	2	2	2	3
CO4	2	2	2	2	2	3	2	2	2	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	BANACH SPACES The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem – The natural imbedding of N in N** – The open mapping theorem – The conjugate of an operator.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
II	HILBERT SPACES The definition and some simple properties – Orthogonal complements – Orthonormal sets – The conjugate space H*.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	HILBERT SPACES The adjoint of an operator – Self-adjoint operators – Normal and unitary operators – Projections.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
IV	GENERALPRELIMINARIESONBANACHALGEBRASThe definition and some examples – Regular andsingular elements – Topological divisors of zero – Thespectrum – The formula for the spectral radius – Theradical and semi-simplicity.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
V	THESTRUCTUREOFCOMMUTATIVEBANACH ALGEBRASThe Gelfand mapping – Applications of the 1formula $r(x) = \lim x^n$ n InvolutionsinBanachAlgebras – The Gelfand-Neumark theorem.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
VI Toyt Boo	Self Study for Enrichment: (Not included for End Semester Examinations) Euclidean and unitary spaces – Weak topologies– Linear spaces – Determinants and the spectrum of an operator – Commutative C*-algebras.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

Text Book

George F. Simmons (2016). *Introduction to Topology and Modern Analysis*(26th *reprint*). Mcgraw Hill Education (India) Private Limited, New Delhi.

Chapters and Sections

UNIT-I	Chapter 9	Sections 46-51
UNIT-II	Chapter 10	Sections 52 – 55
UNIT-III	Chapter 10	Sections 56 – 59
UNIT- IV	Chapter 12	Sections 64 – 69
UNIT- V	Chapter 13	Sections 70 – 73

Reference Books

- Walter Rudin (2008). Functional Analysis (Fourth Reprint). Tata Mcgraw-Hill Publishing Company Limited, New Delhi.
- B.V. Limaye (2002). *Functional Analysis (Second Edition)*. New Age International (P) Limited Publishers, New Delhi.
- K.Yosida (2005). Functional Analysis (Second Indian Reprint). Springer-Verlag, Newyork.

Web References

- 1. https://youtu.be/imYOJOgUx7Y
- 2. https://youtu.be/EGii1lz7XHA
- 3. https://youtu.be/MfZz1k9rlUc
- 4. https://youtu.be/0LnL9kE-6us
- 5. <u>https://youtu.be/zOPEABKzBpc</u>
- 6. https://youtu.be/kiUTXw3_jds
- 7. https://59clc.files.wordpress.com/2012/08/functional-analysis- -rudin-2th.pdf
- 8. https://people.math.ethz.ch/~salamon/PREPRINTS/funcana.pdf
- 9. <u>https://zlib.pub/book/introduction-to-topology-and-modern-analysis-</u> <u>7ih9srua6920</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. C. Saranya

Semester IV	Internal Marks: 25		ExternalMa	rks:75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PMA4CCC3A	DIFFERENTIAL GEOMETRY	CORE CHOICE COURSE	6	4

- Introduce space curves and its characterizations.
- **Study** properties of curves on surfaces.
- Understand the concepts of Geodesics and canonical Geodesics equations.

Prerequisite

Knowledge of basic concepts of Vectors and Differentiation.

Course Outcomes

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
C01	Understand the concepts of a space curve, Geodesics, developables, helihoids and umbilics.	K2
CO2	Compute its curvature and torsion, surface of revolution, Existence theorems and lines of curvature.	K2
CO3	Acquire the knowledge of curves on a surface, Geodesic curvature and lines of curvature	K3
CO4	Determine the second fundamental form and developable associated with curves on surfaces, Hilbert's Lemma and classify differential geometry of several surfaces.	
CO5	Interpret the concepts of geodesics and its normal properties, differential geometry of surfaces and also familiar with Gauss Bonnet Theorem.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	1	3	3	1	2
CO2	3	3	2	1	3	1	3	3	2	2
CO3	3	3	2	2	3	1	3	3	2	2
CO4	3	3	2	2	3	1	3	3	2	2
CO5	3	3	2	2	3	1	3	3	2	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	The Theory of Space Curves	18	CO1,	K1
	Definitions – Arc length – Tangent, normal and	-	CO2,	K2,
	binormal – Curvature and torsion of a curve given as the		CO3,	K3,
	intersection of two surfaces - Contact between curves and		CO4,	K4
	surfaces – Tangent surface, involutes and evolutes – Helices.		CO5	
II	The Metric	18	CO1,	K1
	Definition of a surface – Curves on a surface – Surfaces		CO2,	K2,
	of revolution – Helicoids – Metric – Direction		CO3,	КЗ,
	coefficients – Families of curves – Isometric		CO4,	K4
	correspondence.		CO5	
III	Geodesics	18	CO1,	K1,
	Geodesics – Canonical geodesic equations – Normal		CO2,	K2,
	property of geodesics - Existence theorems - Geodesic		CO3,	КЗ,
	parallels – Geodesic curvature – Gauss-Bonnet Theorem		CO4,	K4
			CO5	
IV	The Second Fundamental Form: Local Non-Intrinsic	18	CO1,	K1,
	Properties of a Surface		CO2,	K2,
	The Second fundamental form – Principal		CO3,	K3,
	curvatures – Lines of curvature – Developables –		CO4,	K4
	Developables associated with space curves.		CO5	
V	Differential Geometry of surfaces in the large	18	CO1,	K1,
	Compact surfaces whose points are umbilics – Hilbert's		CO2,	K2,
	Lemma - Compact surfaces of constant Gaussian or mean		CO3,	КЗ,
	curvature – Complete surfaces.		CO4,	K4
			CO5	
VI	Self-Study for Enrichment: (Not included for End	-	CO1,	K1,
	Semester Examinations)		CO2,	K2,
	Intrinsic equations, fundamental existence theorem for		CO3,	КЗ,
	space curves - Intrinsic properties - Gaussian curvature -		CO4,	K4
	Surfaces of constant curvature - Developables associated with		CO5	
	curves on surfaces- Characterization of complete surfaces.			

Text Books

T.J. Willmore (2017), *An Introduction to Differential Geometry* (21st Impression), Oxford University Press, New Delhi.

Chapters and Sections

UNIT-I	Chapter I:	Sections: 2 - 7 & 9
UNIT-II	Chapter II:	Sections: 1 - 8
UNIT-III	Chapter II:	Sections: 10 - 16
UNIT- IV	Chapter III:	Sections: 1 - 5
UNIT- V	Chapter IV:	Sections: 2 - 5

Reference Books

- 1. D. Somasundaram (2010), *Differential Geometry*, A First Course (Third Reprint), Narosa Publishing House, New Delhi.
- 2. Christian Bar (2011), *Elementary Differential Geometry* (First South Asian Edition), Cambridge University Press, New York.
- 3. J.A. Thorpe (2004), *Elementary Topics in Differential Geometry* (First Indian Reprint), , Springer-Verlag, New York.

Web References

- 9. https://www.youtube.com/watch?v=4fB0VfKZRXM
- 10. <u>https://youtu.be/1HUpNAS81PY?list=PLIIjB45xT85DWUiFYYGqJVtfnkUFWkKtP</u>
- 11. <u>https://youtu.be/J-RgiQca6Q8?list=PLIljB45xT85DWUiFYYGqJVtfnkUFWkKtP</u>
- 12. https://youtu.be/drOldszOT7I?list=PLIIjB45xT85DWUiFYYGqJVtfnkUFWkKtP
- 13. https://youtu.be/QXrqsz5zD2I
- 14. https://youtu.be/zADj0k0waFY
- 15. https://people.math.ethz.ch/~salamon/PREPRINTS/diffgeo.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designer

Ms. A. Gowri Shankari

Semester IV	Internal Marks: 25	External Marks: 75		
COURSECODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PMA4CCC3B	FORMAL LANGUAGE AND AUTOMATA THEORY	CORE CHOICE COURSE – III	6	4

- **Explore** the nuances of Automata and Grammar.
- Analyze the applications of these techniques in Computer science.
- Apply the ideas for constructing the Regular Expressions.

Prerequisite

Familiarity in concepts of Discrete Mathematics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the basic concepts of automata, regular expressions, regular sets, grammars and compilers.	К2
CO2	Interpret the fundamental ideas in formal languages, automata, compilersand regular sets.	К2
CO3	Relate the concepts of deterministic and nondeterministic Finite Automata, grammars, regular expressions with pushdown automata, compilers and regular sets.	К3
CO4	Determine the implementation of automata languages, regular expressions, regular sets in compilers.	K4
CO5	Deduce mathematical notions in computability of regular expressions, automata, grammars, and regular sets and compilers.	К5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3
	"1" – Slight (Low) Correlation –						– Moderate	(Medium)	Correlation)–

"1" – Slight (Low) Correlation \neg

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	FINITE AUTOMATA: Finite state systems – Basic definitions – Nondeterministicfinite automata – Finite automata with ε – moves.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
II	REGULAR EXPRESSIONS AND CONTEXT-FREE GRAMMARS: Regular expressions - Motivation and introduction –Context- free grammars – Derivation trees – Chomsky normal form – Greibach normal form.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	PROPERTIES OF REGULAR SETS: The pumping lemma for regular sets - Closure properties of regular sets - Decision algorithms for regular sets - The Myhill-Nerode theorem and minimization of finite automata.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
IV	PUSHDOWN AUTOMATA: Informal description - Definitions - Pushdown automata and context-free languages.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
V	INTRODUCTION TO COMPILERS: Compilers and translators – Why we need translators? - The structure of compiler - Lexical analysis - Syntax analysis - Intermediate code generation – Optimization - Code generation - Book keeping - Error handling - Compiler writing tools - Getting Started.	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Strings, alphabets and languages - Graphs and trees - Applications of finite automata –From regular expression to finite automata - Minimizing the number of states of a DFA.	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

Text Books

- John E. Hopcroft and Jeffery D. Ullman (1979), *Introduction to Automata theory, Languages and Computation*, Narosa Publishing House Pvt. Ltd
 Alfred V. Aho and Jeffrey D. Ullman, (2002), *Principles of Compiler Design (Twentyfifth*
- Reprint), Narosa Publishing House.

Chapters and Sections

ers and Section	115
UNIT-I	Chapter 2[1]: Sections 2.1 - 2.4
UNIT-II	Chapter 2[1]: Sections 2.5
	Chapter 4[1]: Sections 4.1 - 4.3, 4.5, 4.6
UNIT-III	Chapter 3[1]: Sections $3.1 - 3.4$
UNIT-IV	Chapter 5[1]: Sections $5.1 - 5.3$
UNIT-V	Chapter 1[2]: Sections 1.1 – 1.12

Reference Books

- 1. Iyengar N Ch S. N., Chandrasekaran V.M, Venkatesh K. A, Arunachalam P.S.(2005), *Discrete Mathematics(Third Reprint)*, Vikas Publishing House Pvt Ltd.
- 2. Dhamdhere (2008), Compiler Construction, (Reprint five time), Macmillan India Ltd.
- 3. Alfred V. Aho Ravi Sethi Jeffrey D. Ullman (2007), *Compilers Principles, Techniques, and Tools*, Pearson Education.

Web References

- 1. https://www.vssut.ac.in/lecture_notes/lecture1423726104.pdf
- 2. https://www.iitg.ac.in/dgoswami/Flat-Notes.pdf
- 3. <u>https://www.youtube.com/watch?v=ntrF_KxHn18&pp=ygUacHVzaGRvd24gYXV0b21hdGEgZ</u> <u>XhhbXBsZXM%3D</u>
- 4. <u>https://www.youtube.com/watch?v=4nx8LEGy9kI&pp=ygUlbGV4aWNhbCBhbmFseXNpcyBkZ</u> <u>WZpbml0aW9uICBleGFtcGxlcw%3D%3D</u>
- 5. <u>https://www.youtube.com/watch?v=H0Mf4FE2wiU&pp=ygUoUmVndWxhciBFeHByZXNzaW9</u> <u>ucyBkZWZpbml0aW9uICBleGFtcGxlcw%3D%3D</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Saridha

Semester IV	Internal Marks: 25	External Marks: 75				
COURSECODE	COURSE	CATEGORY	HOURS /	CREDITS		
	TITLE		WEEK			
22PMA4CCC3C	FLUID DYNAMICS	CORE CHOICE COURSE	6	4		

- Understand the dynamics of real fluids.
- Familiarize with the properties of fluids and the applications of fluid dynamics.
- Apply the concept of fluid measurement, types of flows and dimensional analysis.

Prerequisite

Basic concepts in Dynamics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand the measuring techniques of temperature, heat flux, pressure, velocity, force and flow rate.	K2
CO2	Apply governing equations for particular flow fields with applications and analyse potential flows and execute concept of conformal transformation for flow over bodies.	K3
CO3	Compute the Navier - Stokes equations of Motion of a Viscous Fluid and analyse the Kinematics of fluids, two dimensional and three-dimensional flows through various techniques	К3
CO4	Examine viscous flows through various systems and apply various intrusive and non-intrusive techniques to measure flow and fluid properties.	K4
CO5	Evaluate the knowledge of experimental fluid dynamics and analyze of fluid motion.	К5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	2	2	3
CO2	3	3	2	1	3	3	3	2	3	2
CO3	3	3	2	2	3	2	3	2	3	2
CO4	3	3	2	2	3	2	2	3	3	3
CO5	3	3	2	2	3	3	3	3	3	2

- "1" Slight (Low) Correlation
- "2" Moderate (Medium) Correlation
- "3" Substantial (High) Correlation
- "-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Kinematics of Fluids in Motion: Real Fluids and Ideal Fluids – Velocity of a Fluid at a point – Streamlines and Path lines; Steady and Unsteady Flows – The Velocity potential – The Vorticity vector – Local and Particle Rates of Change – The Equation of continuity – Worked examples – Acceleration of a Fluid – Conditions at a rigid boundary Equations of Motion of a Fluid: Pressure at a point in a Fluid at Rest – Pressure at a	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
	point in a Moving Fluid – Conditions at a Boundary of Two Inviscid Immiscible Fluids – Euler's equations of motion – Bernoulli's equation – Worked examples.			
Π	Equations of Motion of a Fluid: Discussion of the case of steady motion under conservative body forces – Some potential theorems – Some Flows Involving Axial Symmetry – Some special two- Dimensional Flows – Impulsive Motion Some Three-Dimensional Flows: Sources, Sinks and Doublets – Images in a Rigid Infinite Plane – Images in solid spheres – Axi-Symmetric Flows; Stokes's stream function.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Some Two-Dimensional Flows: Meaning of a Two-Dimensional Flow – Use of cylindrical Polar coordinates – The stream function – The Complex Potential for Two-Dimensional, Irrotational, Incompressible Flow – Complex velocity potentials for Standard Two- Dimensional Flows – Some worked examples – Two- Dimensional Image systems – The Milne-Thomson circle theorem – The Theorem of Blasius.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Some Two-Dimensional Flows: The use of conformal Transformation – The Schwarz- Christoffel Transformation	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

	Viscous Flow:			
	Stress components in a Real fluid – Relations between Cartesian components of stress – Translational Motion of Fluid Element – The Rate of Strain Quadric and Principal Stresses – Some Further properties of the Rate of Strain Quadric – Stress Analysis in Fluid Motion – Relations Between stress and rate of strain – The coefficient of viscosityand Laminar Flow			
V	Viscous Flow: Some solvable problems in Viscous Flow – Steady Viscous Flow in Tubes of Uniform cross section – Diffusionof Vorticity – Energy Dissipation due to Viscosity – Steady Flow past a Fixed Sphere Dimensional Analysis; Reynolds Number.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) General analysis of fluid motion –Some Further Aspects of Vortex Motion - Some Special Forms of the Stream Function for Axi-Symmetric Irrotational Motions – Vortex Rows - – The Navier-Stokes equations of Motion of a ViscousFluid - Prandtl's Boundary Layer.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

F. Chorlton (2004), Text Book of Fluid Dynamics, CBS Publishers & Distributors Pvt. Ltd., New Delhi.

Chapters and Sections

UNIT-I	Chapter 2:	Sections 2.1 - 2.10
	Chapter 3:	Sections 3.1 - 3.6
UNIT-II	Chapter 3:	Sections 3.7 - 3.11
	Chapter 4:	Sections 4.2 - 4.5 (omit 4.5.1)
UNIT-III	Chapter 5:	Sections 5.1 – 5.9
UNIT-IV	Chapter 5:	Sections 5.10 – 5.11
	Chapter 8:	` Sections 8.1 − 8.8
UNIT-V	Chapter 8:	Sections 8.10 – 8.15

Reference Books

- [1] Dr. M.D. Raisinghania (2013), *Fluid Dynamics with Complete Hydrodynamics and Boundary Layer Theory*, S. Chand & Company Pvt. Ltd. (Online PDF)
- [2] Hyoung Woo Oh (2012), Advanced Fluid Dynamics. (Online PDF)
- [3] J.H. Ferziger & M. Peric (2005), *Computational methods for fluid Dynamics* (Third Edition), Springer Verlag.

Web References

- 1. <u>https://www.youtube.com/watch?v=zzdWqBnwkys</u>
- 2. https://tinyurl.com/yunrr3eb
- 3. <u>https://www.youtube.com/watch?v=I4NZANfyzMs&list=PL1UZBJqzzy--</u> <u>IKFA0xRcsgVsdqctF2r2p&index=2</u>
- 4. <u>https://tinvurl.com/bdf2bwv3</u>
- 5. <u>https://www.youtube.com/watch?v=wlPXZrP9vR8&list=PLCoE5wxWtHFYiVGswvsWR</u> <u>aHjv18vxZzE2</u>
- 6. <u>file:///C:/Users/user/Downloads/toaz.info-fluid-dynamics-by-chorlton-</u> pr 5ce01488c289a4a10ce5d30a8198cc16.pdf

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. G. Janaki

Semester IV	Internal Marks: 25	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
22PMA4GEC2	OPTIMIZATION TECHNIQUES	GENERIC ELECTIVE	3	2		

- Understand the various features of Operations research.
- Analyze the optimum solutions using Operations research.
- **Explore** the concepts of Operations research in real life problems.

Prerequisite

Basic computational knowledge.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Illustrate the various notions in the respective streams.	K2
CO2	Identify the different terminologies of Operations research	K3
CO3	Analyze the solutions of mathematical problem using specific techniques.	K4
CO4	Simplify the optimum solutions of a mathematical problem.	K5
CO5	Construct various mathematical problem of Sequencing.	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	2	3	3	3	2	3
CO2	3	2	3	3	2	3	3	3	3	2
CO3	3	2	3	3	2	3	2	3	2	2
CO4	3	2	2	2	2	3	3	2	3	2
CO5	3	2	3	2	2	3	3	3	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Linear Programming Problem – Mathematical Formulation		CO1,	К2,
	Introduction - Linear Programming		CO2,	K2, K3,
	Problem - Mathematical Formulation of the Problem - Illustration on Mathematical		CO3,	K4,
	Formulation of LPPs.	9	CO4,	K5,
	Linear Programming Problem – Graphical Solution and Extension		CO5	K6
	Introduction - Graphical Solution Method - Some Exceptional Cases			
Π	Linear Programming Problem – Graphical Solution and Extension			
	General Linear Programming Problem -		CO1,	K2,
	Canonical and Standard Forms of LPP.		CO2,	K3,
	Linear Programming Problem – Simplex	9	СОЗ,	K4,
	Method		CO4,	K5,
	Introduction - Fundamental Properties of		CO5	K6
	Solutions - The computational Procedure.			
III	Transportation Problem:	9	CO1,	K2,
	The Transportation Table – Solution of		CO2,	K3,
	a Transportation Problem - Finding an initial		CO3,	K4,
	basic feasible solution - Transportation		CO4,	K5,
	algorithm (MODI method) - Some exceptional Cases.		CO5	K6
IV	Assignment Problem:		CO1,	K2,
			CO2,	КЗ,
		9	СОЗ,	K4,
	Assignment Problem.		CO4,	K5,
			CO5	K6
V	Sequencing Problem:		CO1,	К2,
	Introduction – Problem of		CO2,	K3,
	Sequencing – Basic Terms Used in	9	CO3,	K4,
	Sequencing – Processing n Jobs through		CO4,	K5,
	Two Machines – Processing n Jobs through k Machines.		CO5	K6
VI	Self Study for Enrichment:			
	(Not included for End Semester		CO1,	K2,
	Examinations)	-	CO1, CO2,	K2, K3,
	Some Exceptional Cases(Graphical Solution)		CO2, CO3,	K3, K4,
	- Use of Artificial Variables – Degeneracy in		CO3, CO4,	K4, K5,
	Transportation Problem – The Traveling		CO4, CO5	K3, K6
	Salesman Problem - Processing 2 Jobs		005	IXU
	through k Machines.			

Text Book

Kanti Swarup, P.K. Gupta, Manmohan. (2008). Operations research, Sultan Chand & sons

Chapters and Sections

UNIT-I	Chapter 2: Sections $2.1 - 2.4$
	Chapter 3: Sections 3.1 - 3.3.
UNIT-II	Chapter 3: Sections 3.4 - 3.5.
	Chapter 4: Sections $4.1 - 4.3$
UNIT- III	Chapter 10: Sections 10.5, 10.8, 10.9, 10.13, 10.15.
UNIT- IV	Chapter 11: Sections 11.1, 11.3, 11.4
UNIT- V	Chapter 12: Sections 12.1 – 12.5.
D 4 D	

Reference Books

- 1. Hamdy A.Taha. (2017). *Operations Research An Introduction* Pearson India Education services PVT Ltd
- 2. Premkumar Gupta. (2004). *Operations Research*. S.Chand & Company Ltd, New Delhi..
- Chandrasekhara Rao.K, Shanti Lata Mishra. (2008). Real Operations Research, Narosa Publishing House PVT Ltd, New Delhi

Web References

- 1. https://youtube.com/@introductiontooperationsre4975?si=s4hUaj5nLi331rrz
- 2. https://youtube.com/@iit?si=X62o-o3CvMdgXQpg
- 3. https://youtube.com/@introductiontooperationsre4975?si=s4hUaj5nLi331rrz
- 4. <u>https://youtube.com/@iit?si=X62o-o3CvMdgXQpq</u>
- 5. <u>https://youtube.com/@kauserwise?si=tdP_lvoCD12LgHos</u>

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. E. Litta.