# CAUVERY COLLEGE FOR WOMEN(AUTONOMOUS) Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015 Certified TIRUCHIRAPPALLI

# **DEPARTMENT OF INFORMATION TECHNOLOGY**

# **SYLLABUS**

2023 - 2024



# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) Nationally accredited (III Cycle) with "A" Grade ISO 9001:2015 Certified Annamalai Nagar, Tiruchirappalli – 18

## DEPARTMENT OF INFORMATION TECHNOLOGY

## Vision

The Department of Information Technology envisions to create technically competent, skilled intellectual IT professionals, efficient problem solvers, innovators and entrepreneurs to meet the current challenges of the modern computing industry.

### **Mission**

- To provide quality education and elevate the students towards higher educational programs
- To encourage and guide the students to improve their competency skills in information technology market

To equip the students to cater the industrial demands through providing advance training



# **UG Programme Structure (Science)**

Cauvery College for Women (Autonomous) Department of Information Technology B.Sc Information Technology LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS – LOCF)

#### (For the Candidates admitted from the Academic year 2023-2024 and onwards)

|     |        |                                                            |                                                         |            |       |         | Exam |      |      |       |
|-----|--------|------------------------------------------------------------|---------------------------------------------------------|------------|-------|---------|------|------|------|-------|
| Sem | Part   | Course                                                     |                                                         | Course     | Inst. | Credits |      | Μ    | arks | Total |
|     | 1 41 1 | Course                                                     | Course Title                                            | Code       | Hrs.  |         | Hr   | Int. | Ext  |       |
|     |        | Language Course                                            | பொதுத்தமிழ்<br>- 1                                      | 23ULT1     |       |         |      |      |      |       |
|     |        | -I (LC)                                                    | Hindi Ka Samanya<br>Gyan aur Nibandh                    | 23ULH1     |       | 3       |      |      | 75   |       |
|     | Ι      |                                                            | Poetry,Grammar<br>and History of<br>Sanskrit Literature | 23ULS1     | 6     |         | 3    | 25   |      | 100   |
|     |        |                                                            | Foundation Course:<br>Paper I- French – I               | 23ULF1     |       |         |      |      |      |       |
|     | II     | English Language<br>Course-<br>I(ELC)                      | General English -I                                      | 23UE1      | 6     | 3       | 3    | 25   | 75   | 100   |
| Ι   |        | Core Course –<br>I(CC)                                     | Programming in C                                        | 23UIT1CC1  | 5     | 5       | 3    | 25   | 75   | 100   |
|     |        | Core Practical - I<br>(CP)                                 | C Programming (P)                                       | 23UIT1CC1P | 3     | 3       | 3    | 40   | 60   | 100   |
|     | III    | First Allied<br>Course-I(AC)                               | Numerical<br>Methods                                    | 23UIT1AC1  | 4     | 3       | 3    | 25   | 75   | 100   |
|     |        | First Allied<br>Course-II(AC)                              | Graph theory<br>and its<br>Applications                 | 23UIT1AC2  | 4     | 3       | 3    | 25   | 75   | 100   |
|     | IV     | Ability<br>Enhancement<br>Compulsory<br>Course-I<br>(AECC) | Value<br>Education                                      | 23UGVE     | 2     | 2       |      | 100  |      | 100   |
|     |        | Total                                                      |                                                         |            | 30    | 22      |      |      |      | 700   |

|          |      |                     |                     |             | Inst.<br>Hrs. |          | Exar  | r     |          | -     |
|----------|------|---------------------|---------------------|-------------|---------------|----------|-------|-------|----------|-------|
| Semester | Part | Course              | Course Title        | Course Code | / /           | Credi    | Hr    | Marl  | <u>s</u> | Total |
|          |      |                     |                     |             | wee<br>k      | ts       | S     | Int.  | Ext      |       |
|          |      |                     | பொதுத்தமிழ்         | 23ULT2      | K             |          |       |       |          |       |
| II       |      |                     | - II                |             |               |          |       |       |          |       |
|          |      |                     | Hindi Literature    | 22ULH2      | -             |          |       |       | 75       | 100   |
|          | T    | Language            | & Grammar – II      |             | 6             | 3        | 3     | 25    |          |       |
|          | Ι    | Course-II(LC)       | Prose, Grammar      | 23ULS2      |               | 5        | 5     |       |          | 100   |
|          |      |                     | and History of      |             |               |          |       |       |          |       |
|          |      |                     | Sanskrit literature |             |               |          |       |       |          |       |
|          |      |                     | Basic French – II   | 22ULF2      |               |          |       |       |          |       |
|          | II   | English Language    | General English-    | 23UE2       | 6             | 3        | 3     | 25    | 75       | 100   |
|          | 11   | Course- II(ELC)     | Π                   |             |               |          |       |       |          |       |
|          |      | Core Course – II    | Data Structures     | 23UIT2CC2   | 4             | 4        | 3     | 25    | 75       | 100   |
|          |      | (CC)                | and Algorithms      |             |               |          |       |       |          |       |
|          |      | Core Practical - II | Data Structures     | 23UIT2CC2P  | 2             | 2        | 3     | 40    | 60       | 100   |
|          |      | (CP)                | using C(P)          |             |               |          |       |       |          |       |
|          | III  | Core Course-        | Digital             | 22UIT2CC3   | 4             | 4        | 3     | 25    | 75       | 100   |
|          |      | III(CC)             | Fundamentals        |             |               |          |       |       |          |       |
|          |      | First Allied        | Operations          | 22UIT2AC3   | 4             | 3        | 3     | 25    | 75       | 100   |
|          |      | Course-III(AC)      | Research            |             |               |          |       |       |          |       |
|          | IV   | Ability             | Environmental       | 22UGEVS     | 2             | 2        | -     | 100   | -        | 100   |
|          |      | Enhancement         | Studies             |             |               |          |       |       |          |       |
|          |      | Compulsory          |                     |             |               |          |       |       |          |       |
|          |      | Course-II(AECC)     |                     |             |               |          |       |       |          |       |
|          |      | Ability             | Innovation and      | 22UGIE      | 2             | 1        | -     | 100   | -        | 100   |
|          |      | Enhancement         | Entrepreneurship    |             |               |          |       |       |          |       |
|          |      | Compulsory          |                     |             |               |          |       |       |          |       |
|          |      | Course-             |                     |             |               |          |       |       |          |       |
|          |      | III(AECC)           |                     |             |               |          |       |       | <u> </u> |       |
|          |      | Extra Credit        | SWAYAM              |             | As pe         | er UGC I | Recom | menda | tion     |       |
|          |      | Course              |                     |             | 20            | 22       | T     | Ι     |          | 000   |
|          | Tota |                     |                     |             | 30            | 22       |       |       |          | 800   |

| Semester I  | Internal Ma         | Internal Mark: 25       |   |         |
|-------------|---------------------|-------------------------|---|---------|
| COURSE CODE | COURSE TITLE        | COURSE TITLE CATEGORY   |   | CREDITS |
| 23UIT1CC1   | PROGRAMMING<br>IN C | CORE COURSE – I<br>(CC) | 5 | 5       |

#### **Course Objectives**

- To familiarize the students with the understanding of code organization
- To improve the programming skills
- Learning the basic programming constructs.

#### **Course Outcomes and Cognitive Level Mapping**

| CO<br>Number | Course Outcome                                                                                                           | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Outline the fundamental concepts of C programming languages, and its features                                            | K1                 |
| CO2          | Demonstrate the programming methodology.                                                                                 | K2                 |
| CO3          | Identify suitable programming constructs for problem solving.                                                            | К3                 |
| CO4          | Select the appropriate data representation, control structures, functions and concepts based on the problem requirement. | K4                 |
| CO5          | Evaluate the program performance by fixing the errors.                                                                   | K5                 |

#### Mapping of CO with PO and PSO

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 2    | 2    | 3    | 2    | 1    | 2   | 2   | 2   | 3   | 2   |
| CO2 | 3    | 2    | 3    | 2    | 2    | 3   | 3   | 2   | 3   | 2   |
| CO3 | 3    | 3    | 3    | 2    | 2    | 3   | 3   | 2   | 3   | 3   |
| CO4 | 3    | 2    | 3    | 2    | 3    | 2   | 2   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 2   | 3   |

"1" - Slight (Low) Correlation"2" - Moderate (Medium) Correlation"3" - Substantial (High) Correlation"-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOURS | COs                                 | COGNITIVE<br>LEVEL             |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------------|
| Ι    | <b>Studying Concepts of Programming Languages</b> -<br>Language Evaluation Criteria - Language design -<br>Language Categories - Implementation Methods –<br>Programming Environments - Overview of C: History<br>of C- Importance of C- Basic Structure of C Programs-<br>Executing a C Program- Constants, Variables and Data<br>types - Operators and Expressions - Managing Input and<br>Output Operations                                           | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| Π    | <b>Decision Making and Branching:</b> Decision making<br>with If, simple IF, IF ELSE, nested IF ELSE, ELSE IF<br>ladder, switch, GOTO statement. Decision Making and<br>Looping: While, Do-While, For, Jumps in loops.Arrays -<br>Character Arrays and Strings                                                                                                                                                                                           | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| III  | <b>User Defined Functions:</b> Elements of User Defined<br>Functions- Definition of Functions- Return Values and<br>their Types- Function Call- Function Declaration-<br>Categories of Functions- Nesting of Functions-Recursion                                                                                                                                                                                                                         | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| IV   | <b>Structures and Unions:</b> Introduction- Defining a<br>Structure- Declaring Structure Variables Accessing<br>Structure Members- Structure Initialization- Arrays of<br>Structures- Arrays within Structures- Unions- Size of<br>Structures                                                                                                                                                                                                            | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| V    | <b>Pointers:</b> Understanding Pointers- Accessing the Address of a Variable- Declaring Pointer Variables-<br>Initializing of Pointer Variables- Accessing a Variable through its Pointer- Chain of Pointers- Pointer Expressions- Pointer and Scale Factor- Pointer and Arrays- Pointers and Character Strings- Array of Pointers- Pointer as Function Arguments- Functions Returning Pointers- Pointers to Functions-Memory model-File Management in C | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |

| VISelf Study for Enrichment<br>(Not included for End Semester Examinations)<br>Algorithm- Flowchart- Develop algorithms for real<br>time scenario- Simple expressions- Conversion programs-<br>swapping numbers (with and without using temporary<br>variable).VIPrograms for checking eligibility-Triangle<br>formation-Sum of series-Array manipulations (Sorting,<br>searching, insert, delete and merging)-String handling<br>programs- Dynamic memory management using pointers-<br>Employee pay bill preparation, Student mark list using<br>Files. | - | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------|--------------------------------|--|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------|--------------------------------|--|

#### Textbooks

- 1.Robert W. Sebesta, (2012), —Concepts of Programming Languages|, Fourth Edition, Addison Wesley (Unit I : Chapter 1)
- 1. E. Balaguruswamy, (2010), —Programming in ANSI Cl, Fifth Edition, Tata McGraw Hill Publications.

#### References

1.<u>Ashok N. Kamthane, Amit Ashok Kamthane (2015)</u>. Programming in C, 3<sup>rd</sup> Edition, Pearson India Education Services Pvt. Ltd.

2.Byron Gottfried, (2010), —Programming with Cl, Schaums Outline Series, Tata McGraw Hill Publications

#### Web References

- 1. https://www.learn-c.org/
- 2. https://www.cprogramming.com/
- 3. https://www.tutorialspoint.com/cprogramming/index.html
- 4. http://www.programiz.com/c-programming
- 5. http://www.programmingsimplified.com/c-program-examples

#### Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Demo, Quiz and Seminar.

#### **Course Designer**

1. Dr. M. Anandhi, Associate Professor, Department of Information Technology.

| Semester I     | Interna           | External ]          | Mark: 60 |         |
|----------------|-------------------|---------------------|----------|---------|
| COURSE<br>CODE | COURSE TITLE      | CATEGORY            | Hrs/Week | CREDITS |
| 23UIT1CC1P     | C PROGRAMMING (P) | CORE COURSE- I (CP) | 3        | 3       |

#### **Course Objectives**

- The Course aims to provide exposure to problem-solving through C programming
- It aims to train the student to the basic concepts of the C -Programming language
- Apply different concepts of C language to solve the problem

#### **Course Outcomes and Cognitive Level Mapping**

| CO<br>Number | CO Statement                                                                     | Cognitive<br>Level |
|--------------|----------------------------------------------------------------------------------|--------------------|
| CO1          | Demonstrate the understanding of syntax and semantics of C programs.             | <b>K</b> 1         |
| CO2          | Identify the problem and solve using C programming techniques.                   | K2                 |
| CO3          | Identify suitable programming constructs for problem solving.                    | K3                 |
| CO4          | Analyze various concepts of C language to solve the problem in an efficient way. | K4                 |
| CO5          | Develop a C program for a given problem and test for its correctness.            | K5                 |

#### Mapping with Programme Outcomes

| COs\<br>POs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-------------|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1         | 3    | 3    | 3    | 2    | 2    | 2   | 3   | 1   | 2   | 3   |
| CO2         | 3    | 2    | 3    | 2    | 3    | 3   | 2   | 2   | 2   | 3   |
| CO3         | 3    | 2    | 2    | 2    | 2    | 3   | 3   | 2   | 3   | 2   |
| CO4         | 3    | 3    | 2    | 3    | 2    | 3   | 3   | 2   | 3   | 3   |
| CO5         | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 3   | 2   | 3   |

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

- 1. Programs using Input/ Output functions
- 2. Programs on conditional structures
- 3. Command Line Arguments
- 4. Programs using Arrays
- 5. String Manipulations
- 6. Programs using Functions
- 7. Recursive Functions
- 8. Programs using Pointers
- 9. Files
- 10. Programs using Structures & Unions

#### Text Book

1. E. Balagurusamy, Programming in ANSI C, Fifth Edition, Tata McGraw-Hill, 2010.

#### **Reference Books**

1 Byron Gottfried, Schaum's Outline Programming with C, Fourth Edition, Tata McGraw-Hill, 2018.

2. Kernighan and Ritchie, The C Programming Language, Second Edition, Prentice Hall, 1998.

3. Yashavant Kanetkar, Let Us C, Eighteenth Edition, BPB Publications, 2021

#### Web References

- 1. https://www.tutorialspoint.com/cprogramming
- 2. https://www.javatpoint.com/c-programming-language-tutorial
- 3. https://www.w3schools.in/category/c-tutorial

#### **Course Designer**

Dr. M. Anandhi, Associate Professor, Department of Information Technology.

#### FIRST ALLIED COURSE - I

#### NUMERICAL METHODS

#### (For B.Sc Computer Science, BCA, Information Technology & Computer Science with Cognitive Systems) (2023 – 2024 ONWARDS)

| Semester I                                      | Internal N           | larks:25 | External Marks:75 |         |  |
|-------------------------------------------------|----------------------|----------|-------------------|---------|--|
| COURSE CODE                                     | COURSE TITLE         | CATEGORY | Hrs/Week          | CREDITS |  |
| 23UCG1AC1/<br>23UCS1AC1/<br>23UCA1AC1/23UIT1AC1 | NUMERICAL<br>METHODS | ALLIED   | 4                 | 3       |  |

#### **Course Objectives**

- Learn the various topics in Numerical methods.
- **Understand** the fundamentals of algebraic equations, interpolation, numerical differentiation and integration.
- **Develop** skills in solving problems of numerical techniques.

#### **Course Outcomes**

On the successful completion of the course, students will be able to

| CO<br>Number | CO Statement                                                       | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------|--------------------|
| CO1          | Remember the basic concepts of numerical methods.                  | K1                 |
| CO2          | Illustrate the various notions of computational numerical streams. | K2                 |
| CO3          | Apply the different techniques of numerical problems               | K3                 |
| CO4          | Classify the methods of numerical techniques.                      | K4                 |
| CO5          | Examine the solutions of numerical problems.                       | K4                 |

#### Mapping of CO with PO and PSO

| COs        | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1        | 3    | 2    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO2        | 3    | 2    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 2   |
| CO3        | 3    | 2    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 2   |
| <b>CO4</b> | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 3   | 3   | 2   |
| CO5        | 3    | 2    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 2   |

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                        | HOURS | COs                                 | COGNITIVE<br>LEVEL     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|------------------------|
| Ι    | Solution of Algebraic and Transcendental Equations:<br>Introduction – Bisection Method – The Iteration Method –<br>The Method of False Position – Newton Raphson Method.<br>(Simple Problems Only).                                                            | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1<br>K2,<br>K3,<br>K4 |
| Π    | Interpolation:<br>Finite differences – Forward differences – Backward<br>differences – Central differences – Newton's Formulae<br>for interpolation–Interpolation with Unevenly Spaced<br>Points – Lagrange's Interpolation Formula.<br>(Simple Problems Only) | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1<br>K2,<br>K3,<br>K4 |
| III  | Numerical Differentiation and Integration:<br>Introduction – Numerical Differentiation – Numerical<br>Integration – Trapezoidal Rule – Simpson's 1/3 Rule –<br>Simpson's 3/8 Rule (Simple Problems Only)                                                       | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1<br>K2,<br>K3,<br>K4 |
| IV   | Numerical Linear Algebra:<br>Solution of Linear Systems – Direct Methods – Gauss -<br>Elimination – Gauss -Jordan method.<br>Solution of Linear Systems – Iterative Methods. (Simple<br>Problems Only)                                                         | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1<br>K2,<br>K3,<br>K4 |
| V    | NumericalSolutionofOrdinaryDifferentialEquations:Introduction – Solution by Taylor's Series – Euler'sMethod – Modified Euler'sMethod – Runge-KuttaMethod–Predictor-CorrectorMethods – Adams-MoultonMethod – Milne'sMethod(Simple Problems Only)                | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1<br>K2,<br>K3,<br>K4 |
| VI   | Self-Study for Enrichment<br>(Not included for End Semester Examination)<br>Ramanujan's Method – Bessel's Formula – Newton-<br>Cotes Integration Formulae –The QR Method – Picard's<br>Method of Successive Approximations                                     | -     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1<br>K2,<br>K3,<br>K4 |

#### **Text Book**

Sastry.S.S (2004), *Introductory Methods of Numerical Analysis* (Third Edition), Prentice Hall of India Private Ltd, New Delhi.

#### **Chapters and Sections**

- UNIT–I Chapter 2: Sections: 2.1 2.5 (Omit 2.3.1 & 2.5.1)
- UNIT II Chapter 3: Sections: 3.3 : 3.3.1 3.3.3, 3.6, 3.9 : 3.9.1
- UNIT-III Chapter 5: Sections: 5.1, 5.2 (only), 5.4 : 5.4.1 5.4.3
- UNIT-IV Chapter 6: Sections: 6.3: 6.3.2, 6.4
- UNIT-V Chapter 7: Sections: 7.1,7.2, 7.4: 7.4.2, 7.5,7.6

#### **Reference Books**

- 1. Venkataraman, M.K. (2003). *Numerical Methods in Science and Engineering*, The National Publishing Company.
- 2. Iyengar S.R.K, Jain R.K, (2009). Numerical Methods, New Age International Publishers.
- 3. Subramanian, N. (2007). Numerical Methods, SCM Publisher, Erode.

#### Web References

- 1. https://tinyurl.com/4y7knvm9
- 2. <u>https://tinyurl.com/t29njcy5</u>
- 3. <u>https://www.youtube.com/watch?v=TIWRyzzFUYQ</u>
- 4. <u>https://www.youtube.com/watch?v=iviiGB5vxLA</u>
- 5. <u>https://www.youtube.com/watch?v=j\_4MVZ3VADU</u>

#### Pedagogy

Assignment, Seminar, Lecture, Quiz, Group discussion, Brain storming, e-content.

#### **Course Designers**

- 1. Dr. V. Geetha
- 2. Dr. S. Sasikala

#### FIRST ALLIED COURSE - II GRAPH THEORY AND ITS APPLICATIONS (2023-2024 Onwards)

| Semester I | Internal Marks: 25  | External Marks:75 |         |   |
|------------|---------------------|-------------------|---------|---|
| COURSE     | COURSETITLE         | Hrs /Week         | CREDITS |   |
| CODE       |                     |                   |         |   |
|            | <b>GRAPH THEORY</b> |                   |         |   |
| 23UCS1AC2/ | AND ITS             | ALLIED            | 4       | 3 |
| 23UIT1AC2  | APPLICATIONS        |                   |         |   |

#### **Course Objectives**

- **Introduce** the notion of graph theory and its application.
- **Understand** the fundamental concepts in graph theory.
- **Explore** some of the most important notions of graph theory and develop their skills and solving basic exercise.

#### **Course Outcomes**

On the successful completion of the course, students will be able to

| CO     | CO Statement                                            | Cognitive |
|--------|---------------------------------------------------------|-----------|
| Number |                                                         | Level     |
| CO1    | Define basic definitions of graphs.                     | K1        |
| CO2    | Describe the concepts and Characterization of Graphs.   | K2        |
| CO3    | Explain the notion of Spanning Trees.                   | K2        |
| CO4    | Compute the properties of Planar Graphs.                | K3        |
| CO5    | Analyze the concept of graphs in Matrix Representation. | K4        |

#### Mapping of CO with PO and PSO

| COs        | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1        | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO2        | 3    | 2    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO3        | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| <b>CO4</b> | 3    | 2    | 3    | 3    | 2    | 3   | 3   | 2   | 2   | 3   |
| CO5        | 3    | 2    | 3    | 3    | 2    | 3   | 3   | 3   | 3   | 2   |

"1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                        | HOURS | COs                                 | COGNITIVE<br>LEVEL      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-------------------------|
| Ι    | <ul> <li>INTRODUCTION</li> <li>Definition of a Graph – Application of Graphs – Finite and Infinite Graphs – Incidence and Degree – Isolated Vertex, Pendant Vertex and Null Graph.</li> <li>PATHS AND CIRCUITS</li> <li>Isomorphism – Subgraphs – Walks, Paths and Circuits – Connected Graphs, Disconnected Graphs and Components.</li> </ul> | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| II   | <b>PATHS AND CIRCUITS</b><br>Euler Graphs – Operation on Graphs – More on Euler<br>Graphs – Hamiltonian Paths and Circuits – The<br>Traveling Salesman Problem.                                                                                                                                                                                | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| III  | <b>TREES AND FUNDAMENTAL CIRCUITS</b><br>Trees – Some Properties of Trees – Pendant Vertices in<br>a Tree – Distance and Centers in a Tree – Rooted and<br>Binary Trees – On Counting Trees – Spanning Trees.                                                                                                                                  | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| IV   | CUT - SETS AND CUT - VERTICES<br>Cut-Sets – Some Properties of a Cut-Set – All Cut-Sets<br>in a Graph – Fundamental Circuits and Cut-Sets –<br>Connectivity and Separability.                                                                                                                                                                  | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| V    | <ul> <li>PLANAR GRAPHS</li> <li>Planar Graphs – Kuratowski's Two Graphs – Different<br/>Representations of a Planar Graph.</li> <li>MATRIX REPRESENTATION OF GRAPHS<br/>Incidence Matrix – Submatrices of A(G) – Circuit<br/>Matrix.</li> </ul>                                                                                                | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| VI   | Self Study for Enrichment<br>(Not included for End Semester Examination)<br>Brief History of Graph Theory – A Puzzle with<br>Multicolored Cubes – Finding All Spanning Trees of a<br>Graph – Network Flows – Combinatorial Vs.<br>Geometric Graphs – An Application to a switching<br>network.                                                 | -     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |

# **Text Book**

1. Narsingh Deo, "Graph Theory with Application to Engineering and Computer Science"

Prentice Hall of India 2010(Reprint).

#### **Chapters and Sections**

| UNIT-I   | Chapter 1: Sections $1.1 - 1.5$        |  |  |  |  |
|----------|----------------------------------------|--|--|--|--|
|          | Chapter 2: Sections 2.1, 2.2, 2.4, 2.5 |  |  |  |  |
| UNIT-II  | Chapter 2: Sections 2.6 – 2.10         |  |  |  |  |
| UNIT-III | Chapter 3: Sections $3.1 - 3.7$        |  |  |  |  |
| UNIT- IV | Chapter 4: Sections $4.1 - 4.5$        |  |  |  |  |
| UNIT- V  | Chapter 5: Sections $5.2 - 5.4$        |  |  |  |  |
|          | Chapter 7: Sections 7.1 – 7.3          |  |  |  |  |
| D        | Dela                                   |  |  |  |  |

#### **Reference Books**

- Arumugam S and Ravichandran S, "Invitation to Graph Theory", Scitech Publications (India) Private Limited.
- 2. Gary Chartrand and Ping Zhang, "Introduction to Graph Theory", Tata McGraw-Hill Edition, 2004.

#### Web References

- 1. https://youtu.be/S1Zwhz-Mhcs
- 2. https://youtu.be/R5LZIpz-oIE
- 3. https://youtu.be/X2B\_J1ajsIY
- 4. https://youtu.be/5M7bOXrn54A
- 5. https://youtu.be/QwX1ncB13B0

### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designer**

Dr. P. SHALINI

| Semester II | Internal Ma                       | External Mark: 75       |          |         |  |
|-------------|-----------------------------------|-------------------------|----------|---------|--|
| COURSE CODE | COURSE TITLE CATEGORY             |                         | Hrs/Week | CREDITS |  |
| 23UIT2CC2   | DATA STRUCTURES<br>AND ALGORITHMS | CORE COURSE –<br>II(CC) | 4        | 4       |  |

### **Course Objectives**

- To provide the knowledge of basic data structures and their implementations.
- To understand the importance of data structures in the context of writing efficient programs.
- To develop skills to apply appropriate data structures in problem solving.

#### **Course Outcomes and Cognitive Level Mapping**

On the successful completion of the course, the students will be able to

| CO<br>Number | CO Statement                                                                                                      | Cognitive<br>Level |
|--------------|-------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Understand the abstract data types and basics of Algorithms                                                       | K1                 |
| CO2          | Demonstrate the performance of basic linear and nonlinear data structures                                         | K2                 |
| CO3          | Implement the basic data structures and Algorithm design techniques                                               | К3                 |
| CO4          | Analyze the efficiency of Algorithms                                                                              | K4                 |
| CO5          | Assess, evaluate and choose appropriate data structure and algorithmic technique to solve the real-world problems | K5                 |

#### Mapping of CO with PO and PSO

|     | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 1    | 2    | 3   | 2   | 1   | 2   | 2   |
| CO2 | 2    | 2    | 3    | 2    | 2    | 1   | 2   | 1   | 2   | 2   |
| CO3 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 1   | 3   | 3   |
| CO4 | 3    | 2    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |

"1" – Slight (Low) Correlation

#### "2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

| UNIT | CONTENT                                                               | HOURS | COs        | COGNITIVE<br>LEVEL |
|------|-----------------------------------------------------------------------|-------|------------|--------------------|
|      | Introduction-Basic Terminology-Data Structures-Data Structures        |       |            |                    |
|      | Operation-Abstract Data Types (ADT)- Algorithms: Complexity,          |       | CO1        | K1                 |
|      | Time-Space Tradeoff. Arrays: Representation of Arrays-                | 12    | CO1<br>CO2 | K1<br>K2           |
| Ι    | Linear Arrays - Insertion –                                           |       | CO3        | K3                 |
|      | Deletion and Traversal of a Linear Array - Array as an Abstract       |       | CO4<br>CO5 | K4<br>K5           |
|      | Data Type.                                                            |       |            |                    |
|      | Stacks: Array and Linked Representation of Stack-Prefix-Infix and     |       | CO1        | K1                 |
|      | Postfix Arithmetic Expressions-Conversion-Evaluation of Postfix       |       | CO2        | K2                 |
| II   | Expressions. Queues: Definition-Linked Representation of Queue -      | 12    | CO3<br>CO4 | K3<br>K4           |
|      | The Queue Abstract Data Type-Circular Queues.                         |       | C04        | K4<br>K5           |
|      | Linked list: Introduction- Linked Lists – Representation of Linked    |       |            |                    |
|      | Lists in Memory – Traversing a Linked List – Searching a Linked       |       | CO1        | K1                 |
|      | List – Insertion into and Deletion from a Linked List.                |       | CO2        | K2                 |
| III  | Trees: Introduction - Binary Trees – Representing Binary Trees in     | 12    | CO3<br>CO4 | K3<br>K4           |
|      | Memory - Binary Tree Traversals — Binary Search Tree –                | 12    | CO4        | K4<br>K5           |
|      | Searching, Inserting and Deleting in Binary Search Trees.             |       |            |                    |
|      | Sorting and Searching: Sorting: Introduction-Insertion Sort-          |       | CO1        | K1                 |
| IV   | Selection Sort – Merge Sort - Quick Sort. Searching: Linear Search-   | 12    | CO2<br>CO3 | K2<br>K3           |
|      | Binary Search                                                         |       | CO4        | K4                 |
|      | Graphs: Introduction – Graph Theory Terminology – Sequential          |       | CO5        | K5                 |
|      |                                                                       |       | CO1<br>CO2 | K1<br>K2           |
| V    | Representation of Graphs- Warshall's Algorithm – Linked               |       | CO2<br>CO3 | K2<br>K3           |
|      | Representation of Graphs – Operations on Graph - Graph                | 12    | CO4        | K4                 |
|      | Traversals.                                                           |       | CO5        | K5                 |
|      | Self Study for Enrichment                                             |       | CO1        | K1                 |
| VI   | (Not included for End Semester Examinations)                          | -     | CO2<br>CO3 | K2<br>K3           |
| V I  | Multi Dimensional Array-Recursion - Traversal Algorithms using Stacks |       | CO3        | K3<br>K4           |
|      | Dequeue- Bubble Sort– Topological Sort.                               |       | CO5        | K5                 |

#### Textbook

1.Data Structures with C, Seymour Lipschutz (Schaum's Outlines), 2011, McGraw Hill Education Pvt. Ltd.,

#### **Reference Books**

1. Ellis Horowitz, Sartaj Sahni and Susan and Rewson-Freed(2008), Fundamentals of Data Structures in C,2nd Edition, Universities Press

2. ISRD Group, (2009). Data Structures Using, Tata McGraw Hill Education Pvt. Ltd, New Delhi.

#### Web References

- 1. https://www.geeksforgeeks.org/data-structures
- 2. https://www.tutorialspoint.com/data\_structures\_algorithms/index.html
- 3. https:://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/

#### Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Demo, Quiz and Seminar.

#### **Course Designer**

- 1. Dr. A. Bhuvaneswari, Associate Professor, Department of Information Technology.
- 2. Dr. P. TamilSelvi, Associate Professor, Department of Information Technology

| Semester II | Internal Ma                    | ark: 40                        | External Mark: 60 |         |  |
|-------------|--------------------------------|--------------------------------|-------------------|---------|--|
| COURSE CODE | COURSE TITLE                   | CATEGORY                       | Hrs/Week          | CREDITS |  |
| 23UIT2CC2P  | DATA STRUCTURES<br>USING C (P) | CORE<br>PRACTICAL – II<br>(CP) | 2                 | 2       |  |

## **Objectives:**

- To develop and execute C programs for various data structures
- To apply the knowledge of programming features
- To Implement various Algorithms

# **Course Outcomes and Cognitive Level Mapping**

| CO Number | CO Statement                                                                          | Cognitive |
|-----------|---------------------------------------------------------------------------------------|-----------|
|           |                                                                                       | Level     |
| C01       | Recall program execution and debugging                                                | K1        |
| CO2       | Demonstrate the ideas of Data structures                                              | К2        |
| CO3       | Make use of Operations of Linear and Non- linear data structures                      | К3        |
| CO4       | Develops the ability to analyze a problem and implement an algorithm to solve it.     | K4        |
| CO5       | Acquire logical thinking, Identify the correct and efficient ways of solving problems | K5        |

# Mapping with Programme Outcomes

| COs\POs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|---------|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1     | 3    | 2    | 2    | 1    | 2    | 3   | 2   | 1   | 2   | 2   |
| CO2     | 3    | 2    | 3    | 1    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO3     | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO4     | 3    | 2    | 2    | 2    | 2    | 3   | 3   | 2   | 2   | 2   |
| CO5     | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 2   | 2   |

- 1. Stack implementation
- 2. Operations on Queue
- 3. Linked List
- 4. Binary Tree Traversal
- 5. Operations of Graph
- 6. Sorting
- 7. Searching

### **Course Designer**

- 1. Dr. A. Bhuvaneswari, Associate Professor, Department of Information Technology.
- 2. Dr. P. Tamil Selvi, Associate Professor, Department of Information Technology.

| Semester II    | Intern                  | External Mark: 75         |          |         |
|----------------|-------------------------|---------------------------|----------|---------|
| COURSE<br>CODE | COURSE TITLE            | CATEGORY                  | Hrs/Week | CREDITS |
| 22UIT2CC3      | DIGITAL<br>FUNDAMENTALS | CORE COURSE – III<br>(CC) | 4        | 4       |

#### **COURSE OBJECTIVES**

- To provide knowledge on various number systems
- To inculcate the concepts of Boolean algebra
- To make the students learn combinational circuits
- To make the students learn combinational circuits

### **COURSE OUTCOMES**

On the successful completion of the course, the students will be able to

| CO     | CO Statement                                           | Knowledge |
|--------|--------------------------------------------------------|-----------|
| Number |                                                        | Level     |
| CO1    | Understand the basics of digital logic                 | K1        |
| CO2    | Apply the conversion of number system                  | К3        |
| CO3    | Apply the Boolean algebra to generate digital circuits | К3        |
| CO4    | Design combinational circuits using gates              | K5        |
| CO5    | Construct sequential circuits using registers          | K4        |

#### Mapping with Programme Specific Outcomes and Programme Outcomes

| COs  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 |
|------|------|------|------|------|------|------------|-----|-----|-----|-----|
| PSOs |      |      |      |      |      |            |     |     |     |     |
| CO1  | 3    | 2    | 3    | 2    | 3    | 2          | 2   | 2   | 3   | 2   |
| CO2  | 3    | 2    | 3    | 2    | 3    | 3          | 3   | 3   | 3   | 2   |
| CO3  | 3    | 3    | 3    | 3    | 3    | 3          | 3   | 2   | 3   | 3   |
| CO4  | 3    | 2    | 3    | 2    | 3    | 2          | 2   | 2   | 3   | 3   |
| CO5  | 3    | 3    | 3    | 2    | 3    | 3          | 3   | 2   | 2   | 3   |

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                               | HOURS | COs                                 | COGNI<br>TIVE<br>LEVEL         |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------------|
| Ι    | NUMBER SYSTEMS AND CODES:<br>Binary Number System – Binary to Decimal Conversion –<br>Decimal to Binary Conversion – Binary Addition and<br>Subtraction – Binary subtraction by 1's and 2's complement<br>– 9's and 10's complement Binary Multiplication and<br>Division – Octal Numbers – Hexadecimal Numbers – Binary<br>Codes – 8421 code - Error Detecting and Correcting Codes. | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| Π    | BOOLEAN ALGEBRA AND LOGIC GATES:<br>Boolean Algebra – Laws and Theorems – Minterms and<br>Maxterms — DeMorgan's Theorems. Logic Gates: AND,<br>OR, NOT, NAND,NOR and Exclusive OR Gates –<br>Exclusive NOR Gate –Universal Building Blocks (UBB) –<br>NAND Gate as UBB – NOR Gate as UBB- Simplifying logic<br>circuits- Sum of products and products of sum form                     | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| III  | <b>K MAP TECHNIQUES:</b><br>Simplification of Boolean expression using Karnaugh Map<br>with 2, 3 and 4 variables -Sum of Products - Product of Sum<br>Don't Care Conditions - Overlapping Groups - Rolling<br>the Map - Eliminating Redundant Group                                                                                                                                   | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| IV   | <b>COMBINATIONAL LOGIC CIRCUITS:</b><br>Half and Full Adders – BCD Adder - Half and Full<br>Subtractors – Multiplexers (4:1 line) – 1 to 4 line<br>Demultiplexers – Decoders, Encoders                                                                                                                                                                                                | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| V    | SEQUENTIAL LOGIC CIRCUITS:<br>Flip Flops – RS Flip Flop – Clocked RS Flip Flop – D Flip<br>Flop – JK Flip Flop – T Flip Flop – Triggering of Flip Flops<br>– Master Slave Flip Flop – Clock – Counters and Shift<br>Registers: Counters – Asynchronous or Ripple Counter –<br>Ring Counter. Shift Registers.                                                                          | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| VI   | Self Study for Enrichment<br>Gray Code – Excess – 3 Code<br>NAND and NOR Implementation — AND-OR-INVERT<br>Implementation – OR-AND-INVERT Implementation –<br>SISO – SIPO – PIPO – PISO                                                                                                                                                                                               | -     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |

#### Text Book

Digital Logic and Computer Design. (2017). M. Morris Mano, India: Pearson India.

#### **Reference Books**

- 1. Principles of Digital Electronics, Dr. K. Meena, PHI Learning Private Limited, New Delhi, 2009.
- 2. Malvino and Leach Digital Principles and Application, 2014

#### Web References

- 1. <u>https://archive.org/details/digitalcomputerf00bart 9</u>.
- 2. <u>https://www.pdfdrive.com/digital-computer-fundamentals-computerarchitecture-</u>e5719965.html
- <u>https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-spring-</u> 2015/resources/digital-logic/

#### **Course Designer**

Dr. P. Tamilselvi, Associate Professor, Department of Information Technology

| Semester II | Internal N   | External Marks : 75 |          |         |
|-------------|--------------|---------------------|----------|---------|
| COURSE      | COURSE TITLE | CATEGORY            | Hrs/Week | CREDITS |
| CODE        |              |                     |          |         |
| 22UCS2AC3/  | OPERATIONS   | ALLIED III          | 4        | 3       |
| 22UCG2AC3/  | RESEARCH     |                     |          |         |
| 22UCA2AC3/  |              |                     |          |         |
| 22UIT2AC3/  |              |                     |          |         |

### **Course Objectives**

- Understand the various features of Operations research.
- Analyze the optimum solutions using Operations research.
- **Explore** the concepts of Operations research in real life problems.

#### **Course Outcomes**

On the successful completion of the course, students will be able to

| CO<br>Number | CO Statement                                                             | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------------|--------------------|
| CO1          | Define the various techniques of Operations research.                    | K1                 |
| CO2          | Illustrate the various notions in the respective streams.                | K2                 |
| CO3          | Identify the different terminologies of Operations research              | K3                 |
| CO4          | Analyze the solutions of mathematical problem using specific techniques. | K4                 |
| CO5          | Simplify the optimum solutions of a mathematical problem.                | K4                 |

#### Mapping of CO with PO and PSO

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 3    | 3    | 2    | 3   | 3   | 3   | 2   | 3   |
| CO2 | 3    | 2    | 3    | 3    | 2    | 3   | 3   | 3   | 3   | 2   |
| CO3 | 3    | 2    | 3    | 3    | 2    | 3   | 2   | 3   | 2   | 2   |
| CO4 | 3    | 2    | 2    | 2    | 2    | 3   | 3   | 2   | 3   | 2   |
| CO5 | 3    | 2    | 3    | 2    | 2    | 3   | 3   | 3   | 2   | 2   |

"1" - Slight (Low) Correlation

"2" – Moderate (Medium) Correlation ¬

"3" - Substantial (High) Correlation

"-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HO<br>UR<br>S | COs                                 | COGNITIVE<br>LEVEL      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|-------------------------|
| Ι    | Operations Research         Introduction-Origin and Development of O.R Nature and         Features of O.R Scientific Method in O.R Modelling in Operations         Research - Advantage and Limitation of Models- General Solution         Methods for O.R. Models- Methodology of Operations Research-         Operations Research and Decision Making         Linear Programming Problem- Mathematical         Formulation         Introduction-Linear programming Problem - Illustrations on         Mathematical Formulation of LPPs.(simple problems only)         Linear programming problem-graphical Solution and         Extension         Introduction-Graphical Solution Method- General Linear |               | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| II   | Programming Problem- Canonical and Standard Forms of LPP.<br>Linear Programming Problem-Simplex Method<br>Introduction-Fundamental Properties of Solutions- The<br>computational Procedure- The Simplex Algorithm-Use of<br>Artificial Variables-Big M method.(simple problems only).                                                                                                                                                                                                                                                                                                                                                                                                                      | 12            | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| III  | Transportation problemIntroduction-LP Formulation of the TransportationProblem- Existence of Solution in T.P-TheTransportationTable-Loops in Transportation Table-Solution of aTransportation Problem-Finding an Initial Basic FeasibleSolution-Test for Optimality-Economic interpretation of $u_j$ 'sand $v_j$ 's - Degeneracy in Transportation Problem-Transportation Algorithm (MODI method), (simple problemsonly).Assignment ProblemIntroduction-Mathematical Formulation of theProblem- Solution Methods of Assignment Problems only).                                                                                                                                                             | 12            | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |

| IV | Sequencing problem<br>Introduction-Problem of Sequencing-Basic Terms Used<br>in Sequencing- Processing <i>n</i> Jobs through Two Machines-<br>Processing <i>n</i> Jobs through <i>k</i> Machines(problems only).                                                                                                               | 12 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------|-------------------------|--|--|
| V  | Network Scheduling by PERT/CPM<br>Introduction- Network: Basic Components- Logical<br>Sequencing- Rules of Network Construction- Concurrent<br>Activities - Critical Path Analysis -Probability Considerations<br>in PERT.                                                                                                     | 12 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |  |  |
| VI | <ul> <li>Self-Study for Enrichment         <ul> <li>(Not included for End Semester Examination)</li> <li>Application of Operations Research.</li> <li>Two-Phase method – The Travelling Salesman problem –</li> <li>Processing 2 Jobs through k Machines –.</li> <li>Inventory Models(without shortage)</li> </ul> </li> </ul> | _  | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |  |  |

### **Text Books**

1. Kanti Swarup, P.K. Gupta, Manmohan.(2019). Operations research, Sultan Chand Publications.

#### **Chapters and Sections**

| UNIT–I   | Chapter 1:  | Sections 1:1 – 1:9                             |
|----------|-------------|------------------------------------------------|
|          | Chapter 2:  | Sections 2:1 – 2:4                             |
|          | Chapter 3:  | Sections 3:1 – 3:5                             |
| UNIT II  | Chapter 4:  | Sections 4:1 – 4:4                             |
| UNIT-III | Chapter 10: | Sections 10:1 – 10:3, 10:5, 10:6, 10:8 – 10:13 |
|          | Chapter 11: | Sections 11:1 – 11:4                           |
| UNIT-IV  | Chapter 12: | Sections 12:1 – 12:5                           |

UNIT-V Chapter 25: Sections 25:1 – 25:7

#### **Reference Books**

- Hamdy A.Taha (2017), *Operations Research An Introduction*, Pearson India Education services PVT Ltd.
- 5. Premkumar Gupta, Hira D.S.(2004), *Operations Research*, S.Chand & Company Ltd, New Delhi.
- Chandrasekhara Rao.K,Shanti Lata Mishra(2008), *Operations Research*, Narosa Publishing House PVT Ltd, New Delhi.

#### Web References

- 6. https://www.britannica.com/topic/operations-research
- 7. https://byjus.com/maths/linear-programming/
- 8. <u>https://www.gatexplore.com/transportation-problem-study-notes/</u>
- 9. <u>https://youtu.be/rowWM-MijXU</u>
- 10. https://youtu.be/TQvxWaQnrqI
- 11. https://youtu.be/RTX-ik\_8i-k
- 12. https://youtu.be/s5KZw1EpBEo

#### Pedagogy

Power point presentation, Group discussion, Seminar, Assignment.

#### **Course Designers**

- 1. Dr. V. Geetha
- 2. Dr. S. Sasikala