# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC ISO 9001:2015 Certified TIRUCHIRAPPALLI

#### PG AND RESEARCH DEPARTMENT OF CHEMISTRY



B.Sc., Chemistry
Syllabus
2022-2023 and Onwards

# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG DEPARTMENT OF CHEMISTRY

#### **VISION**

To progress into a centre of superiority in Chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

#### **MISSION**

- To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
- To enhance services to the community and build partnerships with the industry.

# PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

| PEOs | Statements                                                                                                                                                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEO1 | LEARNING ENVIRONMENT                                                                                                                                                                                                     |
|      | To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields. |
| PEO2 | ACADEMIC EXCELLENCE                                                                                                                                                                                                      |
|      | To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.                                                              |
| PEO3 | EMPLOYABILITY                                                                                                                                                                                                            |
|      | To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.                                             |
| PEO4 | PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY                                                                                                                                                                            |
|      | To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.                            |
| PEO5 | GREEN SUSTAINABILITY                                                                                                                                                                                                     |
|      | To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.                                                          |

# PROGRAMME OUTCOMES FOR B.Sc., Mathematics, B.Sc., Physics, B.Sc., Chemistry PROGRAMME

|        | Programme Outcome                                                                 |
|--------|-----------------------------------------------------------------------------------|
| PO No. | On completion of B.Sc., Mathematics, B.Sc., Physics, B.Sc. Chemistry              |
|        | Programme, the students will be able to                                           |
| PO1    | Domain knowledge:                                                                 |
|        | Analyze, design and develop solutions by applying firm fundamental concepts       |
|        | of basic sciences and expertise in discipline.                                    |
| PO2    | Problem solving:                                                                  |
|        | Ability to think rationally, analyse and solve problems adequately with practical |
|        | knowledge to assess the environmental issues                                      |
| PO3    | Creative thinking and Team Work:                                                  |
|        | Develop prudent decision-making skills and mobility to work in teams to solve     |
|        | multifaceted problems.                                                            |
| PO4    | Employability:                                                                    |
|        | Self-study acclimatize them to observe effective interactive practices for        |
|        | practical learning enabling them to be a successful science graduate.             |
| PO5    | Life Long Learning:                                                               |
|        | Assure consistent improvement in the performance and arouse interest to pursue    |
|        | higher studies in premium institutions.                                           |

# PROGRAMME SPECIFIC OUTCOMES FOR B.Sc., CHEMISTRY

| PSO<br>NO | Programme Specific Outcomes Students of B.Sc., Chemistry will be able to                                                                                                                                   | POs<br>Addressed |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| PSO1      | Afford a firm foundation in Chemistry that stresses scientific reasoning, analytical problem solving with a molecular perspective                                                                          | PO1<br>PO2       |
| PSO2      | Acquire knowledge in theoretical and practical tools to exemplify entirely in the working environment.                                                                                                     | PO4<br>PO5       |
| PSO3      | Inculcate scientific temperament and create an awareness of the impact of chemistry on the environment, society, and development outside the scientific community.                                         | PO3<br>PO4       |
| PSO4      | Scale up of chemical process after designing, optimization and analysis for developing products required for society.                                                                                      | PO4              |
| PSO5      | Expand the knowledge available opportunities related to chemistry in the government services through public service commission particularly in the field of food safety, health inspector, pharmacist etc. | PO4<br>PO5       |



# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF CHEMISTRY

#### **B.Sc. CHEMISTRY**

(For the Candidates admitted from the Academic year 2022 - 2023 and onwards)

| ter      | 1    |                                                  |                                                           |             | Irs.                 | its     |      | Exan | n     | Total |
|----------|------|--------------------------------------------------|-----------------------------------------------------------|-------------|----------------------|---------|------|------|-------|-------|
| Semester | Part | Course                                           | Course Title                                              | Course Code | Inst. Hrs.<br>/ Week | Credits | Hrs. |      | Marks |       |
| Sel      |      |                                                  |                                                           |             | Ins /                |         |      |      | Ext.  |       |
|          |      | Language                                         |                                                           | 22ULT1      | 6                    | 3       | 3    | 25   | 75    | 100   |
|          |      | Course - I (LC)                                  | Hindi Literature & Grammar<br>– I                         | 22ULH1      |                      |         |      |      |       |       |
|          | I    |                                                  | Literature and Sanskrit Story                             | 22ULS1      |                      |         |      |      |       |       |
|          |      |                                                  |                                                           | 22ULF1      |                      |         |      |      |       |       |
|          | II   | English<br>Language<br>Course - I<br>(ELC)       | Functional English for Effective Communication – I        | 22UE1       | 6                    | 3       | 3    | 25   | 75    | 100   |
|          |      | Core Course - I<br>(CC)                          | General Chemistry                                         | 22UCH1CC1   | 5                    | 5       | 3    | 25   | 75    | 100   |
|          |      | Core Practical -<br>I (CP)                       | General Chemistry (P)                                     | 22UCH1CC1P  | 3                    | 3       | 3    | 40   | 60    | 100   |
| I        | Ш    | First Allied<br>Course - I (AC)                  |                                                           | 22UCH1AC1A  | 4                    | 3       | 3    | 25   | 75    | 100   |
|          |      |                                                  | Biochemistry – I                                          | 22UCH1AC1B  |                      |         |      |      |       |       |
|          |      | First Allied<br>Course - II<br>(AC)              | Algebra, Analytical<br>Geometry of 3D<br>&Trigonometry    | 22UCH1AC2A  | 4                    | 3       | 3    | 25   | 75    | 100   |
|          |      |                                                  | Biochemistry (P)                                          | 22UCH1AC2BP |                      |         |      | 40   | 60    |       |
|          | IV   | Ability Enhancement Compulsory Course - I (AECC) | UGC Jeevan Kaushal -<br>Universal Human Values            | 22UGVE      | 2                    | 2       | ı    | 100  | -     | 100   |
|          |      | /                                                |                                                           | Total       | 30                   | 22      |      |      |       | 700   |
|          |      | Language<br>Course - II (LC)                     |                                                           | 22ULT2      | 5                    | 3       | 3    | 25   | 75    | 100   |
|          | I    |                                                  | Hindi Literature & Grammar<br>– II                        |             |                      |         |      |      |       |       |
|          |      |                                                  | Poetry Textual Grammar and<br>Alankara                    |             |                      |         |      |      |       |       |
|          |      |                                                  | Basic French – II                                         | 22ULF2      | _                    |         |      |      |       | 100   |
| II       | II   | English<br>Language<br>Course - II<br>(ELC)      | Functional English for<br>Effective Communication –<br>II | 22UE2       | 6                    | 3       | 3    | 25   | 75    | 100   |
|          |      | Core Course - II<br>(CC)                         | Inorganic and Physical<br>Chemistry                       | 22UCH2CC2   | 5                    | 5       | 3    | 25   | 75    | 100   |

|    |     | Como Drantinol             | Dramanation and Analysis of                                                                   | DOLICHOCCOD                 | 3       | 2         | 3         | 40     | 60  | 100    |
|----|-----|----------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|---------|-----------|-----------|--------|-----|--------|
|    |     | II (CP)                    | Preparation and Analysis of Industrial Compounds (P)                                          | 22UCH2CC2P                  | 3       | 3         | 3         | 40     | 60  | 100    |
|    |     | Core Course -              | Material Science                                                                              | 22UCH2CC3                   | 3       | 3         | 3         | 25     | 75  | 100    |
|    |     | III (CC)                   | aviaterial Science                                                                            | 2200112003                  |         | 3         | J         | 23     | 75  | 100    |
|    |     | First Allied               | ODE, Laplace                                                                                  | 22UCH2AC3A                  | 4       | 3         | 3         | 25     | 75  | 100    |
|    |     | Course - III               | Transforms and Statistics                                                                     |                             |         |           |           |        | , - |        |
|    |     | (AC)                       | Biochemistry – II                                                                             | 22UCH2AC3B                  |         |           |           |        |     |        |
|    |     | Ability                    | Environmental Studies                                                                         | 22UGEVS                     | 2       | 2         | _         | 100    | _   | 100    |
|    |     | Enhancement                | Environmental Studies                                                                         | 220GE VS                    | 2       | 4         | -         | 100    | _   | 100    |
|    |     | Compulsory                 |                                                                                               |                             |         |           |           |        |     |        |
|    |     | Course - II                |                                                                                               |                             |         |           |           |        |     |        |
|    |     | (AECC)                     |                                                                                               |                             |         |           |           |        |     |        |
|    |     | Ability                    | Innovation and                                                                                | 22UGIE                      | 2       | 1         | -         | 100    | -   | 100    |
|    |     | Enhancement                | Entrepreneurship                                                                              |                             |         |           |           |        |     |        |
|    |     | Compulsory                 |                                                                                               |                             |         |           |           |        |     |        |
|    | IV  | Course - III               |                                                                                               |                             |         |           |           |        |     |        |
|    |     | (AECC)<br>Extra Credit     | SWAYAM                                                                                        |                             | As per  | . 116     | 2C E      | Pagan  | mon | dotion |
|    |     | Course                     | SWATAM                                                                                        |                             | As per  | UC        | IC N      | Recon  | шеп | uation |
|    | Tot |                            |                                                                                               |                             | 30      | 23        |           |        |     | 800    |
|    |     | Language                   | Kappiyamum Nadagamum                                                                          | 22ULT3                      | 5       | 3         | 3         | 25     | 75  | 100    |
|    | I   | Course - III               | Hindi Literature & Grammar                                                                    | 22ULH3                      |         |           |           |        |     |        |
|    |     | (LC)                       | – III                                                                                         |                             |         |           |           |        |     |        |
|    |     |                            | Prose Textual Grammar and                                                                     | 22ULS3                      |         |           |           |        |     |        |
|    |     |                            | Vakyarchana                                                                                   |                             |         |           |           |        |     |        |
|    |     |                            | Intermediate French – I                                                                       | 22ULF3                      |         |           |           |        |     |        |
|    |     | English                    | Learning Grammar through                                                                      | 22UE3                       | 6       | 3         | 3         | 25     | 75  | 100    |
|    | II  | Language<br>Course - III   | Literature – I                                                                                |                             |         |           |           |        |     |        |
|    |     | (ELC)                      |                                                                                               |                             |         |           |           |        |     |        |
|    |     | Core Course -              | Organic and Analytical                                                                        | 22UCH3CC4                   | 6       | 6         | 3         | 25     | 75  | 100    |
|    |     | IV (CC)                    | Chemistry                                                                                     |                             |         | Ü         |           |        | , c | 100    |
|    |     | Core Practical -           | Analysis and Preparation of                                                                   | 22UCH3CC3P                  | 3       | 3         | 3         | 40     | 60  | 100    |
|    |     | III(CP)                    | Organic Compounds (P)                                                                         |                             |         |           |           |        |     |        |
| Ш  | III |                            | Physics – I                                                                                   | 22UCH3AC4                   | 4       | 3         | 3         | 25     | 75  | 100    |
|    |     | Course - I (AC)            |                                                                                               |                             |         |           |           |        | _   |        |
|    |     |                            | Physics -I (P)                                                                                | 22UCH3AC5P                  | 4       | 3         | 3         | 40     | 60  | 100    |
|    |     | Course - II (AP)           | Chemistry in Everyday life                                                                    | 22UCH3GEC1                  | 2       | 2         | 3         | 25     | 75  | 100    |
|    |     | Generic<br>Elective Course |                                                                                               | 22ULC3BT1                   |         | 2         | 3         | 25     | 13  | 100    |
|    | IV  | - I (GEC)                  | Special Tamil-I                                                                               | 22ULC3ST1                   |         |           |           |        |     |        |
|    |     | Extra Credit               | SWAYAM                                                                                        | 220203311                   |         | As r      | er I      | JGC    |     |        |
|    |     | Course                     |                                                                                               |                             |         |           |           | ndatio | n   |        |
| 1  |     | •                          |                                                                                               | Total                       | 30      | 23        |           |        |     | 700    |
|    |     |                            |                                                                                               |                             | •       |           |           |        |     |        |
|    |     |                            | 15 Days INTERN                                                                                | NSHIP during Semes          | ter Hol | iday      | <b>'S</b> |        |     |        |
|    |     |                            | Pandaiya Illakiyamum 22                                                                       | NSHIP during Semes<br>2ULT4 | ter Hol | iday<br>3 | 3         | 25     | 75  | 100    |
|    |     |                            | Pandaiya Illakiyamum 22<br>Urainadaiyum                                                       | 2ULT4                       | 1       |           |           | 25     | 75  | 100    |
| JV | I   |                            | Pandaiya Illakiyamum 22<br>Urainadaiyum<br>e - Hindi Literature and 22                        |                             | 1       |           |           | 25     | 75  | 100    |
| IV | I   | Language Course<br>IV (LC) | Pandaiya Illakiyamum 22<br>Urainadaiyum<br>e - Hindi Literature and 22<br>Functional Hindi    | 2ULT4<br>2ULH4              | 1       |           |           | 25     | 75  | 100    |
| IV | I   |                            | Pandaiya Illakiyamum Urainadaiyum e - Hindi Literature and Functional Hindi Drama, History of | 2ULT4                       | 1       |           |           | 25     | 75  | 100    |
| IV | I   |                            | Pandaiya Illakiyamum 22<br>Urainadaiyum<br>e - Hindi Literature and 22<br>Functional Hindi    | 2ULT4<br>2ULH4<br>2ULS4     | 1       |           |           | 25     | 75  | 100    |

|     | п   | English Language<br>Course - IV<br>(ELC)                    | Learning Grammar<br>through Literature – II       | 22UE4              | 6           | 3           | 3    | 25          | 75    | 100 |
|-----|-----|-------------------------------------------------------------|---------------------------------------------------|--------------------|-------------|-------------|------|-------------|-------|-----|
|     |     | Core Course -<br>V(CC)                                      | Inorganic and Organic<br>Chemistry                | 22UCH4CC5          | 6           | 6           | 3    | 25          | 75    | 100 |
|     | Ш   | Core Practical -<br>IV(CP)                                  | Inorganic Qualitative<br>Analysis (P)             | 22UCH4CC4P         | 4           | 4           | 3    | 40          | 60    | 100 |
|     |     | Second Allied<br>Course - III<br>(AC)                       | Physics – II                                      | 22UCH4AC6          | 4           | 3           | 3    | 25          | 75    | 100 |
|     |     | Internship                                                  | Internship                                        | 22UCH4INT          | -           | 2           | -    | 1           | -     | 100 |
|     |     | Generic Elective<br>Course - II (GEC)                       | Food Adulterants and<br>Health Care               | 22UCH4GEC2         | 2           | 2           | 3    | 25          | 75    | 100 |
|     |     |                                                             | Basic Tamil-II                                    | 22ULC4BT2          | _           |             |      |             |       |     |
|     | IV  |                                                             | Special Tamil-II                                  | 22ULC4ST2          |             |             |      |             |       | 100 |
|     |     |                                                             | Chemistry of Consumer Products (P)                | 22UCH4SEC1P        | 2           | 2           | 3    | 40          | 60    | 100 |
|     |     | Extra Credit<br>Course                                      | SWAYAM                                            |                    | As per      |             | GC R | Recon       | nmen  |     |
|     |     |                                                             |                                                   | Total              | 30          | 25          |      |             |       | 800 |
|     |     | Core Course -<br>VI(CC)                                     | Inorganic Chemistry – I                           |                    | 6           | 6           | 3    | 25          | 75    | 100 |
|     |     | Core Practical -<br>V(CP)                                   | Physical Chemistry (P)                            | 22UCH5CC5P         | 3           | 3           | 3    | 40          | 60    | 100 |
|     |     | Core Course -<br>VII(CC)                                    | Organic Chemistry – I                             | 22UCH5CC7          | 6           | 6           | 3    | 25          | 75    | 100 |
|     |     | Core Course -<br>VIII(CC)                                   | Physical Chemistry – I                            | 22UCH5CC8          | 6           | 6           | 3    | 25          | 75    | 100 |
|     |     | Discipline Specific<br>Elective - I<br>(DSE)                | Industrial<br>Chemistry                           | 22UCH5DSE1A        | 5           | 4           | 3    | 25          | 75    | 100 |
| V   |     |                                                             | B. Basics of<br>Nanoscience<br>and Nanotechnology | 22UCH5DSE1B        |             |             |      |             |       |     |
|     |     |                                                             | C.Polymer Chemistry                               | 22UCH5DSE1C        |             |             |      |             |       |     |
|     | IV  | Ability<br>Enhancement<br>Compulsory<br>Course -IV(AECC)    | UGC Jeevan Kaushal -<br>Professional Skills       | 22UGPS             | 2           | 2           | 1    | 100         | 1     | 100 |
| ļ l |     |                                                             | Western Amelysais (D)                             | 22UCH5SEC2P        | 2           | 2           | 3    | 40          | 60    | 100 |
|     |     | Skill Enhancement<br>Course - II<br>(SEC)                   | water Analysis (P)                                | 220 011352021      |             |             |      |             |       |     |
|     |     | Course - II                                                 | SWAYAM                                            |                    | As per      |             | GC R | Recom       | nmeno |     |
|     |     | Course - II<br>(SEC)<br>Extra Credit<br>Course              | SWAYAM                                            | Total              | As per 30   | 29          |      |             |       | 700 |
|     |     | Course - II (SEC) Extra Credit Course  Core Course - IX(CC) | SWAYAM  Organic Chemistry – II                    | Total<br>22UCH6CC9 | As per 30 5 | <b>29</b> 5 | 3    | Recom<br>25 | nmeno |     |
| VI  | III | Course - II (SEC) Extra Credit Course Core Course -         | SWAYAM                                            | Total<br>22UCH6CC9 | As per 30   | 29          |      |             |       | 700 |

|   | (CC)                |                        |                    |     |    |   |     |     |      |
|---|---------------------|------------------------|--------------------|-----|----|---|-----|-----|------|
|   | Core Practical - VI | Gravimetric Analysis   | 22UCH6CC6P         | 4   | 4  | 4 | 40  | 60  | 100  |
|   | (CP)                | and Physical Parameter |                    |     |    |   |     |     |      |
|   |                     | (P)                    |                    |     |    |   |     |     |      |
|   | Discipline Specific | A. Analytical          | 22UCH6DSE2AP       | 5   | 4  | 3 | 40  | 60  | 100  |
|   | Elective - II       | Techniques(P)          |                    |     |    |   |     |     |      |
|   | (DSE)               | B. Cosmetic Chemistry  | 22UCH6DSE2BP       |     |    |   |     |     |      |
|   |                     | (P)                    |                    |     |    |   |     |     |      |
|   |                     | C. Analysis of Herbal  | 22UCH6DSE2CP       |     |    |   |     |     |      |
|   |                     | Products (P)           |                    |     |    |   |     |     |      |
|   | Project             | Project Work           | 22UCH6PW           | 5   | 4  | - | 1   | 100 | 100  |
| V | Gender Studies      | Gender Studies         | 22UGGS             | 1   | 1  | - | 100 | -   | 100  |
| V | Extension activity  |                        | 22UGEA             | 0   | 1  | 0 | -   | -   | -    |
|   | •                   |                        |                    | 30  | 28 |   |     |     | 700  |
|   |                     |                        | Total              |     |    |   |     |     |      |
|   |                     |                        |                    | 180 | 15 |   |     |     | 4400 |
|   |                     |                        | <b>Grand Total</b> |     | 0  |   |     |     |      |

#### **Courses & Credits for UG Science Programmes**

| Part | Course                      | No. of  | Credits | Total   |
|------|-----------------------------|---------|---------|---------|
|      |                             | Courses |         | Credits |
| I    | Tamil/ Other Language       | 4       | 12      | 12      |
| II   | English                     | 4       | 12      | 12      |
|      | Core (Theory & Practical)   | 17      | 77      |         |
|      | Project Work                | 1       | 4       |         |
| 111  | Internship                  | 1       | 2       | 109     |
| III  | First Allied                | 3       | 9       | 109     |
|      | Second Allied               | 3       | 9       |         |
|      | DSE                         | 2       | 8       |         |
|      | GEC                         | 2       | 4       |         |
|      | SEC                         | 2       | 4       |         |
| IV   | AECC-I -Universal Human     | 1       | 2       | 15      |
|      | Values                      |         |         |         |
|      | AECC-II-Environmental       | 1       | 2       |         |
|      | Studies                     |         |         |         |
|      | AECC-III-Innovation and     | 1       | 1       |         |
|      | Entrepreneurship            |         |         |         |
|      | AECC-IV Professional Skills | 1       | 2       |         |
| V    | Gender Studies              | 1       | 1       | 02      |
|      | Extension Activities        | _       | 1       |         |
|      |                             | 44      |         | 150     |

#### \*For BSc Mathematics & BCA

#### The Internal and external marks for theory and practical papers are as follows:

| Subject   | Internal Marks | External Marks |
|-----------|----------------|----------------|
| Theory    | 25             | 75             |
| Practical | 40             | 60             |

#### For Theory:

- a) The passing minimum for CIA shall be40% out of 25 marks (i.e. 10marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e.30 marks)

#### **For Practical:**

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. .24 marks)

#### **Internal Component (Theory)**

| Component    | Marks |
|--------------|-------|
| Library      | 05    |
| Assignment & | 10    |
| Seminar      |       |
| CIA -I       | 05    |
| CIA-II       | 05    |
| Total        | 25    |

Answer all the questions PART A (20X1=20)

Answer all the questions PART B (5X5=25)

Answer any three questions PART C (3X10=30)

# **Internal Component (Practical)**

| Component             | Marks |
|-----------------------|-------|
| Observation           | 05    |
| Record                | 10    |
|                       |       |
| Continual performance | 10    |
| Model                 | 15    |
| Total                 | 40    |

#### **Question Paper Pattern**

| Semester I  | Internal Marks: 25   | External Marks: 75 |            |         |  |
|-------------|----------------------|--------------------|------------|---------|--|
| COURSE CODE | COURSE TITLE         | CATEGORY           | Hrs / Week | CREDITS |  |
| 22UCH1CC1   | GENERAL<br>CHEMISTRY | CORE               | 5          | 5       |  |

#### **Course Objectives**

- ➤ The course reviews the structure of the atom, which is a necessary pre-requisite in understanding the nature of chemical bonding in compounds.
- ➤ It discusses the periodicity in properties with reference to the s and p block, which is necessary in understanding their group chemistry.
- ➤ It provides basic knowledge about ionic, covalent, metallic bonding and reactive intermediates.
- ➤ To understand the crystal structures of ionic compounds and the theoretical aspects of volumetric and qualitative inorganic analysis

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                                     | Cognitive<br>Level |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recognize and report the fundamental principles of various field of chemistry                                                         | K1&K2              |
| CO2          | Illustrate the knowledge on atomic structure, bonding, isomerism, reaction intermediates, solid state and analytical techniques.      | К3                 |
| CO3          | Examine the reaction intermediates, solid state and analytical techniques.                                                            | К3                 |
| CO4          | Categorize the quantum numbers, elements, hybridization, stability of intermediates, crystal structure, titrations and acid radicals. | K4                 |
| CO5          | Interpret the periodic properties, geometry of molecules and electronic displacement Effects                                          | K5                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |
| CO5 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

**Syllabus** 

| Г    | Syllabus                                                                                                                      | 1     |                   |                        |
|------|-------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|------------------------|
| UNIT | CONTENT                                                                                                                       | HOURS | COs               | COGNI<br>TIVE<br>LEVEL |
| I    | Atomic Structure and Periodic Properties: Atomic orbitals,                                                                    | 15    | CO1,              | K1,                    |
|      | quantum, numbers - Principal, azimuthal, magnetic and spin                                                                    |       | CO2,<br>CO3,      | K2,                    |
|      | quantum numbers and their significance. Principles governing the                                                              |       | CO3,              | K3,<br>K4, K5          |
|      | occupancy of electrons in various quantum levels-Pauli's                                                                      |       |                   |                        |
|      | exclusion- principle, Hund's rule, Aufbau Principle, (n+l) rule,                                                              |       |                   |                        |
|      | stability of half-filled and fully filled orbitals Classification as s,                                                       |       |                   |                        |
|      | p, d & f block elements - variation of periodic properties along                                                              |       |                   |                        |
|      | period and group - Electronegativity scale - Pauling's scale, Allred                                                          |       |                   |                        |
|      | and Rochow's scale - Mulliken's scale -variation of                                                                           |       |                   |                        |
|      | metallic characters - Factors influencing the periodic properties.                                                            |       |                   |                        |
| II   | Chemical Bonding-I: Chemical Bond- definition - types of                                                                      | 15    | CO1,              | K1,                    |
|      | chemical bond - Illustration. Intermolecular forces - dipole - dipole                                                         |       | CO2,<br>CO3,      | K2,<br>K3,             |
|      | interaction, induced dipole-induced dipole interaction.                                                                       |       | CO4               | K4, K5                 |
|      | Hybridisation - Bond length - Bond energy- Bond angle - factors                                                               |       |                   |                        |
|      | influencing BL, BE and BA. VB Theory - sp, sp <sup>2</sup> , sp <sup>3</sup> hybridisation                                    |       |                   |                        |
|      | - geometry of NH <sub>3</sub> , H <sub>2</sub> O, ClF <sub>3</sub> , IF <sub>3</sub> . VSEPR theory -                         |       |                   |                        |
|      | Molecular Orbital Theory - Homonuclear (H <sub>2</sub> , He <sub>2</sub> , O <sub>2</sub> , O <sub>2</sub> , O <sub>2</sub> , |       |                   |                        |
|      | N <sub>2</sub> , F <sub>2</sub> ) and Heteronuclear molecules (CO, NO, HF).                                                   |       |                   |                        |
| III  | Basics of Organic Compounds: IUPAC nomenclature of                                                                            | 15    | CO1,              | K1,                    |
|      | compounds- classification – isomerism - types - structural and                                                                |       | CO2,<br>CO3,      | K2,<br>K3,             |
|      | stereo isomerism - cleavage of bonds: homolytic and heterolytic                                                               |       | CO4               | K4,                    |
|      | cleavages - Inductive- electromeric - mesomeric (resonance)-                                                                  |       |                   | K5                     |
|      | hyperconjugation and steric effects. Reaction intermediates-                                                                  |       |                   |                        |
|      | carbocation, carbanion, free radicals, carbenes and nitrenes –                                                                |       |                   |                        |
|      | generation- properties - structure and stability.                                                                             |       |                   |                        |
| IV   | Structure of Solids: Crystal Structure - open and closed packed                                                               | 15    | CO1,<br>CO2,      | K1,<br>K2,             |
|      | structures – covalent network- ionic and molecular structure -                                                                |       | CO <sub>2</sub> , | К3,                    |
|      | packing of ions in ccp and hcp - radius ratio - coordination number                                                           |       |                   | <b>K4</b>              |
|      | in ionic crystals - crystal structures-sodium chloride, zinc blende,                                                          |       |                   |                        |
|      | wurtzite, rutile, cesium chloride, fluorite (unit cell                                                                        |       |                   |                        |
|      | diagrams). Crystal defects - Schottky and Frenkel defects.                                                                    |       |                   |                        |
| V    | Analytical Methods-I: Storage and handling of chemicals -                                                                     | 15    | CO1,<br>CO2,      | K1,<br>K2,             |
|      | handling of acids, ethers, toxic and poisonous chemicals and first                                                            |       | CO3               | K3,                    |
|      | aid procedure - Volumetric analysis - methods of expressing                                                                   |       |                   | K4                     |

|    | concentration - Primary and Secondary standards- Different types of titrations – Acid - Base Titrations, Tritimetric method, Iodimetry method - Iodometry Method, Complexometric Titration and Precipitation Titration. Qualitative Inorganic Analysis - Dry Test - Flame Test - Interfering acid radicals - Eliminating of Interfering acid radicals.                                                               |   |                     |                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|---------------------|
| VI | Self-Study for Enrichment (Not to be included for External Examination)  Electronic configuration of polyelectronic atoms, Calculation of screening constant and effective nuclear charge - Lewis electron dot structure - Oxidation State and valency of element - Comparison of reactive intermediates based on their stability - Difference between ionic and covalent crystals - Do and Don't in the Science Lab | - | CO1,<br>CO2<br>,CO3 | K1,<br>K2,K3,<br>K4 |

#### **Text Books**

- 1. Puri, B. R., Sharma, L. R. & Kalia, K. K. (2018). Principles of Inorganic Chemistry. 33<sup>rd</sup> edition. Shoban Lal Nagin Chand & Co., New Delhi.
- 2. Madan, R.D. (2019). Modern Inorganic Chemistry. 3<sup>rd</sup> edition. S. Chand & Company Ltd.
- 3. Bahl, B. S. & Arun Bahl (2021). Text book of Organic Chemistry, 22<sup>nd</sup> revised edition. S. Chand & Company Ltd.
- 4. Puri, B. R., Sharma, L. R. & Pathania, M. S. (2022). Principles of Physical Chemistry. 48<sup>th</sup> edition. Shoban Lal Nagin Chand & Co, New Delhi.
- 5. Gopalan, R., Subramanian, P. S. & Rengarajan, K. (2003). Elements of Analytical Chemistry. 2<sup>nd</sup> edition. Sultan Chand & Sons,

#### Reference Books

- 1. Soni, P. L. & Mohan Katyal. (2017). Text book of Inorganic Chemistry. 25<sup>th</sup> revised edition. Sultan Chand & Sons.
- 2. Vogel, A. I. (2000). Text Book of Quantitative Inorganic analysis including Elementary Instrumental Analysis. The English Language Book Society.

#### Web References

- 1. <a href="https://www.thoughtco.com/definition-of-quantum-number-604629">https://www.thoughtco.com/definition-of-quantum-number-604629</a>
- 2. https://www.chemie-biologie.uni-siegen.de/ac/lehre/part1\_solid\_state.pdf
- 3. https://testbook.com/learn/chemistry-vsepr-theory/

#### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

#### Course Designers

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Ms. A. Sharmila

| Semester I | Internal Marks: 40      | External Marks: 60 |          |         |  |  |
|------------|-------------------------|--------------------|----------|---------|--|--|
| COURSECODE | COURSETITLE             | CATEGORY           | Hrs/Week | CREDITS |  |  |
| 22UCH1CC1P | GENERAL<br>CHEMISTRY(P) | CORE               | 3        | 3       |  |  |

#### **Course Objectives**

- > To learn the techniques of titrimetric analyses.
- > To know the estimation of several cations and anions and to know the estimation of total hardness of water.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statements On the successful completion of the course, students will be able to | Cognitive<br>Level |
|--------------|------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall the basic principles of volumetric analysis and estimation                  | K1                 |
| CO2          | Demonstrate the experimental methods of volumetric analysis                        | K2                 |
| CO3          | Estimate the chlorine content in bleaching powder and copper in brass              | К3                 |
| CO4          | Determine the hardness of water                                                    | К3                 |
| CO5          | Determine saponification value of oil                                              | K3                 |

| СО  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 3    | 3    | 3    | 1   | 2   | 3   | 3   | 2   |
| CO2 | 2    | 2    | 2    | 3    | 2    | 3   | 3   | 3   | 3   | 2   |
| CO3 | 2    | 3    | 3    | 1    | 2    | 2   | 3   | 3   | 2   | 1   |
| CO4 | 2    | 3    | 3    | 1    | 2    | 2   | 3   | 3   | 2   | 2   |
| CO5 | 2    | 3    | 3    | 1    | 2    | 2   | 3   | 3   | 2   | 2   |

<sup>&</sup>quot;1"-Slight(Low) Correlation
"3"-Substantial(High) Correlation

<sup>&</sup>quot;2"-Moderate(Medium)Correlation
"-"indicates there is no correlation.

#### **Syllabus**

#### I Titrimetric Quantitative Analysis

- 1. Estimation of HCl using NaOH as link and standard oxalic acid solution
- 2. Estimation of Na2CO3using HCl as link and standard Na2CO3solution
- 3. Estimation of oxalic acid using KMnO4 as link and standard oxalic acid solution
- 4. Estimation of Iron(II) sulphate using KMnO4 as link and standard Mohr's salt solution
- 5. Estimation of KMnO4 using thio as link and standard K2Cr2O7 solution.
- 6. Estimation of copper(II) sulphate using K2Cr2O7solution
- 7. Estimation of Mg(II) by EDTA solution
- 8. Estimation of Ca(II) by EDTA solution
- 9. Estimation of chloride ion

#### **II. Applied Experiments**

- 1. Estimation of total hardness of water
- 2. Estimation of bleaching powder
- 3. Estimation of saponification value of an oil
- 4. Estimation of copper in brass

#### **Text Books**

- 1. Venkateswaran, V. & Veeraswamy, R.& Kuandaivelu. (1997). Basic Principles of Practical Chemistry. 2<sup>nd</sup> edition. New Delhi, Sultan Chand & Sons.
- 2. Bassett, J. (1985). Text Book of Quantitative Inorganic Analysis. 4<sup>th</sup> edition. ELBS Longman.

#### Reference Book

1. Vogel A. I. (2000) Text book of quantitative inorganic analysis. The English language book Society.

#### Web References

- 1. https://www.youtube.com/watch?v=wh6-cYjNNiA
- 2. https://chemlab.truman.edu/files/2015/07/edta.pdf
- 3. <a href="https://www.slideshare.net/mithilfaldesai/estimation-of-feii-ions-by-titrating-against-k2-cr207-using-internal-indicator">https://www.slideshare.net/mithilfaldesai/estimation-of-feii-ions-by-titrating-against-k2-cr207-using-internal-indicator</a>
- 4. https://byjus.com/chemistry/titration-of-oxalic-acid-with-kmno4/
- 5. <a href="http://www.titrations.info/EDTA-titration-calcium">http://www.titrations.info/EDTA-titration-calcium</a>
- 6. https://www.youtube.com/watch?v=qmVQs6Q7tso

# Pedagogy

Demonstration and Practical sessions

# Course Designer

> Dr. C. Rajarajeswari

#### FIRST ALLIED COURSE-I (AC)

#### CALCULUS AND FOURIER SERIES

(For B.Sc Physics & Chemistry)

(2022-2023 and Onwards)

| Semester I | Internal Marks: 25   | ExternalMarks:75 |            |         |  |
|------------|----------------------|------------------|------------|---------|--|
| COURSECODE | COURSETITLE          | CATEGORY         | Hrs / Week | CREDITS |  |
| 22UPH1AC1/ | CALCULUS AND FOURIER | ALLIED           | 4          | 3       |  |
| 22UCH1AC1A | SERIES               |                  | -          |         |  |

#### **Course Objective**

- Explore the students with mathematical methods formatted for their major concepts and train them in basic Integrations.
- Analyze mathematical statements and expressions.
- Evaluate the fundamental concepts of Differentiation and Integration.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                         | Cognitive |
|--------|----------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to | Level     |
| CO1    | Explain the concepts of Calculus and Fourier series                  | K1,K2     |
| CO2    | Classify the problem models in the respective area.                  | K3        |
| CO3    | Solve various types of problems in the corresponding stream.         | K3        |
| CO4    | Identify the properties of solutions in the core area.               | К3        |
| CO5    | Discover the applications of Calculus and Fourier series.            | K4        |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 2    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO2 | 3    | 2    | 2    | 2    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO3 | 3    | 2    | 2    | 2    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO4 | 3    | 2    | 2    | 2    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO5 | 3    | 2    | 2    | 2    | 2    | 3   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

<sup>&</sup>quot;3" – Substantial (High) Correlation – "-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOURS | COs                                 | COGNITIVE<br>LEVEL      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-------------------------|
| I    | Successive Differentiation:  The $n^{th}$ derivative — Standard results — Method of splitting the fractional expressions into partial fractions — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula for the $n^{th}$ derivative of a product(proof not needed) —A complete formal proof by induction (proof not needed) — Curvature— Circle, radius and center of curvature — Cartesian formula for the radius of curvature—Simple problems in all these. | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| П    | Evaluation of integrals:  Integration of Rational algebraic functions— Rule  (a)— Rule (b) Integration of the form $\int \frac{lx+m}{dx}$ — Rule $ax^2 + bx + c$ (c)— Integration of Irrational functions: Integration of the form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ —Integration of the form $\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c}}$ — Integration of the form $\int \frac{dx}{a+b\cos x}$ .                                                                                                      | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| III  | Reduction Formula:  Properties of definite integrals –Reduction formula (when n is a positive integer) for  1] $\int e^{ax} x^n dx$ 2] $\int x^n \cos ax dx$ 3] $\int \sin^n x dx$ 4] $\frac{\pi}{2}$ $\int \sin^n x \cos^m dx$ (without proof) and illustrations.                                                                                                                                                                                                                                       | 13    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| IV   | Double and Triple Integrals:  Definition of the double integral-Evaluation of Double integral(Problems Only)-Changeof order and evaluation of the double integral (Problems only).                                                                                                                                                                                                                                                                                                                       | 10    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| V    | Fourier Series:  Definition of Fourier Series – Finding the Fourier                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10    | CO1,<br>CO2,<br>CO3,                | K1,<br>K2,<br>K3,       |

|    | Coefficients for a given periodic function with period $2\pi$ - Even and Odd functions—Half range Fourier series.                                                                                                                                                                                                                                                                                                                                                              | CO4,<br>CO5                         | K4                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|
| VI | Self-Study for Enrichment: (Not to be included for External examination)  Radius of curvature when the curve is in Polar coordinates - (i) $\int \frac{dx}{ax^2 + bx + c}$ (ii) $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ - (1) $\int \frac{1}{\sqrt{ax^2 + bx + c}}$ - (1) $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ - (2) $\int \cos^n x dx$ (2) $\int \cos^n x dx$ - Triple Integrals in simple cases(Problems Only) - Development in cosine series - Development in sine series. | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |

#### **Text Books**

- 1. Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume I.S.* Viswanathan Pvt Limited.
- 2. Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume II*. S. Viswanathan Pvt Limited.
- 3. Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume III*. S. Viswanathan Pvt Limited.

UNIT-I Chapter 3:Sections 1.1 to 1.6,2.1,2.2[1]
Chapter 10:Sections 2.1 to 2.3 [1]
UNIT-II Chapter 1:Sections 7.1,7.3,7.4,8(CASE II, CASE V), 9 [2]
UNIT-III Chapter 1:Sections 11,13.1 to 13.5 [2]
UNIT-IV Chapter 5:Sections 2.1,2.2,4 [2]
UNIT-V Chapter 6:Sections 1 to 4[3]

#### **Reference Books**

- 1. Sankarappan, S. Arulmozhi, G. (2006). Vector Calculus, Fourier series and Fourier Transforms. Vijay Nicole Imprints Private Limited.
- 2. Vittal, P.R.(2014). Allied Mathematics. Margham Publications.
- 3. Singaravelu, A.(2003). Differential Calculus and Trigonometry. R Publication.

#### Web Links

- 1. <a href="https://www.voutube.com/watch?v=tBtF3Lr-VLk&t=64s">https://www.voutube.com/watch?v=tBtF3Lr-VLk&t=64s</a>
- 2. <a href="https://www.voutube.com/watch?v=Z4oSGuAZrZM">https://www.voutube.com/watch?v=Z4oSGuAZrZM</a>
- 3. <a href="https://www.voutube.com/watch?v=w6llnAOX">https://www.voutube.com/watch?v=w6llnAOX</a> f8
- 4. <a href="https://www.voutube.com/watch?v=LMci8o0ERNE">https://www.voutube.com/watch?v=LMci8o0ERNE</a>
- 5. <a href="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://www.youtube.com/watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v="https://watch?v
- 6. <a href="https://www.voutube.com/watch?v=9X3gqehcFII">https://www.voutube.com/watch?v=9X3gqehcFII</a>

#### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designers**

- 1. Dr. P. Saranya
- 2. Ms. L. Mahalakshmi
- 3. Ms. P. Geethanjali

| Semester I  | Internal Marks: 25 |          | External Marks: 75 |         |  |  |
|-------------|--------------------|----------|--------------------|---------|--|--|
| COURSE CODE | COURSE TITLE       | CATEGORY | Hrs/Week           | CREDITS |  |  |
| 22UCH1AC1B  | BIOCHEMISTRY-I     | ALLIED   | 4                  | 3       |  |  |

#### **Course Objectives**

- > To describe the chemistry of carbohydrates, proteins and lipids.
- > To understand the importance of biomolecules in living organisms.
- > To gain knowledge about the diseases occurring due to alterations in the levels of biomolecules.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                         | Cognitive<br>Level |
|--------------|-----------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall the basic concepts and understand the structure, functions of the biomolecules in living organisms | K1&K2              |
| CO2          | Describe the functions of the biomolecules in living organisms                                            | K2                 |
| CO3          | Apply the concepts to illustrate the role of biomolecules in various metabolic pathways                   | К3                 |
| CO4          | Analyze the results of routine biochemical analysis using theoretical Concepts                            | K4                 |
| CO5          | Evaluate the dimensions of diseases associated with the metabolic Disorders                               | K5                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 2    | 2    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

#### **Syllabus**

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                           | HOURS | COs                   | COGNITIVE<br>LEVEL    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|-----------------------|
| I    | <b>Carbohydrates:</b> Definition of carbohydrate - Digestion and absorption of Glucose - Fate of glucose after absorption                                                                                                                                                                                                                         | 13    | CO1, CO2,<br>CO3, CO4 | K1, K2, K3,<br>K4, K5 |
|      | (preliminary idea). Intermediary metabolism of carbohydrates -glycogenesis, glycogenolysis, glycolysis, gluconeogenesis. Regulation of blood sugar - normal range - Hypoglycaemia and Hyperglycaemia - glucose tolerance tests - Diabetic Mellitus - Types and symptoms - glycosuria.                                                             |       | 003, 004              | 114, 113              |
| II   | <b>Proteins</b> : Proteins - Definition - Peptide bond formation -                                                                                                                                                                                                                                                                                | 13    | CO1, CO2,             | K1, K2, K3,           |
|      | classification of proteins based on its physical properties - structure of proteins: primary structure - secondarystructure - tertiary structure - denaturation. Absorption- metabolic pool - general pathway of protein metabolism- in born errors of amino acid metabolism - Phenylketonuria, Alkaptonuria (Black urine syndrome) and albinism. |       | CO3, CO4              | K4, K5                |
| III  | <b>Lipids:</b> Definition – lipids - oxidation of fatty acids - $\beta$ -                                                                                                                                                                                                                                                                         | 12    | CO1, CO2,             | K1, K2, K3,           |
|      | oxidation cycle of saturated fatty acids. Ketogenesis, Ketosis  – Ketolysis - role of liver in fat metabolism - Cholesterol – absorption - factors influencing absorption. Lipid profile – cholesterol – Triglycerides- lipoproteins - HDL and LDL. Fatty liver - Inborn errors of lipid metabolism.                                              |       | CO3, CO4              | K4, K5                |
| IV   | Enzymes: Definition- classification- examples - Glucose                                                                                                                                                                                                                                                                                           | 12    | CO1, CO2,             | K1, K2, K3,           |
|      | oxidase - mechanism of enzyme action- Factors influencing enzyme action. Digestive enzymes and their action - salivary digestion - gastric digestion - pancreatic and intestinal digestion- Thyroxine - agents interfering with the synthesis of thyroid hormone - Diseases associated with abnormal metabolism of thyroxin.                      |       | CO3, CO4              | K4, K5                |
| V    | Blood and Bile Pigments: Blood - functions of plasma                                                                                                                                                                                                                                                                                              | 10    | CO1, CO2,             | K1, K2, K3,           |
|      | proteins - blood groups and Rh factor - coagulation of blood mechanism. Haemoglobin - structure and properties of Hb – metabolism -Bile pigments - examples - Types of Jaundice (preliminary idea).                                                                                                                                               |       | CO3, CO4              | K4, K5                |
| VI   | Self-Study for Enrichment be included for External Examination) Structure and classification of carbohydrates - Categories of amino acids - Types and functions of lipids - Properties and uses of enzymes - Properties and examples of bile pigments.                                                                                            | -     | CO1                   | K1, K2                |

#### **Text Books**

- 1. Ambika, S. (2012). Fundamentals of Biochemistry for Medical Students. (7<sup>th</sup> ed.). Iippincott Williams & Wilkins.
- 2. Fatima, D., Nallasingam, K., Narayanan, L. M., Arumugam, N., Meyyan, R. P., & Prasanna Kumar, S. (2019). Biochemistry. (7<sup>th</sup> ed.). Saras Publication.
- 3. Jain, J. L., Jain, S., &Jain, N. (2016). Fundamentals of Biochemistry.(Revised ed.). S Chand & Co Ltd.

#### Reference Books

- 1. Annie Ragland, & Arumugam, N. (2015). Biochemistry and Biophysics. (3<sup>rd</sup> ed.). Saras Publication.
- 2. Nelson, D. L., & Cox. M. M. (2017). Lehninger Principles of Biochemistry. (7<sup>th</sup>ed.). WH Freeman.
- 3. Voet, D., Pratt, C. W., & Voet, J. G. (2012). Principles of Biochemistry. (4<sup>th</sup> ed.). John Wiley & Sons.
- 4. Berg, J. M., Stryer, L., Tymoczko, J., & Gatto, G. (2019). Biochemistry. (9th ed.). WH Freeman.
- 5. Mathews, C. K., Van Holde, K. E., & Ahern, K. G. (2000). Biochemistry. (3<sup>rd</sup> ed.). Pearson.

#### Web References

- 1. https://www.biologie.ens.fr/~mthomas/L3/intro\_biologie/2-sucres-lipides-acides-nucleiques.pdf
- 2. https://bio.libretexts.org/@go/page/1861
- 3. <a href="https://bio.libretexts.org/@go/page/16827">https://bio.libretexts.org/@go/page/16827</a>
- 4. https://bio.libretexts.org/@go/page/16101
- 5. https://bio.libretexts.org/@go/page/16828

#### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

#### **Course Designer**

1. Dr. S. Saranya

#### FIRST ALLIED COURSE-II (AC)

#### ALGEBRA, ANALYTICAL GEOMETRY OF 3D & TRIGONOMETRY

(For B.Sc Physics & Chemistry)

(2022-2023 and Onwards)

| Semester I               | Internal Marks: 25                                       | ExternalMarks:75 |               |         |  |
|--------------------------|----------------------------------------------------------|------------------|---------------|---------|--|
| COURSECODE               | COURSETITLE                                              | CATEGORY         | Hrs /<br>Week | CREDITS |  |
| 22UPH1AC2/<br>22UCH1AC2A | ALGEBRA, ANALYTICAL<br>GEOMETRY OF 3D &<br>TRIGONOMETRYS | ALLIED           | 4             | 3       |  |

#### **Course Objective**

- Analyze the mathematical methods formatted for their major concepts.
- Evaluate the problems in Algebra and Trigonometry.
- Explain the basics of Three-Dimensional geometry.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to | Cognitive<br>Level |
|--------------|-----------------------------------------------------------------------------------|--------------------|
| CO1          | Explain various notions in Algebra, Analytical Geometry of 3D& Trigonometry.      | K1,K2              |
| CO2          | Identify the problem models.                                                      | К3                 |
| CO3          | Apply the concepts of Algebra, Analytical Geometry of 3D& Trigonometry.           | К3                 |
| CO4          | Solve the given problems in the respective stream.                                | К3                 |
| CO5          | Analyze the applications of the core area.                                        | K4                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 2    | 2    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO2 | 2    | 2    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO3 | 2    | 2    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO4 | 2    | 2    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO5 | 2    | 2    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

<sup>&</sup>quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

# Syllabus

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HOURS | COs                                 | COGNITIVE<br>LEVEL       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------|
| I    | Series Expansion:  Application of Binomial Theorem to summation of series – Approximate values – Summation of series by Exponential series - Summation of series by Logarithmic series (Formulae only).                                                                                                                                                                                                                                                                                                                                                                                             | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4. |
| II   | Matrices:  Matrix-Special types of Matrices —Scalar multiplication of a matrix-Equality of matrices-Addition of matrices-Subtraction of matrices- Symmetric matrix-Skew symmetric matrix-Hermitian and Skew Hermitian matrix —Multiplication of matrix — Inverse matrix-Inner product-Solution of simultaneous equations-Rank of a matrix-Elementary transformation of a matrix-A system of <i>m</i> homogeneous linear equations in <i>n</i> unknowns-Linear dependence and independence of vectors-System of non-homogeneous linear equations - Eigen values and Eigenvectors.(Applications only) | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4. |
| III  | Three Dimensional Geometry:  The Sphere – Definition- The equation of a sphere when the center and radius are given-The equation of a sphere to find its center and radius- The length of the Tangent Plane from a point to the sphere – The Plane Section of a sphere – Equation of a circle on a sphere – Intersection of two spheres in a circle.                                                                                                                                                                                                                                                | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4. |
| IV   | Expansion of Trigonometric functions:  Expansions of $\cos n\theta$ and $\sin n\theta$ - Expansion of $\tan(A+B+C+)$ (omitting examples on formation of equations) –Powers of sines and cosines of $\theta$ in terms of functions of multiples of $\theta$ – Expansions of $\cos^n\theta$ when $\sin^n\theta$ a positive integer – Expansions of $\sin^n\theta$ when $\sin^n\theta$ are series of ascending powers of $\theta$ - The expansions of $\sin^n\theta$ and $\cos^n\theta$ find the limits of certain expressions.                                                                        | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4. |

|    | Hyperbolic functions:                                                     |    |              |            |
|----|---------------------------------------------------------------------------|----|--------------|------------|
|    | Hyperbolic functions – Relation between                                   |    | CO1,<br>CO2, | K1,        |
| V  | hyperbolic functions – Relations between hyperbolic                       | 12 | CO3,         | K2,<br>K3, |
|    | functions and circular functions - Inverse hyperbolic                     |    | CO4,<br>CO5  | K4.        |
|    | functions.                                                                |    |              |            |
|    | Self-Study for Enrichment : (Not to be included for External examination) |    |              |            |
|    | Series which can be summed up by the                                      |    |              |            |
|    | Logarithmic series - Simple applications of Matrices- The                 |    | CO1,<br>CO2, | K1,        |
| VI | equation of the tangent plane to the sphere at apoint.                    | -  | CO3,         | K2,<br>K3, |
|    | (Only problems) - Expansion of $tan\theta$ in terms of powers             |    | CO4,<br>CO5  | K3,<br>K4. |
|    | of $\theta$ - Separation of real and imaginary parts of                   |    | 203          |            |
|    | tanh(x+iy).                                                               |    |              |            |

#### **Text Books**

- 1. Manichavasagam Pillai, T.K. Natarajan, T.& Ganapathy, K.S. (2015). *Algebra, Volume I.S.* Viswanathan Pvt Limited.
- 2. Manichavasagam Pillai, T.K. (2015). Algebra, Volume II. S. Viswanathan Pvt Limited.
- 3. Manichavasagam Pillai, T.K. &Natarajan, T. (2016). *A Text book of Analytical Geometry Part-II 3D*. New Gamma Publishers.
- 4. Manichavasagam Pillai, T.K. & Narayanan, S. (2013). *Trigonometry*. S. Viswanathan Pvt Limited.

```
UNIT-I Chapter 3:Sections 10,14[1]
Chapter 4:Sections 3,7,9 [1]
UNIT-II Chapter 2:Sections 1 to 16 [2]
UNIT-III Chapter 4:Sections 1-5,6,6.1,7,8 [3]
UNIT-IV Chapter 3:Sections 1 to 4, 4.1,5,5.1[4]
UNIT-V Chapter 4:Sections 1,2,2.1 to 2.3[4]
```

#### **Reference Books**

- 1. Arumugam,S. Issac,A. (2017). Analytical Geometry 3D and Vector calculus. New Gamma Publishing house.
- 2. Pandey, H.D. Khan, M.Q. & Gupta, B.N.(2011). A Text Book of Analytical Geometry and Vector Analysis. Wisdom Press.
- 3. Singaravelu, A. (2003). Differential Calculus and Trigonometry. R Publication.

#### Web Links

- 1. https://www.voutube.com/watch?v=JavFh5EJHcU
- 2. <a href="https://www.voutube.com/watch?v=h5urBuE4Xhg">https://www.voutube.com/watch?v=h5urBuE4Xhg</a>
- 3. <a href="https://www.voutube.com/watch?v=59z6eBvnJuw">https://www.voutube.com/watch?v=59z6eBvnJuw</a>
- 4. <a href="https://www.voutube.com/watch?v=9DvPvJb2N9g">https://www.voutube.com/watch?v=9DvPvJb2N9g</a>
- 5. <a href="https://www.voutube.com/watch?v=HOk2XLeFPDk">https://www.voutube.com/watch?v=HOk2XLeFPDk</a>
- 6. <a href="https://www.voutube.com/watch?v=G1C1Z5aTZSO">https://www.voutube.com/watch?v=G1C1Z5aTZSO</a>

#### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designers**

- 1. Dr. P. Saranya
- 2. Dr. L. Mahalakshmi
- 3. Ms. P. Geethanjali

| Semester I  | Internal Marks: | Internal Marks: 40 |            |         |  |
|-------------|-----------------|--------------------|------------|---------|--|
| COURSE CODE | COURSETITLE     | CATEGORY           | Hrs / Week | CREDITS |  |
| 22UCH1AC2BP | BIOCHEMISTRY(P) | ALLIED             | 4          | 3       |  |

#### **Course Objective**

> To expertise the student for analysis of any biological sample for identification of its chemical composition

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                             | Cognitive |
|--------|--------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                                     | Level     |
| CO1    | Identify and classify the given compounds of carbohydrates, amino acids and lipids based on the characteristic reactions | K1&K2     |
| CO2    | Analysis of the compounds                                                                                                | K2        |
| CO3    | Prepare and isolate the biomolecules present in food products                                                            | К3        |
| CO4    | Estimate the amount of carbohydrate and protein present in the given solution                                            | K4        |
| CO5    | Assess the quality and quantity of biomolecules by analytical methods                                                    | K5        |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

#### **Syllabus**

#### I QUALITATIVE ANALYSIS

#### (i) Preparation

- 1. Preparation of buffers (acidic, neutral and alkaline) and determination of pH.
- 2. Preparation of osazones.

#### (ii) Qualitative Identification

- 3. Qualitative identification of carbohydrates
  - Monosaccharides: Pentose, Glucose, Fructose, Mannose
  - Disaccharides : Sucrose. Maltose, Lactose
  - Polysaccharides: Starch, Dextrin and Glycogen
- 4. Qualitative identification of amino acids
  - Aliphatic : Histidine, Arginine, & Proline
  - Aromatic: Tyrosine, Tryptophan, Phenylalanine
  - Sulphur containing amino acids: Cystein, Cystine & Methionine
- 5. Qualitative identification of lipids solubility, saponification, acrolein test, Salkowski test, Lieberman-Burchard test.

#### (iii) Isolation

- 6. Isolation of casein from milk.
- 7. Isolation of egg albumin from egg white.
- 8. Isolation of starch from potato.

#### II QUANTITATIVE ANALYSIS

- 1. Estimation of glucose.
- 2. Estimation of protein.

#### III DEMONSTRATION

1. Blood group test

#### **Text Books**

- 1. Rajan, S., & Selvi Christy. R. (2018). Experimental Procedures in Life Sciences. CBS Publishers & Distributors.
- 2. Gnanpragasam, N. S., & Ramamurthy. G. (2013). Organic Chemistry Lab Manual. Viswanathan, S., Printers & Publishers.

#### **Reference Books**

- 1. Zubay, C. (1986). Biochemistry. Addison Wesley.
- 2. Wood, W. B. (1981). Biochemistry- A problem Approach. Addison Wesley.

#### **Web References**

- 1. http://nec.edu.np/Publications/Chemistry\_LAB\_Manual/Experiment%204.pdf
- 2. https://microbenotes.com/osazone-test/
- 3. https://www.mlsu.ac.in/econtents/1616\_Biochemical%20Tests%20of%20Carbohydrate,%20protein,%

20lipids%20and%20salivary%20amylase.pdf

- 4. <a href="https://vlab.amrita.edu/?sub=2&brch=191&sim=692&cnt=2">https://vlab.amrita.edu/?sub=2&brch=191&sim=692&cnt=2</a>
- 5. <a href="https://webstor.srmist.edu.in/web\_assets/srm\_mainsite/files/files/2%20ESTIMATION%20OF%20PR">https://webstor.srmist.edu.in/web\_assets/srm\_mainsite/files/files/2%20ESTIMATION%20OF%20PR</a> OTEIN%20BY%20LOWRY.pdf

#### Pedagogy

Demonstration and practical sessions

#### Course Designer

1. Dr. S. Saranya

| Semester II | Internal Marks: 25 | External Marks: 75 |            |         |  |  |  |
|-------------|--------------------|--------------------|------------|---------|--|--|--|
| COURSE CODE | COURSE TITLE       | CATEGORY           | Hrs / Week | CREDITS |  |  |  |
|             |                    |                    |            |         |  |  |  |
| 22UCH2CC2   | INORGANIC AND      | CORE               | 5          | 5       |  |  |  |
|             | PHYSICAL           |                    |            |         |  |  |  |
|             | <b>CHEMISTRY</b>   |                    |            |         |  |  |  |

#### **Course Objectives**

- ➤ The course reviews the chemical bonding, which is a necessary pre-requisite in understanding the nature of chemical bonding existing in compounds.
- > Discusses about the sand p block elements.
- ➤ Provides basic knowledge about liquid and colloidal state of matter.
- > Deliberates the basic concepts of thermochemistry.
- > Stretches the knowledge about the different techniques involved in metallurgy.

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | On the successful completion of the course, students will be able to                                                         | Cognitive<br>Level |
|--------------|------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recognize and account the fundamental ideas of bonding, s, p block elements, thermochemistry, metallurgy and colloidal state | K1&K2              |
| CO2          | Exemplify the knowledge on bonding, periodic elements, liquids, colloids, enthalpies and refining process                    | K3                 |
| CO3          | Categorize the types of bonding, s block elements, liquid and colloidal state of compounds and their properties.             | K4                 |
| CO4          | Interpret the percent ionic character, dipole moment                                                                         | K4                 |
| CO5          | Interpret Hess's law andtechniques used in metallurgy.                                                                       | K5                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |
| CO5 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

# Syllabus

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                           | HOURS | Cos                   | COGNITIVE<br>LEVEL    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|-----------------------|
| I    | Chemical Bonding – II  Ionic Bond – Lattice Energy- Born-Haber Cycle- polarity in covalent bonds – covalent character of Ionic bond - Fajan's rule - effects of Polarisation- percent ionic character- electronegativity difference. Dipole moment and structure of molecules- Hydrogen bonding - properties, types and consequences.                                                             | 15    | CO1, CO2,<br>CO3, CO4 | K1, K2, K3,<br>K4, K5 |
| П    | s and p- Block Elements s- block elements: General characteristics, comparative study of alkali and alkaline earth metals - oxides. Diagonal relationship between Li and Mg, Be and Al. p-Block Elements: General characteristic of groups 13-17, Boron and its compounds-Boric acid- Borax - Boron nitride - Boron trihalide – diborane - compounds of silicon - silicates, silicones and SiCl4. | 15    | CO1, CO2,<br>CO3, CO4 | K1, K2, K3,<br>K4, K5 |
| Ш    | Metallurgy Introduction to Transition metals-Metallurgy-various steps in metallurgy – grinding -pulverizing - concentration (ore dressing)-hand picking - gravity separation - froth floatation, electromagnetic separation, chemical separation - calcinations and roasting - smelting, alumino thermic process- purification of metals - zone refining- vapour phase and electrolytic refining. | 15    | CO1, CO2,<br>CO3, CO4 |                       |
| IV   | Liquid and colloidal State:  Liquid State - physical properties of liquids – vapour pressure- surface tension- viscosity - refraction- their determination.  Liquid Crystals - classification of thermotropic liquid crystals – Smectic - Nematric -Cholesteric Liquid                                                                                                                            | 15    | CO1, CO2,<br>CO3      | K1, K2, K3,<br>K4     |

|    | Crystals- Disc-shaped Liquid Crystals- Polymer Liquid      |    |           |             |
|----|------------------------------------------------------------|----|-----------|-------------|
|    | Crystals. Colloids – types of colloidal solutions –        |    |           |             |
|    | classification – preparation – purification – properties – |    |           |             |
|    | determination of size of particles - gels and their        |    |           |             |
|    | applications –application of colloids.                     |    |           |             |
| V  | Thermochemistry                                            |    |           |             |
|    | Change of internal energy in chemical reaction-change of   |    |           |             |
|    | enthalpy in chemical reaction-enthalpy of reaction at      |    | CO1, CO2, | K1, K2, K3, |
|    | constant volume and constant pressure- enthalpy of         | 15 | , ,       | K4          |
|    | neutralization- enthalpy of dissociation- enthalpy of      | 15 |           |             |
|    | formation-enthalpies of compounds-enthalpies of            |    |           |             |
|    | formation of ions- Kirchoff's equation-Hesse's law and its |    |           |             |
|    | Application                                                |    |           |             |
| VI | Self-Study for Enrichment                                  |    |           |             |
|    | (Not to be included for External Examination)              |    |           |             |
|    | Bond characteristics- periodic table-general properties of |    |           |             |
|    | states of matter- exothermic- endothermic changes - free   | -  | CO1, CO2, | K1, K2, K3, |
|    | energy change in chemical reactions- minerals and ores.    |    | CO3       | K4          |

#### **Text Books**

- Puri, B. R., Sharma, L. R.& Kalia, K. K. (2018). Principles of Inorganic Chemistry. Shoban Lal Nagin Chand & Co., 33<sup>rd</sup> edition, New Delhi,.
- 2. Madan, R.D. (2019). Modern Inorganic Chemistry. 3<sup>rd</sup> edition, S. Chand & Company Ltd,
- 3. J. D. Lee, (2014). New Concise Inorganic Chemistry, 5th edition, Oxford Publishers.
- 4. Puri, B.R., Sharma, L.R. & Pathania, M.S. (2022). Principles of Physical Chemistry. Shoban Lal 48<sup>th</sup> edition. Nagin Chand & Co, New Delhi.

#### **Reference Books**

- 1. Soni, P.L.& Mohan Katyal. (2017). Text book of Inorganic Chemistry. 25<sup>th</sup> revised edition, Sultan Chand & Sons.
- 2. Peter Atkins, Julio de Paula, and James Keeler, (2017). Atkins' Physical Chemistry I, 11<sup>th</sup> Edition, Oxford University Press, UK.

#### **Web Reference**

- 1. <u>Chem.libretexts.org/Bookshelves/Inorganic\_Chemistry/Supplemental\_Modules\_and\_Websites\_(Inorganic\_Chemistry).</u>
- 2. <a href="https://www.chemie-biologie.uni-siegen.de/ac/lehre/part1\_liquid\_state.pdf">https://www.chemie-biologie.uni-siegen.de/ac/lehre/part1\_liquid\_state.pdf</a>
- 3. <a href="https://byjus.com/jee/colloids">https://byjus.com/jee/colloids</a>

#### Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

#### **Course Designers**

1. Dr. K. Uma Sivakami

| Semester II | Internal Marks: 4                       | 0 Exte    | ternal Marks: 60 |         |  |
|-------------|-----------------------------------------|-----------|------------------|---------|--|
| COURSE CODE | COURSE TITLE                            | CATEGORY  | Hrs / Week       | CREDITS |  |
| 22UCH2CC2P  | PREPARATION AND                         | CORE      | 3                | 3       |  |
|             | ANALYSIS OF INDUSTRIAL<br>COMPOUNDS (P) | PRACTICAL |                  |         |  |

#### **Course Objectives**

- ➤ Learn to the diverse roles of inorganic materials in the industry
- > Gain knowledge on fertilizers.
- > Explain the principle, working and applications of volumetric analysis.
- > Perform quantitative analytical methods by titrations.

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                                                                                        | Cognitive |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                                                                                                | Level     |
| CO1    | Provide graduates with the skills, information and learning tools required to carry out professional research, and development and production activities in the field of chemistry. | K1        |
| CO2    | Explain the suitability of fertilizers for different kinds of crops and soil.                                                                                                       | K2        |
| CO3    | Prepare students for professional participation in Chemical industries so as to adapt themselves to jobs which are problem Solving                                                  | K3        |
| CO4    | Infer the students to be result-oriented in the chemical, biochemical and applied technological fields.                                                                             | K4        |
| CO5    | Apply the concept of volumetric analysis in industrial analysis                                                                                                                     | K5        |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 2   | 3   | 3   | 3   | 3   |
| CO2 | 2    | 2    | 2    | 2    | 2    | 2   | 2   | 3   | 2   | 2   |
| CO3 | 3    | 2    | 2    | 2    | 2    | 2   | 2   | 2   | 2   | 2   |
| CO4 | 3    | 2    | 3    | 2    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO5 | 2    | 3    | 2    | 3    | 3    | 3   | 2   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation ¬

<sup>&</sup>quot;2" – Moderate (Medium) Correlation ¬

<sup>&</sup>quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

### **Quantitative Analysis**

- 1. Analysis of sodium bicarbonate present in a commercial sample of soda mint tablet.
- 2. Determination of total alkali content of a commercial detergent.
- 3. Determination of free acidity in ammonium sulphate fertilizer.
- 4. Estimation of phosphoric acid in superphosphate fertilizer.
- 5. Estimation of calcium in chalk Permanganometry
- 6. Estimation of citric acid in orange or lemon

## **Qualitative Analysis**

- 1. Limit test for sulphate, chloride, barium, iron and magnesium ions.
- 2. Assay of inorganic compounds
- 3. Purity checking of compounds

### **Preparation**

- 1. Preparation of Ferric alum
- 2. Preparation of Potash alum
- 3. Preparation of Mohr's salt
- 4. Preparation of tetrammine copper (II) sulphate
- 5. Preparation of soap
- 6. Preparation of Talcum powder
- 7. Preparation of Caprolactam.

### **Text Books**

- 1. Svehla, G. (1996). Vogel's Qualitative Inorganic Analysis: Prentice Hall.
- 2. Satinder, K. Juneja., Dr. Aran, K. (2020). Inorganic Materials of Industrial Importance: S Vinesh & Co.

## **Reference Books**

- 1. Kingery, W. D., Bowen H. K.; Uhlmann, D. R. (1976). Introduction to Ceramics, Wiley Publishers: New Delhi.
- 2. Gopalan, R., Venkappayya, D., Nagarajan, S. (2004). Engineering Chemistry: Vikas Publications.

## **Web References**

- 1. <a href="https://eusalt.com/">https://eusalt.com/</a> library/ files/EuSalt AS007-2005 Potassium Sodium Tetraphenylborate Volumetric Method.pdf
- 2. <a href="http://www.chem.uwimona.edu.jm/lab\_manuals/c10expt3.html">http://www.chem.uwimona.edu.jm/lab\_manuals/c10expt3.html</a>
- 3. <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016112814">https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016112814</a>
- 4. <a href="https://www.google.com/search?q=Determination+of+free+acidity+in+ammonium+s">https://www.google.com/search?q=Determination+of+free+acidity+in+ammonium+s</a> ulphate+fertilizer.
- 5. <a href="https://www.researchgate.net/publication/344350736">https://www.researchgate.net/publication/344350736</a> Determination of alkali content total fatty matter in cleansing agents
- 6. <a href="https://www.tifr.res.in/~pkjoshi/articles/sodamint.pdf">https://www.tifr.res.in/~pkjoshi/articles/sodamint.pdf</a>

# Pedagogy

Table Work

## **Course Designers**

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Dr. G. Sivasankari.

| Semester II | Internal Mark       | s: 25               | ExternalMarks:75 |         |  |
|-------------|---------------------|---------------------|------------------|---------|--|
| COURSECODE  | COURSETITLE         | OURSETITLE CATEGORY |                  | CREDITS |  |
| 22UCH2CC3   | MATERIAL<br>SCIENCE | CORE                | 3                | 3       |  |

- > To describe the structure of ceramics and magnetic materials.
- > To understand the importance of energy storage materials.
- > To gain knowledge about the fuel cell power plant.

# **Course Outcomes**

# **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to              | Cognitive<br>Level |
|--------------|------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall the basic concepts of magnetic, conductors and understand the energy storage materials. | K1&K2              |
| CO2          | Apply the concepts to illustrate the role of energy in various materials.                      | К3                 |
| CO3          | Analyze the results of different materials using theoretical concepts.                         | K4                 |
| CO4          | Evaluate the applications of magnetic, semiconductors,                                         | K4                 |
| CO5          | Evaluate the applications LED, batteries and fuel cell power plant.                            | K5                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 2    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

| UNIT | CONTENT                                                  | HOURS | COs  | COGNITIVE<br>LEVEL |
|------|----------------------------------------------------------|-------|------|--------------------|
| I    | Conductors and Insulators: Introduction -                |       |      |                    |
|      | semiconductors - classification of semiconductors -      |       | CO1, | K1, K2, K3,        |
|      | intrinsic and extrinsic - n-type and p-type - crystal    | 9     | CO2, | K4, K5             |
|      | structure and bonding in Si and Ge - elemental and       |       | CO3, |                    |
|      | compound semiconductors - applications -                 |       | CO4  |                    |
|      | Insulators.                                              |       |      |                    |
| II   | Magnetic Materials: Magnetic dipole - dipole             |       |      |                    |
|      | moment - magnetic field strength - magnetic              |       | CO1, | K1, K2, K3,        |
|      | susceptibility - diamagnetic - paramagnetic -            | 9     | CO2, | K4, K5             |
|      | ferromagnetic - curie temperature - hysteresis curve     |       | CO3, |                    |
|      | - antiferromagnetic - ferrimagnetic - hardand soft       |       | CO4  |                    |
|      | magnetic materials - properties - examples               |       |      |                    |
|      | - applications.                                          |       |      |                    |
| III  | Ceramics and Display Devices: Classification of          |       |      |                    |
|      | ceramics - structure of the ceramics- compounds with     | 9     | CO1, | K1, K2, K3,        |
|      | NaCl, Fluorite and Perovskite structure - properties of  |       | CO2, | K4, K5             |
|      | ceramics- applications - active display devices- Light   |       | CO3, |                    |
|      | Emitting Diode (LED) - passive display devices -         |       | CO4  |                    |
|      | Liquid Crystal Display (LCD)- applications.              |       |      |                    |
| IV   | Materials for Energy Storage: Batteries – primary        |       |      |                    |
|      | and secondary batteries - lithium-lead acid batteries -  |       | CO1, |                    |
|      | nickel cadmium batteries - advanced batteries - super    | 9     | CO2, | K1, K2, K3,        |
|      | capacitors for energy storage - role of carbon           |       | CO3, | K4, K5             |
|      | nanomaterials as electrodes in batteries and super       |       | CO4  |                    |
|      | capacitors.                                              |       |      |                    |
| V    | Fuel cells: Introduction - difference between batteries  |       |      |                    |
|      | and fuel cells - components of fuel cells - principle of |       | CO1, |                    |
|      | working of fuel cell - performance characteristics of    | 9     | CO2, | K1, K2, K3,        |
|      | fuel cells - efficiency of fuel cell - fuel cell power   |       | CO3, | K4, K5             |

|    | plant - fuel processor - fuel cell power section - power conditioner - Advantages and disadvantages of fuel cell power plant.                                                                                                                                                      |   | CO4 |        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|--------|
| VI | Self Study for Enrichment (Not to be included for External Examination) Bonding in metals and semi-conductors - reason for ferromagnetic spin alignment are contrasted with superconducting spin pairing - ceramic processing - fuel cell stack – hydrogen production and storage. | _ | CO1 | K1, K2 |

### **Text Books**

- 1. Rajendran, V. & Marikani, A. (2009). Materials Science. (9<sup>th</sup> ed.). Tata McGraw-Hill Publishing Company Limited.
- 2. VanVlack, L. H., (1975). Elements of materials science and engineering. (6<sup>th</sup> ed.). Addison-Wesley.
- 3. Jain, P.C., & Jain, M., (2013). Engineering Chemistry. (6<sup>th</sup> ed.). DhanpatRai &Sons.

## **Reference Books**

- 1. Callister, W.D., & Rethwisch, G.D., (2018). Materials Science and Engineering: An Introduction. (10<sup>th</sup> ed.). Wiley.
- 2. Kingery, W.D., Bowen, & H.K., Ulhmann, D.R., (1976). Introduction to Ceramics. (2<sup>nd</sup>ed.). Wiley.
- 3. Sharma, B.K., (1997). Industrial Chemistry. (8th ed.). Goel Publishing.

### **Web References**

- 1. https://www.britannica.com/science/semiconductor
- 2. https://advancedmagnetsource.com/2018/09/03/types-magnetic-materials/
- 3. https://mse.umd.edu/about/what-is-mse/ceramics
- 4. https://www.european-mrs.com/battery-and-energy-storage-devices-materials-eco-design-emrs
- 5. https://georgiasouthern.libguides.com/c.php?g=943952&p=6804654

### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

## **Course Designer**

1. Ms. P. Thamizhini

### ALLIED COURSE - III

#### (For Chemistry)

### ODE, LAPLACE TRANSFORMS AND STATISTICS

(2022-2023 Onwards)

| Semester II | Internal Marks: 25 | ExternalMarks: 75 |       |        |
|-------------|--------------------|-------------------|-------|--------|
| COURSE CODE | COURSE TITLE       | CATEGORY          | Hrs   | CREDIT |
|             |                    |                   | /Week | S      |
| 22UCH2AC3A  | ODE,LAPLACE        | ALLIED            | 4     | 3      |
|             | TRANSFORMS AND     |                   |       |        |
|             | STATISTICS         |                   |       |        |

# **Course Objective**

- **Explain** the basics of Ordinary Differential Equations.
- **Explore** the mathematical methods formatted for major concepts.
- **Emphasize** them in the field of Statistics.

### **Course Outcomes**

# **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement                                                     | Knowledge<br>Level |
|--------------|------------------------------------------------------------------|--------------------|
| CO1          | Explain various notions in ODE, Laplace transforms & Statistics. | K1,K2              |
| CO2          | Classify the problem models in the respective area.              | К3                 |
| CO3          | Identify the properties of solutions in the core area.           | К3                 |
| CO4          | Solve various types of problems in the corresponding stream.     | К3                 |
| CO5          | Analyze the applications of the core area.                       | K4                 |

# Mapping of COwithPO and PSO

| Os  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 2    | 2    | 2   | 3   | 2   | 3   | 3   |
| CO2 | 3    | 2    | 2    | 2    | 2    | 2   | 3   | 2   | 3   | 3   |
| CO3 | 3    | 2    | 2    | 2    | 2    | 2   | 3   | 2   | 3   | 3   |
| CO4 | 3    | 2    | 2    | 2    | 2    | 2   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 2    | 2    | 2    | 2    | 2   | 3   | 2   | 3   | 3   |

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HOURS | COs                                 | COGNI<br>TIVE<br>LEVEL  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-------------------------|
| I    | Ordinary Differential Equations:  Equations of the first order but of higher degree – Type  A:Equations solvable for $\frac{dy}{dx}$ - Type B:Equations solvable for $y$ - Equations solvable for $x$ -Clairaut's Form (simple cases only).  Linear equations with constant coefficients:  Definitions – The operator D- Complementary function of a linear equation with constant co-efficients - Particular integral: General method of finding P.I. Special methods for finding P.I. | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| П    | Laplace Transforms:  Laplace Transforms – Definition -Sufficient conditions for the existence of Laplace transform-Basic results-Laplace transform of periodic functions-Some general theorems-Evaluation of integrals using Laplace transform.                                                                                                                                                                                                                                         | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| III  | Inverse Laplace Transform:  The Inverse Transform – Modification of results obtained in finding Laplace transforms to get the inverse transforms of functions- Laplace Transforms to solve ordinary differential equations with constant co-efficients.                                                                                                                                                                                                                                 | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| IV   | Measures of Central Tendency:     Arithmetic Mean Median Mode Geometric Mean Harmonic Mean. (Simple Problems Only)  Measures of Dispersion:     Standard Deviation (Simple Problems Only)                                                                                                                                                                                                                                                                                               | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| V    | Correlation:     Introduction-Meaning of Correlation-Scatter Diagram Karl Pearson's Co-efficient of Correlation - Rank Correlation (Derivations not needed and Simple Problems Only).  Linear Regression:     Introduction-Linear Regression-Regression Coefficients- Properties of Regression Coefficients(Derivations not needed and Simple Problems Only)                                                                                                                            | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |

| VI | Self -Study for Enrichment: (Not included for End Semester Examination)  Equations that do not contain <i>x</i> and <i>y</i> for explicitly- Piecewise continuity- Laplace Transforms to solve ordinary differential equations with variable co-efficients - Range-Quartile Deviation—RankCorrelation(RepeatedRanks) | - | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------|-------------------------|

### **Text Book**

- 1. Narayanan. S, Manicavachagam Pillai. T. K. (2016). *Differential Equations and its applications*. S. Viswanathan Pvt Limited.
- 2. Gupta. S. C, Kapoor. V. K. (2014). *Fundamentals of Mathematical Statistics*. Sultan Chand & Sons,New Delhi.

# **Chapters and Sections**

UNIT-I Chapter 4: Sections 1-3 [1] Chapter 5: Sections 1-4 [1]

**UNIT-II Chapter 9: Sections 1-5 [1]** 

UNIT-III Chapter 9: Sections 6-8 [1]

UNIT- IV Chapter 2:Sections 2.5-2.9,2.13( 2.13.4 Only) [2] UNIT- V Chapter 10: Sections 10.1 to 10.4 and 10.7.1[2]

Chapter 11: Sections 11.1 to 11.2(11.2.1 and 11.2.2 only)[2]

#### Reference Books

- 1. Narayanan. S, Manicavachagam Pillai. T.K. (2003). *Calculus, Vol. III*. S. Viswanathan Pvt Limited.
- 2. Pillai Bagavathi. R. S. N. (2019). *Statistics Theory and Practice*. S Chand and Company Limited.
  - 3. Gupta. S.C. &Kapoor. V.K.(2004). *Elements ofMathematical Statistics*. Sultan Chand &

Sons, New Delhi.

### **Web References**

- 1. https://www.youtube.com/watch?v=OM01KTc0\_9w
- 2. https://www.youtube.com/watch?v=dCVBZbebl8Y
- 3. https://www.youtube.com/watch?v=Y8GXpS31CGI
- 4. <a href="https://www.youtube.com/watch?v=IVJjm5FE4x8">https://www.youtube.com/watch?v=IVJjm5FE4x8</a>
- 5. https://www.youtube.com/watch?v=YGObRCEZiC8
- 6. https://www.youtube.com/watch?v=dLJp6DrPArk
- 7. <a href="https://www.youtube.com/watch?v=nk2CQITm\_eo">https://www.youtube.com/watch?v=nk2CQITm\_eo</a>
- 8. <a href="https://rcub.ac.in/econtent/ug/bcom/sem4/Business%20Statistics%20Unit%204%20C">https://rcub.ac.in/econtent/ug/bcom/sem4/Business%20Statistics%20Unit%204%20C</a> orrelation%20and%20Regression.pdf

# Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment.

# Course Designer

1. Dr. P. Geethanjali

| Semester II | Internal Marks: 25 External Marks: 75 |          |          |         |
|-------------|---------------------------------------|----------|----------|---------|
| COURSE CODE | COURSE TITLE                          | CATEGORY | Hrs/Week | CREDITS |
| 22UCH2AC3B  | BIOCHEMISTRY-II                       | ALLIED   | 4        | 3       |

- ➤ To gain knowledge about the various analytical techniques in separation and isolation of cells and tissues for studying their functional abnormalities.
- > To understand the principles and methodologies involved in biochemical analysis.
- > To acquire knowledge on nutritional importance of proteins, carbohydrates, lipids, vitamins and minerals in diet.

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                             | Cognitive |  |  |
|--------|--------------------------------------------------------------------------|-----------|--|--|
| Number | On the successful completion of the course, students will be able to     | Level     |  |  |
| CO1    | Recall and understand the basic tools in biochemistry                    |           |  |  |
| CO2    | Recollect the techniques involved in the analysis of biomolecules        | K2        |  |  |
| CO3    | Describe the metabolicabnormalities and importance of nutrients in diet. | К3        |  |  |
| CO4    | Apply various methodologies to analyze biomolecules.                     | К3        |  |  |
| CO5    | Investigate the biomolecules using various bio-analytical techniques.    | K4        |  |  |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| СОЗ | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 2   | 3   | 2   |
| CO4 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 2    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

| UNIT | CONTENT                                          | нопре | COs  | COGNITIVE   |
|------|--------------------------------------------------|-------|------|-------------|
| UNII | CONTENT                                          | HOURS | COS  | LEVEL       |
| I    | Basic Techniques in Biochemistry:                |       |      |             |
|      | Purification – centrifugation – filtration –     |       |      |             |
|      | dialysis - homogenization - adsorption -         | 15    | CO1, | K1, K2, K3, |
|      | absorption- partition - centrifuge- types of     |       | CO2, | K4          |
|      | rotors & application - density gradient          |       | CO3  |             |
|      | centrifugation, sedimentation - sedimentation    |       |      |             |
|      | coefficient- electrophoresis – types.            |       |      |             |
| II   | Analytical Techniques in Biochemistry:           |       |      |             |
|      | Concept of buffer – preparation- Henderson-      |       |      |             |
|      | Hasselbach equation - working principle of a     |       |      |             |
|      | pH meter. Microscopy: Light microscopy-          | 15    | CO1, | K1, K2, K3, |
|      | phase contrast - electron microscope and         |       | CO2, | K4          |
|      | fluorescent microscope-principle -               |       | CO3  |             |
|      | instrumentation and their applications. UV-      |       |      |             |
|      | visible and fluorescence spectroscopy-           |       |      |             |
|      | principle and instrumentation. Determination of  |       |      |             |
|      | absorption maxima and molar extinction           |       |      |             |
|      | coefficient (of a relevant organic molecule).    |       |      |             |
| Ш    | Clinical Biochemistry:                           |       |      |             |
|      | Collection of blood – Anticoagulant -            |       |      |             |
|      | preservation - Estimation of Hb - PCV, WBC,      | 15    | CO1, | K1, K2, K3, |
|      | RBC - Platelets - ESR. Clotting time - bleeding  |       | CO2, | K4          |
|      | time - normal value - clinical interpretation.   |       | CO3  |             |
|      | Urine Analysis: Composition – collection –       |       |      |             |
|      | preservation - gross examination - interfering   |       |      |             |
|      | factors - chemical examination - Ketone bodies   |       |      |             |
|      | in urine - bile pigments – hematuria - uric acid |       |      |             |
|      | - microscopic examination of the urinary         |       |      |             |
|      | sediment.                                        |       |      |             |
|      | I .                                              | l .   |      | I           |

| IV | Nutritional Biochemistry:                                                                                                |    |      |             |
|----|--------------------------------------------------------------------------------------------------------------------------|----|------|-------------|
|    | Definition of food and Nutrition - balanced diet.                                                                        |    | CO1, |             |
|    | basic five food groups - calorific values offoods                                                                        | 15 | CO2, | K1, K2, K3, |
|    | - determination by bomb calorimeter - BMR and                                                                            |    | CO3  | K4          |
|    | factors affecting - energy requirements -                                                                                |    |      |             |
|    | recommended dietary allowance (RDA) for                                                                                  |    |      |             |
|    | children - adults - pregnant and lactating women                                                                         |    |      |             |
|    | - sources of complete and incomplete proteins.                                                                           |    |      |             |
|    | Biological value of                                                                                                      |    |      |             |
|    | proteins.                                                                                                                |    |      |             |
| V  | Metabolic and Lifestyle Disorders:                                                                                       |    |      |             |
|    | Obesity - eating disorders like anorexia, nervosa                                                                        |    |      |             |
|    | and bullemia. Diabetes mellitus as metabolic                                                                             | 15 | CO1, | K1, K2, K3, |
|    | syndrome - relationship with hypertension,                                                                               |    | CO2, | K4          |
|    | obesity, hypothyroidism and stress. Cardio                                                                               |    | CO3  |             |
|    | vascular disorders - Irritable bowel syndrome-                                                                           |    |      |             |
|    | influence of diet - stress and                                                                                           |    |      |             |
|    | environment on the condition.                                                                                            |    |      |             |
| VI | Self Study for Enrichment (Not to be included for External Examination) Types of buffer- Significance of sugar in urine- |    | CO1  | K1, K2      |
|    | Specific dynamic action of foods-Types of life                                                                           | -  |      | ,           |
|    | style disorder.                                                                                                          |    |      |             |

# **Text Books**

- 1. Swaminathan, M. (2014). Advanced Text Book on Food & Nutrition. (2nd ed.).
- 2. The Bangalore Press.
- 3. Chatterjea, M. N., & Rana Shinde. (2012). Textbook of Medical Biochemistry, (8th ed.). Jaypee Brothers Medical Publishers.
- 4. Plummer, D. T. (1998). An Introduction to Practical Biochemistry. (3rd ed.). Tata McGraw Hill Education Pvt. Ltd.
- 5. Srilakshmi. B. (2019). Dietetics. (8th ed.). New Age International, New Delhi.

- 6. Ambika, S. (2012). Fundamentals of Biochemistry for Medical Students. (7<sup>th</sup> ed.). Iippincott Williams & Wilkins.
- 7. Jain, J. L., Jain, S., & Jain, N. (2016). Fundamentals of Biochemistry. (Revised ed.). SChand & Co Ltd.

# Reference Books

- Upadhyay, Upadhyay & Nath (2020). Biophysical Chemistry - Principles and Techniques. (4<sup>th</sup> ed.). Himalaya Publishing House.
- 2. Annie Ragland, & Arumugam, N. (2015). Biochemistry and Biophysics. (3<sup>rd</sup> ed.).Saras Publication.
- 3. Nelson, D. L., & Cox. M. M. (2017). Lehninger Principles of Biochemistry. (7<sup>th</sup>ed.).WH Freeman.
- 4. Voet, D., Pratt, C. W., & Voet, J. G. (2012). Principles of Biochemistry. (4<sup>th</sup> ed.). JohnWiley & Sons.

### Web References

- 1. https://nptel.ac.in/courses/102103044
- 2. https://nptel.ac.in/courses/102103044
- 3. https://pubmed.ncbi.nlm.nih.gov/27881259/
- 4. https://www.nhs.uk/conditions/metabolic-syndrome/
- 5. https://www.upstate.edu/gch/pdf/services/ibd-read-lab-results.pdf

### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

## **Course Designer**

1. Dr. S. Saranya

| Semester III     | Internal Marks: 25     |          | External | Marks: 75 |
|------------------|------------------------|----------|----------|-----------|
| COURSE           | COURSE TITLE           | CATEGORY | Hrs./    | CREDITS   |
| CODE             |                        |          | Week     |           |
| <b>22UCH3CC4</b> | ORGANIC AND ANALYTICAL | CORE     | 6        | 6         |
|                  | CHEMISTRY              |          |          |           |

- > To understand the basics of alkanes and cycloalkanes.
- > To learn about the chemistry of alkenes and alkynes.
- > To learn about concept of aromaticity and reactivity of benzene.
- > To understand the aspects of data analyses.
- > To learn the techniques of thermoanalytical methods.

### **Course Outcomes**

# **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                           | Cognitive |
|--------|------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to   | Level     |
| CO1    | Recall and understand the fundamental concepts of organic              | K1        |
|        | compounds and analytical techniques.                                   |           |
| CO2    | Describe the nature of hydrocarbons, errors and different thermo       | K2        |
|        | analytical methods.                                                    |           |
| CO3    | Interpret the chemical reactions of hydrocarbons and thermogram.       | К3        |
| CO4    | Analysis different reactions of organic molecules and analytical data. | K4        |
| CO5    | Explain the stability of organic molecules and application of          | K5        |
|        | thermograms.                                                           |           |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 2    | 2    | 2    | 3   | 3   | 2   | 2   | 2   |
| CO3 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO4 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO5 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

| UNIT |                                               | HOUR         | Cos  | COGNITIVE   |
|------|-----------------------------------------------|--------------|------|-------------|
|      |                                               | $\mathbf{S}$ |      | LEVEL       |
| I    | Alkanes and cycloalkanes:                     | 18           | CO1, | K1, K2, K3, |
|      | Introduction - preparation - catalytic        |              | CO2, | K4, K5      |
|      | hydrogenation of alkenes and alkynes from     |              | CO3, |             |
|      | haloalkanes, carbonyl compounds and           |              | CO4, |             |
|      | sodium salts of carboxylic acids - physical   |              | CO5  |             |
|      | properties and chemical properties -          |              |      |             |
|      | halogenation, nitration, sulfonation, chloro  |              |      |             |
|      | sulfonation, oxidation reaction.              |              |      |             |
|      | Cycloalkanes - strain in ring compounds:      |              |      |             |
|      | Baeyer's Strain theory - preparation of       |              |      |             |
|      | cycloalkanes - chemical properties of         |              |      |             |
|      | cycloalkanes.                                 |              |      |             |
| II   | Alkenes and Alkynes:                          | 18           | CO1, | K1, K2, K3, |
|      | Introduction - preparation of alkenes -       |              | CO2, | K4, K5      |
|      | reduction of alkynes - elimination reaction - |              | CO3, |             |
|      | physical properties - chemical properties -   |              | CO4, |             |
|      | stability of alkenes, electrophilic addition  |              | CO5  |             |
|      | reactions, free radical addition reactions -  |              |      |             |
|      | oxidation reactions, allylic substitution     |              |      |             |
|      | reactions, polymerization reactions.          |              |      |             |
|      | Alkynes - Introduction - preparation of       |              |      |             |
|      | alkynes - physical properties - addition of   |              |      |             |
|      | hydrogen, electrophilic and nucleophilic      |              |      |             |
|      | addition reactions - oxidation reactions -    |              |      |             |
|      | isomerization - polymerization reactions.     |              |      |             |
| III  | Concept of aromaticity and benzene:           | 18           | CO1, | K1, K2, K3, |
|      | Introduction - structure of benzene - Kekule  |              | CO2, | K4, K5      |
|      | structure - resonance structure - orbital     |              | CO3, |             |
|      | picture of benzene - resonance energy,        |              | CO4, |             |
|      | stability of benzene - Huckels rule and       |              | CO5  |             |

|    | (1 to 1 to        |    |      |             |
|----|-------------------------------------------------|----|------|-------------|
|    | aromaticity - aromaticity in benzene-           |    |      |             |
|    | preparation and chemical properties of          |    |      |             |
|    | benzene - Electrophilic substitution            |    |      |             |
|    | reactions of benzene - halogenation,            |    |      |             |
|    | nitration, alkylation, acylation and            |    |      |             |
|    | sulfonation and their mechanism -               |    |      |             |
|    | orientation and reactivity in monosubstituted   |    |      |             |
|    | and disubstituted benzene.                      |    |      |             |
| IV | Data Analysis:                                  | 18 | CO1, | K1, K2, K3, |
|    | Definition for analytical chemistry and         |    | CO2, | K4, K5      |
|    | chemical analysis - qualitative and             |    | CO3, |             |
|    | quantitative analysis - classification of       |    | CO4, |             |
|    | chemical analysis - error - definition -        |    | CO5  |             |
|    | classification of errors - accuracy and         |    |      |             |
|    | precision - minimization of errors - limiting   |    |      |             |
|    | of reduction - significant figure - mean -      |    |      |             |
|    | median - standard deviation - distribution of   |    |      |             |
|    | random errors - reliability of results (Q-test) |    |      |             |
|    | - confidence interval limit - comparison of     |    |      |             |
|    | results - students t-test - F-test.             |    |      |             |
| V  | Thermoanalytical Methods:                       | 18 | CO1  | K1, K2, K3, |
|    | Introduction - various techniques of thermal    |    | CO2, | K4, K5      |
|    | analysis - thermal gravimetric analysis -       |    | CO3, |             |
|    | principle, thermogram, factors affecting        |    | CO4, |             |
|    | thermogram, instrumentation and                 |    | CO5  |             |
|    | applications. Differential thermal analysis -   |    |      |             |
|    | factors affecting DTA curve -                   |    |      |             |
|    | instrumentation - application of DTA -          |    |      |             |
|    | Differential scanning calorimetry -             |    |      |             |
|    | instrumentation for DSC - factors affecting     |    |      |             |
|    | DSC curves - application of DSC -               |    |      |             |
|    | comparison of DSC with DTA -                    |    |      |             |
|    | Thermometric titration - theory -               |    |      |             |
|    |                                                 |    |      |             |

|    | instrumentation - applications.               |   |      |             |
|----|-----------------------------------------------|---|------|-------------|
| VI | Self-Study for Enrichment:                    | - | CO1, | K1, K2, K3, |
|    | (Not to be included for External              |   | CO2, | K4          |
|    | Examination)                                  |   | CO3  |             |
|    | IUPAC name of organic molecules,              |   |      |             |
|    | distinguish electrophile and nucleophile -    |   |      |             |
|    | types of cleavages - types of hybridization - |   |      |             |
|    | resonance - exothermic and endothermic        |   |      |             |
|    | reaction.                                     |   |      |             |

#### **Text Books**

- 1. Bhupinder, M., & Manju, M. (2015). Organic chemistry. (2<sup>nd</sup> edition), Delhi, PHI Learning Private Limited.
- 2. Bahl, B.S., & Bahl, A. (2010) Advanced Organic Chemistry. (12<sup>th</sup> edition), New Delhi, Sultan Chand & Co.
- 3. Soni, P.L., & Chawla, H. M. (1983) Textbook of Organic chemistry. Sultan Chand & Sons.
- 4. Gopalan, R., Subramanian, P. S., & Rengarajan, K. (2003). Elements of Analytical Chemistry. 2<sup>nd</sup> edition, Sultan Chand & Sons.
- 5. Chatwal, G. R., & Anand, S. K. (2005). Instrumental methods of chemical analysis. Himalaya publishing house.

#### **Reference Books**

- Finar, I. L. (1996) Organic Chemistry. Vol 1 & 2, (6<sup>th</sup> edition) England, Addison Wesley Longman Ltd.
- 2. Morrison, R.T., Boyd, R. N., & Bhattacharjee, S. K. (2011) Organic Chemistry (7<sup>th</sup> edition), Pearson India.
- 3. Vogel A. I. (1978). Text Book of Quantitative Inorganic analysis, The English Language Book Society, Fourth edition.
- 4. Skoog, D. A., West, D. M., & Holler, F. J. (1995). Fundamentals of Analytical chemistry, 7<sup>th</sup> edition, Harcourt College Publishers.

#### Web References

- 1. <a href="https://www.khanacademy.org/science/organic-chemistry/bond-line-structures">https://www.khanacademy.org/science/organic-chemistry/bond-line-structures</a>.
- 2. https://kpu.pressbooks.pub/organicchemistry/chapter/1-3-resonance-structures.
- 3. https://chem.libretexts.org/Bookshelves/Organic\_Chemistry/Supplemental\_Modules.
- 4. <a href="https://chemistryhall.com/basic-organic-chemistry">https://chemistryhall.com/basic-organic-chemistry</a>.
- 5. <a href="https://ams.uokerbala.edu.iq/wp/wp-content/uploads/2017/11/analytical-chemistry-2.pdf">https://ams.uokerbala.edu.iq/wp/wp-content/uploads/2017/11/analytical-chemistry-2.pdf</a>.

- 6. https://www.tutorialsduniya.com/notes/basic-analytical-chemistry-notes/.
- 7. <a href="https://www.studocu.com/in/document/mgm-institute-of-health-sciences/analytical-chemistry-lecture-notes/23655112">https://www.studocu.com/in/document/mgm-institute-of-health-sciences/analytical-chemistry-lecture-notes/23655112</a>.
- $8. \quad \underline{https://pdfs.semanticscholar.org/4297/626dad995612a5bec4cbd9c41d2a2f6f0146.pdf.}$
- 9. <a href="https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202.">https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202.</a>
  <a href="pdf">pdf</a>.
- 10. <a href="https://www.brainkart.com/article/Thermoanalytical-Analysis\_30855/">https://www.brainkart.com/article/Thermoanalytical-Analysis\_30855/</a>.

# **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

# **Course Designer**

> Dr. C. Rajarajeswari

| Semester III | Internal Marks: 40     | External Marks: 60 |       |         |
|--------------|------------------------|--------------------|-------|---------|
| COURSE       | COURSE TITLE           | CATEGORY           | Hrs./ | CREDITS |
| CODE         |                        |                    | Week  |         |
| 22UCH3CC3P   | ANALYSIS AND           | CORE               | 3     | 3       |
|              | PREPARATION OF ORGANIC |                    |       |         |
|              | COMPOUNDS (P)          |                    |       |         |

- > To learn the techniques of methods of different organic compounds through functional group identification with elemental analysis.
- > To exhibit the derivative for functional group.
- > To prepare organic compounds using various reactions.

### **Course outcomes**

# **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                           | Cognitive |
|--------|------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to   | Level     |
| CO1    | Observe the physical state, odour, colour and solubility of the given  | K1        |
|        | organic compounds.                                                     |           |
| CO2    | Detect the presence of special elements in an unknown organic          | K2        |
|        | compound performing a systematic analysis.                             |           |
| CO3    | Identify the presence of various functional groups in the given        | К3        |
|        | organic compounds.                                                     |           |
| CO4    | Exhibit the solid derivative with respect to the identified functional | K4        |
|        | group.                                                                 |           |
| CO5    | Prepare organic compounds and exhibit their crude and                  | K5        |
|        | recrystallized sample.                                                 |           |

# Mapping of CO with PO and PSO

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 2    | 2   | 2   | 2   | 2   | 2   |
| CO5 | 3    | 2    | 1    | 1    | 2    | 3   | 2   | 2   | 1   | 2   |

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

#### **SYLLABUS**

#### I. ANALYSIS OF SIMPLE ORGANIC COMPOUNDS

- ➤ Identification of acidic, basic, phenolic and neutral organic compounds.
- > Test for aliphatic/aromatic nature of the compound.
- > Test for saturation / unsaturation.
- > Detection of element present.
- ➤ Identification of functional groups.
- ➤ Confirmation by preparation of solid derivatives / characteristic color reactions,

**Note:** Mono –functional compounds are given for analysis. (Carboxylic acid, phenols, carbohydrates, amides, amines, aldehydes, ketones and esters).

### II. PREPARATION OF ORGANIC COMPOUNDS (SINGLE STAGE)

- 1. Salicylic acid from methyl salicylate (Hydrolysis).
- 2. Acetanilide from aniline (acetylation).
- 3. m-Dinitrobenzene from Nitrobenzene (Nitration).
- 4. Benzoic acid from Benzaldehyde (Oxidation).
- 5. 2, 4, 6, tribromoaniline from aniline (Bromination)

#### **Text Book**

- 1. Venkateswaran, V., Veerasamy, R., & Kulandaivelu, A. R. (1997). Basic principles of Practical Chemistry. 2<sup>nd</sup> edition, New Delhi, Sultan Chand & Sons.
- 2. Ganapragasam, N.S., & Ramamurthy, G. (1998). Organic Chemistry Lab Manual. Viswanathan Co. Pvt. Ltd.

#### Reference book

Gurtur, J. R., & Kapoor, R. (1997). Advanced Experimental Chemistry. S. Chand and Co. Ltd. New Delhi.

#### **Web References**

- https://iscnagpur.ac.in/study\_material/dept\_chemistry/3.1\_MIS\_and\_NJS\_Manual\_fo r\_Qrganic\_Qualitative\_Analysis.pdf.
- 2. https://www.vedantu.com/iit-jee/qualitative-analysis-of-organic-compounds.
- 3. http://amrita.olabs.edu.in/?sub=73&brch=8&sim=116&cnt=2.
- 4. <a href="http://home.miracosta.edu/dlr/211exp3.htm#:~:text=Methyl%20salicylate%20(an%20 ester)%20can,which%20is%20released%20by%20hydrolysis.">http://home.miracosta.edu/dlr/211exp3.htm#:~:text=Methyl%20salicylate%20(an%20 ester)%20can,which%20is%20released%20by%20hydrolysis.</a>
- 5. https://www.youtube.com/watch?v=wsXFYgCWzvg.

# Pedagogy

Demonstration and Practical Sessions.

# **Course Designer**

> Dr. C. Rajarajeswari

| Semester- III | Internal Marks: 25 | External Marks: 75 |          |         |  |  |  |  |
|---------------|--------------------|--------------------|----------|---------|--|--|--|--|
| COURSE CODE   | COURSE TITLE       | CATEGORY           | HRS/WEEK | CREDITS |  |  |  |  |
| 22UCH3AC4     | PHYSICS-I          | SECOND ALLIED      | 4        | 3       |  |  |  |  |
|               |                    | COURSE-I (AC)      |          |         |  |  |  |  |

- To understand the behavior of matter in everyday life.
- To know the basic concepts of properties of matter.
- To acquire the knowledge in thermodynamics and heat conduction.
- To impart the ideas of semiconductors.

# **Pre-Requisites**

- Get depth knowledge of physics in day today life
- Understand the fundamentals of elasticity and elastic nature of materials.
- Knowledge about the concepts of viscosity.

# **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the Course, the Student will be able to,                                          | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO 1         | Recall the basic concepts of elasticity, viscosity and surface tension to solve problems encountered in everyday life.         | K1                 |
| CO 2         | Understand the concepts of the centre of gravity, states of equilibrium of rigid bodies and also stability of floating bodies. | K2                 |
| CO 3         | Apply the behavior of the laws of thermodynamics, thermal conductivity and black body radiation.                               | К3                 |
| CO 4         | Analyse the theories and experiments on interference and diffraction using air wedge, Newton's ring.                           | K4                 |
| CO 5         | Evaluate the formation, characteristics and applications of diodes and transistor.                                             | K5, K6             |

| COs  | PSO 1 | PSO 2 | PSO 3 | PSO 4 | PSO 5 | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 |
|------|-------|-------|-------|-------|-------|------|------|------|------|------|
| CO 1 | 2     | 3     | 3     | 3     | 3     | 3    | 3    | 3    | 2    | 3    |
| CO 2 | 2     | 3     | 3     | 3     | 3     | 3    | 3    | 2    | 2    | 3    |
| CO 3 | 2     | 3     | 3     | 3     | 3     | 3    | 3    | 3    | 2    | 3    |
| CO 4 | 2     | 3     | 3     | 2     | 3     | 3    | 3    | 3    | 3    | 3    |
| CO 5 | 2     | 3     | 3     | 2     | 3     | 3    | 3    | 3    | 3    | 3    |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" – indicates there is no correlation.

| UNIT         | CONTENT                                                                                        | HOURS | COs          | COGNITIVE  |
|--------------|------------------------------------------------------------------------------------------------|-------|--------------|------------|
|              |                                                                                                |       |              | LEVEL      |
| I            | PROPERTIES OF MATTER                                                                           | 15    | CO1,         | K1,        |
|              | Introduction - Stress - Strain - Young's                                                       |       | CO2,         | K2,        |
|              | modulus - Rigidity modulus - Bulk modulus -                                                    |       | CO3,         | K3,        |
|              | Relations between elastic constants and                                                        |       | CO4,         | K4,        |
|              | Poisson's Ratio (definition alone).                                                            |       | CO5          | K5,        |
|              | Viscosity: Viscous force – Co-efficient of                                                     |       |              | K6         |
|              | Viscosity – Streamline flow and Turbulent                                                      |       |              |            |
|              | flow – critical velocity - Poiseuille's formula                                                |       |              |            |
|              | for co-efficient of viscosity of a liquid                                                      |       |              |            |
|              | (Stoke's Method)                                                                               | 10    |              | ***        |
| II           | MECHANICS                                                                                      | 12    | CO1,         | K1,        |
|              | Basic concepts— Centre of Gravity- solid                                                       |       | CO2,         | K2,        |
|              | hemisphere – Hollow hemisphere.                                                                |       | CO3,         | K3,        |
|              | States of Equilibrium: Equilibrium of a rigid                                                  |       | CO4,         | K4,        |
|              | body –Stable, unstable, and neutral                                                            |       | CO5          | K5,        |
|              | equilibrium – Example Stability of Floating bodies – Metacentre – Determination of             |       |              | K6         |
|              |                                                                                                |       |              |            |
| III          | Metacentric height of a ship.  THERMAL PHYSICS                                                 | 12    | CO1,         | K1,        |
| 111          | Thermodynamics: Definitions - Significance                                                     | 12    | CO1,         | K1,<br>K2, |
|              | and limitations of thermodynamic Processes                                                     |       | CO2,         | K2,<br>K3, |
|              | such as reversible and irreversible, adiabatic,                                                |       | CO4,         | K4,        |
|              | isothermal, isobaric, isochoric, and cyclic                                                    |       | CO5          | K5,        |
|              | process - Laws of thermodynamics - enthalpy,                                                   |       |              | K6         |
|              | entropy and heat capacity. Relationship                                                        |       |              |            |
|              | between Cp and Cv - Joule -Thomson effect.                                                     |       |              |            |
| IV           | OPTICS                                                                                         | 12    | CO1,         | K1,        |
|              | <b>Interference:</b> Introduction – Superposition of                                           |       | CO2,         | K2,        |
|              | waves –Principle of interference-Air wedge –                                                   |       | CO3,         | K3,        |
|              | Newton's rings.                                                                                |       | CO4,         | K4,        |
|              | <b>Polarization:</b> Nicol Prism – Nicol Prism as                                              |       | CO5          | K5,        |
|              | Polarizer and Analyzer – Laurent's half Shade                                                  |       |              | K6         |
|              | Polari meter.                                                                                  |       |              |            |
| $\mathbf{V}$ | <b>ELECTRONICS</b>                                                                             | 11    | CO1,         | K1,        |
|              | Semiconductors: Classification of materials                                                    |       | CO2,         | K2,        |
|              | based on energy band (Conductors,                                                              |       | CO3,         | K3,        |
|              | semiconductors and insulators) - Intrinsic and                                                 |       | CO4,         | K4,        |
|              | extrinsic semiconductor.                                                                       |       | CO5          | K5,        |
|              | <b>Diodes:</b> PN Junction diode – Biasing of PN                                               |       |              | K6         |
|              | junction-V-I characteristics of junction diode  –Zener diode – Characteristics of Zener diode. |       |              |            |
| VI           | SELF STUDY FOR ENRICHMENT                                                                      | _     | CO1,         | K1,        |
| V 1          | (Not to be included for External                                                               | -     | CO1,<br>CO2, | K1,<br>K2, |
|              | (1101 to be included for Paternal                                                              |       | CO2,         | ΙΧ∠,       |

| Examination)                                 | CO3, | К3, |
|----------------------------------------------|------|-----|
| Applications of Elasticity-Low Viscous       | CO4, | K4, |
| silicon liquid immersed transformers- Rigid  | CO5  | K5, |
| body of solid systems - Kinetic theory of    |      | K6  |
| matter-Properties of optical materials-      |      |     |
| Characteristics, Working and Applications of |      |     |
| LED.                                         |      |     |

### **Text Books**

- 1. Murugeshan R, (2017), *Properties of matter*, S. Chand & Co. Pvt. Ltd., Revised Edition
- 2. Narayanamoorthy and Nagarathinam N, (2005), *Mechanics Part II*, The National Publishing Company, Chennai.
- 3. BrijLal, Subrahmanyam N, Hemne P S, (2021), *Heat and Thermodynamics and Statistical Physics*, S. Chand & Co. Pvt. Ltd., Revised edition
- 4. Dr. Subramaniyam N, Brijlal and Dr. Avathanulu M N, (2015), *Optics*, S. Chand & Co. Pvt. Ltd.  $-5^{th}$  Edition, New Delhi.
- 5. Mehta V K and Rohit Mehta, (2015), Principles of Electronics, S. Chand and company Ltd

### **Reference Books**

- 1. Brijlal and Subramaniyan, (2005), *Properties of Matter*, S. Chand & Co. Pvt. Ltd.
- 2. Mathur D S, (2006), Mechanics, S. Chand & Co. Reprint Edition.
- 3. Brijlal and Subramaniyan, (2001), *Thermal Physics*, S. Chand & Co.
- 4. Murugeshan R and Kiruthiga Sivaprasath, (2014), *A Text Book of Optics*, S. Chand & Co. Pvt. Ltd.- 9<sup>th</sup> revised edition Ramnagar, New Delhi.
- 5. Vijayendran V, Viswanathan S, (2004), *Digital Fundamentals*, Printers & Publishers Private Ltd, Chennai.

#### Web References

- 1. <a href="https://byjus.com">https://byjus.com</a>
- 2. https://digitalcommons.unl.edu/cgi/viewcontent
- 3. https://sciencing.com
- 4. <a href="https://nptel.ac.in/courses/122106025">https://nptel.ac.in/courses/122106025</a>

# **Pedagogy**

Chalk and Talk, Seminars, Power Point Presentation, Quiz, Assignment and Group discussion.

## **Course Designer**

Dr.R.Mekala

| Semester III | Internal Marks: 40 | External Marks: 60 |          |         |  |  |  |
|--------------|--------------------|--------------------|----------|---------|--|--|--|
| COURSE CODE  | COURSE TITLE       | CATEGORY           | HRS/WEEK | CREDITS |  |  |  |
| 22UCH3AC5P   | PHYSICS -I (P)     | SECOND ALLIED      | 4        | 3       |  |  |  |
|              |                    | COURSE- II (AP)    |          |         |  |  |  |

- To acquire a general foundational knowledge of physics experiments.
- To identify and solve problems at the frontier of physics knowledge.
- To get hands-on experience with practical skills.

# **Pre-requisites**

• Basic knowledge on usage of scientific apparatus.

# **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                             | Cognitive |
|--------|--------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the Course, the Student will be able to  | Level     |
| CO 1   | Find applications of physics experiments in real world appliances        | K1        |
| CO 2   | Construct the experiment by arranging and assembling the equipment.      | K2        |
| CO 3   | Build practical hands-on experience by various techniques.               | К3        |
| CO 4   | Compare the experimental values with standard values.                    | К3        |
| CO 5   | Apply the physics theory to design basic electrical circuits and develop | K4        |
|        | practical understanding                                                  |           |

# Mapping of CO with PO and PSO

| Cos  | PSO 1 | PSO 2 | PSO 3 | PSO 4 | PSO 5 | <b>PO</b> 1 | PO 2 | <b>PO 3</b> | PO 4 | PO 5 |
|------|-------|-------|-------|-------|-------|-------------|------|-------------|------|------|
| CO 1 | 1     | 1     | 1     | 2     | 1     | 3           | 2    | 1           | 2    | 1    |
| CO 2 | 2     | 2     | 2     | 2     | 2     | 3           | 3    | 1           | 2    | 1    |
| CO 3 | 1     | 3     | 2     | 3     | 1     | 3           | 2    | 1           | 3    | 1    |
| CO 4 | 2     | 1     | 3     | 3     | 2     | 1           | 3    | 1           | 3    | 2    |
| CO 5 | 3     | 2     | 3     | 3     | 3     | 1           | 3    | 2           | 3    | 2    |

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

### **LIST OF EXPERIMENTS (Any 8)**

- 1. Young's modulus Uniform bending (Pin and Microscope).
- 2. Acceleration due to gravity- Compound Pendulum.
- 3. Viscosity of liquid Stoke's method.
- 4. Surface Tension and Interfacial Surface Tension Drop weight method.
- 5. Specific Heat Capacity of liquid Newton's law of Cooling.
- 6. Air wedge thickness of thin wire.
- 7. Meter Bridge Specific Resistance of a coil.
- 8. Carey Foster's Bridge Specific Resistance of a coil.
- 9. Post office Box- Determination of Temperature Coefficient.
- 10. Potentiometer Low range voltmeter Calibration.
- 11. Characteristics of Junction diode.
- 12. Characteristics of Zener diode.
- 13. Basic Logic gates
- 14. Comparison of EMF between Leclanche and Daniel cells.
- 15. Internal resistance of the Leclanche using Potentiometer.

#### **Text Books**

- 1. Somasundaram. S, (2012). Practical Physics, Apsara Publications, Tiruchirappalli.
- 2. Sasikumar. R, (2011), A Book for Practical Physics. PHI LearningPvt. Ltd, NewDelhi

### **Reference Books**

- 1. Srinivasan.S, (2011) *A Text Book of Practical physics*, Sultans and publications, New Delhi.
- 2. Prof. Namboodiri pad, M.N., Prof.Daniel, P.A., (1982). *B.Sc., Practical Physics*. G.B.C. Publications, Cochin.

#### Web References

- 1. https://vlab.amrita.edu/?sub=1&brch=280&sim=550&cnt=1
- 2. https://vlab.amrita.edu/index.php?sub=1&brch=280&sim=1518&cnt=4
- 3. http://amrita.olabs.edu.in/?sub=1&brch=5&sim=225&cnt=4

## **Pedagogy**

Demonstration, practical sessions, and viva voce

#### **Course Designer**

Dr. K. Kannagi

| Semester III | Internal Marks: 25 | Ext              | ernal Ma | rks: 75 |
|--------------|--------------------|------------------|----------|---------|
| COURSE CODE  | COURSE TITLE       | CATEGORY         | Hrs./    | CREDITS |
|              |                    |                  | Week     |         |
| 22UCH3GEC1   | CHEMISTRY IN       | GENERIC ELECTIVE | 2        | 2       |
|              | EVERYDAY LIFE      | COURSE           |          |         |
|              |                    |                  |          |         |

- > To know about the importance of Chemistry in everyday life.
- > To gain knowledge in food and nutrition.
- > To learn the Chemistry of building materials and plastics.
- > To learn about the role of chemicals in cosmetics.
- > To gain knowledge about dyeing processes.

## **Course Outcomes**

# **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                           | Cognitive |
|--------|------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to   | Level     |
| CO1    | Recognize and account the importance of role of chemistry in           | K1 & K2   |
|        | industry and pollution control.                                        |           |
| CO2    | Exemplify the chemistry of materials used in everyday life.            | К3        |
| CO3    | Categorize the chemistry of materials used in everyday life.           | K4        |
| CO4    | Interpret the uses of chemicals in day today life and its impact.      | K5        |
| CO5    | Illustrate and classify the importance of chemistry used in commercial | K6        |
|        | and daily life.                                                        |           |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |
| CO5 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation "-" Indicates there is No Correlation.

## **SYLLABUS**

| UNIT | CONTENT                                                | HOURS | COs  | COGNITIVE   |
|------|--------------------------------------------------------|-------|------|-------------|
|      |                                                        |       |      | LEVEL       |
| I    | Chemistry of Air and Water:                            | 15    | CO1, | K1, K2, K3, |
|      | Air - components and their importance;                 |       | CO2, | K4, K5      |
|      | photosynthetic reaction, air pollution, green -        |       | CO3, |             |
|      | house effect, ozone layer depletion and the impact     |       | CO4  |             |
|      | on our life style. Water - sources of water, qualities |       |      |             |
|      | of potable water, soft and hard water, methods of      |       |      |             |
|      | removal of hardness - water pollution.                 |       |      |             |
| II   | Food and Nutrition:                                    | 15    | CO1, | K1, K2, K3, |
|      | Carbohydrates, proteins, fats - definition and their   |       | CO2, | K4, K5      |
|      | importance as food constituents - balanced diet -      |       | CO3, |             |
|      | calories minerals and vitamins (sources and their      |       | CO4  |             |
|      | physiological importance). Chemicals in food           |       |      |             |
|      | production - fertilizers - need, natural sources;      |       |      |             |
|      | urea - NPK fertilizers and super phosphate.            |       |      |             |
| III  | Building materials:                                    | 15    | CO1, | K1, K2, K3, |
|      | Cement, ceramics, glass and refractories -             |       | CO2, | K4          |
|      | definition - composition and application - plastics    |       | CO3  |             |
|      | - polythene - PVC - bakelite - polyesters -            |       |      |             |
|      | melamine - formaldehyde resins - preparation and       |       |      |             |
|      | uses - merits and demerits of plastics -               |       |      |             |
|      | environmental impact and awareness.                    |       |      |             |
|      | Biodegradable polymers.                                |       |      |             |
| IV   | Chemistry of Cosmetics:                                | 15    | CO1, | K1, K2, K3, |
|      | Cosmetics - tooth paste - face powder - face cream     |       | CO2, | K4, K5      |
|      | - lip stick - hair dye - soaps (natural soaps, baby    |       | CO3, |             |
|      | soap, and transparent soap) and detergents -           |       | CO4  |             |
|      | shampoos, nail polish - perfumes - general             |       |      |             |
|      | formulation and preparations - possible hazards of     |       |      |             |
|      | cosmetic use.                                          |       |      |             |

| V  | Dye Chemistry:                                        | 15 | CO1, | K1, K2, K3, |
|----|-------------------------------------------------------|----|------|-------------|
|    | Dyes - classification of dyes - based on mode of      |    | CO2, | K4          |
|    | application - acid - basic - direct - mordant - vat - |    | CO3  |             |
|    | sulphur. Pigment - solvent and food dye - based on    |    |      |             |
|    | chemical constitution - nitroso dye - nitro dye - azo |    |      |             |
|    | dye - thiazole dye - methods of dyeing - direct       |    |      |             |
|    | dyeing - vat dyeing - mordant dyeing and disperse     |    |      |             |
|    | dyeing.                                               |    |      |             |
| VI | Self-Study for Enrichment                             | -  | CO1, | K1, K2, K3, |
|    | (Not to be included for External Examination)         |    | CO2, | K4          |
|    | Reverse osmosis - desalination of water - refining    |    | CO3  |             |
|    | and bleaching agents - types of dyes and pigments     |    |      |             |
|    | - importance of pollution control.                    |    |      |             |

#### **Text Books**

- 1. Vaithyanathan, S. (2006). Textbook of Ancillary Chemistry; Priya Publications, Karur.
- 2. Sharma, B. K. (2014). Industrial Chemistry; GOEL publishing house, Meerut, 16<sup>th</sup> edition.
- 3. Jayashree Ghosh. (2006). Fundamental Concepts of Applied Chemistry, S. Chand & Co. Publishers, 2<sup>nd</sup> edition.

#### Reference Books

- 1. Billmeyer, F. N. (1971). Textbook of Polymer Science, Wiley Interscience.
- 2. Prakash. (2011). Comprehensive Industrial Chemistry, Pragati Prakashan, Meerut.
- 3. Poucher, W. A., Joseph, A., & Brink. (2000). Jr. Perfumes, Cosmetics and Soaps, Springer.
- 4. De, A. K. (1990). Environmental Chemistry, New Age International Public Co.

### **Web References**

- 1. https://www.educationusingpowerpoint.co.uk/preview-278-Chemistry\_1\_ Air\_and\_Water.html.
- 2. https://www.slideshare.net/harikafle944/food-and-nutrition-general-concept.
- 3. https://slideplayer.com/slide/261357/.
- 4. <a href="https://www.slideshare.net/amirhamza1234/presentation-on-dye.">https://www.slideshare.net/amirhamza1234/presentation-on-dye.</a>

### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

#### **Course Designer**

Dr. K. Uma Sivakami

| Semester IV | Internal Marks: 25                    | External Marks: 75 |            |         |  |  |  |
|-------------|---------------------------------------|--------------------|------------|---------|--|--|--|
| COURSE CODE | COURSE TITLE                          | CATEGORY           | Hrs / Week | CREDITS |  |  |  |
| 22UCH4CC5   | INORGANIC AND<br>ORGANIC<br>CHEMISTRY | CORE               | 6          | 6       |  |  |  |

- 1. To learn the general characteristics of d and f block elements.
- 2. To understand the reactions of organometallic compounds.
- 3. To study about the preparation and properties of alcohols, phenols and ethers.
- 4. To understand the arrangement of atoms in space, isomers and the nomenclature.

# **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                            | Cognitive |
|--------|---------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                    | Level     |
| CO1    | Outline the synthesis of organometallics and oxygen containing functional groups and symmetry elements. | K1, K2    |
| CO2    | Describe the general characteristics of d and f block elements, organic compounds and stereoisomers.    | K3        |
| CO3    | Analyze the trends of the periodic properties, reactions and types of stereoisomers.                    | K4        |
| CO4    | Distinguish between 3d, 4d and 5d elements, functional isomers and                                      | K5        |
| CO5    | Predict the properties of transition, inner tansition elements and configuration of organic compounds   | K6        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |
| CO5 | 3    | 2    | 3    | 3    | 3    | 3   | 3   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

| UNIT | CONTENT                                        | HOURS | COs          | CONGNITIVE<br>LEVEL |
|------|------------------------------------------------|-------|--------------|---------------------|
| I    | Chemistry of d-Block Elements: Position of     | 18    | CO1,         | K1, K2, K3, K4,     |
|      | d-block element-electronic configuration-      |       | CO2,<br>CO3, | K5                  |
|      | classification-general characteristics -atomic |       | CO3,         |                     |
|      | radii-ionic radii-metallic character-melting   |       | CO5          |                     |
|      | point and boiling point-atomic volume -        |       |              |                     |
|      | densities-ionization energies-standard         |       |              |                     |
|      | oxidation potential - reducing properties-     |       |              |                     |
|      | variable oxidation state-catalytic properties- |       |              |                     |
|      | color of transition metal complexes-           |       |              |                     |
|      | Magnetic properties-formation of complex       |       |              |                     |
|      | compounds-formation of interstitial            |       |              |                     |
|      | compounds-alloy formation. comparison          |       |              |                     |
|      | between elements of 3d series with 4d and      |       |              |                     |
|      | 5d series.                                     |       |              |                     |
| II   | Chemistry of f-Block Elements: General         | 18    | CO1,         | K1, K2, K3, K4,     |
|      | characteristics of f block elements-           |       | CO2,<br>CO3, | K5                  |
|      | comparative account of lanthanides and         |       | CO4,         |                     |
|      | actinides-occurrence-oxidation state-          |       | CO5          |                     |
|      | magnetic properties-color and spectra-         |       |              |                     |
|      | lanthanides - actinides-separation by ion      |       |              |                     |
|      | exchange - solvent exchange methods-           |       |              |                     |
|      | lanthanide and actinide contraction -          |       |              |                     |
|      | chemistry of thorium - uranium-occurrence-     |       |              |                     |
|      | ores- extraction and uses-compounds of         |       |              |                     |
|      | uranium and thorium-preparation-properties-    |       |              |                     |
|      | uses.                                          |       |              |                     |
| III  | Chemistry of Organometallic compounds:         | 18    | CO1,         | K1, K2, K3, K4,     |
|      | Introduction-classification-preparation        |       | CO2,<br>CO3, | K5                  |
|      | properties and uses of organo magnesium        |       | CO4,         |                     |
|      | compounds, organozinc compounds,               |       | CO5          |                     |

|             | organolithium, organocopper, organolead,               |    |              |                 |
|-------------|--------------------------------------------------------|----|--------------|-----------------|
|             | organophosphorus and organoboron                       |    |              |                 |
|             | compounds                                              |    |              |                 |
| IV          | Chemistry of Alcohols, phenols and                     | 18 | CO1,         |                 |
|             | Ethers: Nomenclature- preparation of                   |    | CO2,<br>CO3. |                 |
|             | alcohols-industrial source of alcohols-                |    | CO3,<br>CO4, |                 |
|             | physical properties -chemical properties-              |    | CO5          |                 |
|             | uses-chemistry of glycols and glycerols-               |    |              |                 |
|             | uses-preparation of phenols including di and           |    |              |                 |
|             | tri hydric phenols - physical and chemical             |    |              |                 |
|             | properties-uses-aromatic electrophilic                 |    |              |                 |
|             | substitution mechanism-theory of orientation           |    |              |                 |
|             | and reactivity- preparation of ether -                 |    |              |                 |
|             | epoxides - physical properties-                        |    |              |                 |
|             | chemical properties-uses.                              |    |              |                 |
| V           | Stereochemistry: Stereoisomers - types-                | 18 | CO1,         | K1, K2, K3, K4, |
|             | concept of chirality- elements of symmetry -           |    | CO2,<br>CO3, | K5, K6          |
|             | enantiomers - diastereomers -fisher                    |    | CO4,         |                 |
|             | projection representation -R, S configuration-         |    | CO5          |                 |
|             | sequence rule-D and L- nomenclature-                   |    |              |                 |
|             | erythro and threo nomenclature. Compounds              |    |              |                 |
|             | with two stereogenic centre-optical isomers            |    |              |                 |
|             | of lactic acid, tartaric acid. geometrical             |    |              |                 |
|             | isomers <i>-cis- trans</i> system- <i>E-</i> Z system. |    |              |                 |
|             | Racemic mixture- resolution of racemic                 |    |              |                 |
|             | mixture – Walden Inversion –                           |    |              |                 |
|             | conformational analysis of methane, ethane             |    |              |                 |
|             | and n-butane and                                       |    |              |                 |
|             | cyclohexane.                                           |    |              |                 |
| <b>1</b> /1 | Self-Study for Enrichment: (Not to be                  |    | CO1          | K1 K2 K2 V4     |
| VI          | included for External Examination)                     |    | CO1,<br>CO2  | K1, K2, K3, K4  |
|             | Periodic table- classification of elements-            |    | CO3          |                 |
|             | periodic properties - types of organic                 |    |              |                 |

| reaction - Basics of symmetry and isomers. |  |  |
|--------------------------------------------|--|--|
|                                            |  |  |

### **Text books**

- 1. PuriB. R, Sharma L. R, Kalia K. K. Principles of Inorganic Chemistry, 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- Madan R. D. Modern Inorganic Chemistry, 2nd edition, S. Chand & Company Ltd., 2000.
- 3. Bhupinder M. Manju M., Organic chemistry, (2 nd edition), Delhi, PHI Learning Private Limited.
- 4. Bahl, B.S. and Bahl, A., Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2010).
- 5. Soni P.L. Chawla H.M., Text book of Organic chemistry, Sultan Chand & Sons.

#### Reference books

- 1. Malik W.U, Tuli G.D, Madan R.D, selected topics in Inorganic chemistry, S Chand and Company limited, New Delhi.
- 2. Lee J. D. Concise Inorganic Chemistry, 20th revised edition, Sultan Chand& Sons, 2000.
- 3. Finar I.L., Organic Chemistry, Vol 1&2, (6th edition) England, Addison Wesley Longman Ltd. (1996).
- 4. Morrison R.T. and Boyd R.N., Bhattacharjee S. K. Organic Chemistry (7<sup>th</sup> edition), Pearson India, (2011)

### **Web References:**

- 1. https://unacademy.com/content/cbse-class-12/study-material/chemistry/d-block-elements/
- 2. https://study.com/learn/lesson/d-block-elements-properties-electron-configuration.html
- 3. https://www.aakash.ac.in/important-concepts/chemistry/actinides
- 4. https://www.usb.ac.ir/FileStaff/2896\_2019-4-18-0-9-32.pdf
- 5. https://colapret.cm.utexas.edu/courses/Chapter%2015.pdf
- 6. https://www.askiitians.com/revision-notes/chemistry/alcohols-phenols-and-ether/

## Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

### **Course Designers**

Dr. C. Rajarajeswari

| Semester IV    | Internal Marks: 40                       | rnal Marks: 40 External Marks: 60 |               |         |
|----------------|------------------------------------------|-----------------------------------|---------------|---------|
| COURSE<br>CODE | COURSE<br>TITLE                          | CATEGORY                          | Hrs /<br>Week | CREDITS |
| 22UCH4CC4P     | INORGANIC<br>QUALITATIVE<br>ANALYSIS (P) | CORE                              | 4             | 4       |

# **Objectives**

- To learn the techniques of semi micro qualitative analysis.
- To know the nature of acidic and basic radicals.
- To learn the separation of groups.

# **Course outcomes**

On the successful completion of the course, students will be able to

| CO  | CO Statements                                  | Knowledge Level |
|-----|------------------------------------------------|-----------------|
|     |                                                |                 |
| CO1 | Recall the nature of acidic and basic radicals | K1              |
|     |                                                |                 |
| CO2 | Identify the cations and anions present in the | K2              |
|     | mixture                                        |                 |
| CO3 | Analyze the principles of inorganic            | K3              |
|     | qualitative analysis.                          |                 |
| CO4 | Demonstrate the experimental methods of group  | K4              |
|     | separation                                     |                 |
| CO5 | Plan, execute and record all the               | K5              |
|     | experimental results.                          |                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 2    | 2    | 2    | 3    | 1    | 2   | 2   | 2   | 1   | 1   |
| CO5 |      | 3    | 3    | 1    | 3    | 2   | 3   | 3   | 3   | 1   |

<sup>&</sup>quot;1" - Slight (Low) Correlation

<sup>&</sup>quot;3" - Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

# SYLLABUS INORGANIC QUALITATIVE ANALYSIS (P)

Analysis of a mixture containing two cations and two anions of which one will be an interfering acid radical.

Semi micro methods using the conventional method with sodium sulphide may be adopted.

#### Cations to be studied:

Lead, copper, bismuth, iron, aluminium, zinc, manganese, cobalt, nickel, barium, calcium, strontium, magnesium and ammonium.

#### Anions to be studied:

Carbonate, Sulphate, Nitrate, Chloride, Fluoride, Borate, Oxalate and Phosphate.

#### **Text Books**

1. Venkateswaran V. Veerasamy R. Kulandaivelu A.R., Basic principles of Practical Chemistry,

2nd edition, New Delhi, Sultan Chand & sons (1997)

#### Reference book

1. Svehla G. Sivasankar B. Vogels Qualitative Inorganic Analysis, 7th Edition, Pearson Education

#### **Web References**

- 1. <a href="http://rbmcollege.ac.in/sites/default/files/files/reading%20material/inorganic-qualitative-analysis.pdf">http://rbmcollege.ac.in/sites/default/files/files/reading%20material/inorganic-qualitative-analysis.pdf</a>
- 2. <a href="https://chem.libretexts.org/Bookshelves/Analytical\_Chemistry/Supplemental\_Modules">https://chem.libretexts.org/Bookshelves/Analytical\_Chemistry/Supplemental\_Modules</a>
- 3. https://byjus.com/chemistry/salt-analysis/
- 4. https://chemlab.truman.edu/files/2015/07/Inorganic-Qualitative-Analysis.pdf
- 5. https://www.teachmint.com/tfile/studymaterial/b-

sc/inorganicchemistry/qualitativeanalysis/a9301386-a267-44c7-886a-09c64f439dcb

### Pedagogy

Demonstration and practical sessions

#### **Course Designers**

**❖** Dr. C. RAJARAJESWARI

| Semester IV | Internal Marks: 25 | External Marks: 75 |          |         |  |
|-------------|--------------------|--------------------|----------|---------|--|
| COURSE CODE | COURSE TITLE       | CATEGORY           | HRS/WEEK | CREDITS |  |
| 22UCH4AC6   | PHYSICS - II       | SECOND ALLIED      | 4        | 3       |  |
|             |                    | COURSE – III       |          |         |  |

- To provide the basic knowledge about the concepts of current electricity.
- To introduce the basic concepts of magnetostatics.
- To understand modern wave mechanics, which are basic for modern physics.
- To apply the principles of electronics in day to life.
- To understand the modern lasers and digitization of computers.

# **Pre-Requisites**

- Basic laws of electricity.
- Fundamental knowledge in modern physics.
- Get in-depth knowledge about the concepts of digital electronics.

# **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                | Cognitive |
|--------|-----------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the Course, the Students will be able       | Level     |
|        | to,                                                                         |           |
| CO 1   | Acquire knowledge on elementary ideas of electricity, magnetism, modern     | K1, K2    |
|        | and laser physics, digital electronics.                                     |           |
| CO 2   | Able to understand the knowledge on basic laws of current electricity,      | K2        |
|        | different types of magnetism, wave mechanics and modern laser, electronics. |           |
| CO 3   | Recall the of elementary ideas of electricity and magnetism, modern wave    | K3        |
|        | mechanics and digitization of computers.                                    |           |
| CO 4   | Analyze the behavior of laser physics and modern physics in our day-to-day  | K4        |
|        | life.                                                                       |           |
| CO 5   | Discuss the characteristics of Kirchoff's law and Specific resistance,      | K5        |
|        | photoelectric effect, types of lasers and modern electronics.               |           |

| COs  | PSO 1 | PSO 2 | PSO 3 | PSO 4 | PSO 5 | PO 1 | PO 2 | <b>PO 3</b> | PO 4 | PO 5 |
|------|-------|-------|-------|-------|-------|------|------|-------------|------|------|
| CO 1 | 2     | 3     | 3     | 3     | 3     | 3    | 3    | 3           | 3    | 3    |
| CO 2 | 2     | 3     | 3     | 3     | 3     | 3    | 3    | 2           | 2    | 3    |
| CO 3 | 2     | 3     | 3     | 3     | 3     | 3    | 3    | 3           | 3    | 3    |
| CO 4 | 2     | 3     | 3     | 2     | 3     | 3    | 3    | 3           | 2    | 3    |
| CO 5 | 2     | 3     | 3     | 2     | 3     | 3    | 3    | 3           | 2    | 3    |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" - indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                               | HOURS | COs                             | COGNITIVE<br>LEVEL         |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|----------------------------|
| I    | CURRENT ELECTRICITY  Ohm's law-Law of resistance in series and parallel— Specific resistance—capacitor—capacitors in serial and parallel—Kirchoff's laws—Wheatstone's network— condition for balance.  Carey Foster's bridge—measurement of resistance—measurement of specific resistance—determination of temperature coefficient of resistance—Potentiometer—calibration of Voltmeter.              | 14    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
| II   | MAGNETISM Intensity of magnetization-Susceptibility-Types of magnetic materials-Properties of para, dia and ferromagnetic materials-ferrimagnets and their applications-Hysteresis-Experiment to draw M-H curve (Horizontal Method)-energy loss in hysteresis.                                                                                                                                        | 10    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
| III  | MODERN PHYSICS  Photo electric effect—Laws of photo electric effect — Einstein's photo electric equation—verification of Einstein's photo electric equation by Millikan's experiment—photo electric cells—applications.  Wave mechanics: De Broglie concept of matter waves — characteristics and calculation of De Broglie wave length -Study of De Broglie matter wave by G. P. Thomson Experiment. | 14    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
| IV   | LASER PHYSICS Laser: Basics of Lasers-Principle of Laser-Stimulated Absorption-Stimulated Emission-Spontaneous Emission- population inversion-meta stable state – conditions for laser actions-Types-Ruby laser-He-Ne laser-applications of lasers-Raman effect-Raman shift –stokes and anti stokes lines.                                                                                            | 10    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |

| V  | DIGITAL ELECTRONICS  Number systems-conversion of binary into decimal—conversion of decimal to Binary—binary addition and subtraction-Basic logic gates-AND, OR, NOT gates-NAND and NOR as an universal logic gates-Boolean Algebra—Laws of Boolean Algebra-De Morgan's theorems- verifications using truth tables. | 12 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------|----------------------------|
| VI | SELF STUDY FOR ENRICHMENT (Not to be included for External Examination)  Meter bridge-B-H Curve-Atomic & Nuclear Physics-Fiber optics-Artificial intelligence–Electronic School books.                                                                                                                              | -  | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |

#### **Text Books**

- 1. Murugeshan R (2001), Electricity and Magnetism, S. Chand & Co. Pvt. Ltd, Thirdedition.
- 2. Murugeshan R, Kiruthiga Sivaprasath (2017), *Modern Physics*, S. Chand & Co. Pvt.Ltd, Sixteenth Revised color edition.
- 3. Brijlal & Subramanian, (1995), *Electricity and Magnetism*, Ratan Prakashan Mandir.
- 4. Sedha R. S. (2004), A text book of Digital Electronics, S. Chand & Co. Pvt. Ltd, Firstedition.

### Reference Books

- 1. Murugesan R, (2010), *Allied Physics Paper I and II*, S.Chand & Co, New Delhi, Revised Edition.
- 2. Narayanamurthi R, (1988), *Electricity and Magnetism*, The National Publishing Co, First Edition.
- 3. Arthur Beiser, Mahajan, Choudhury, (2015), *Concepts of Modern Physics*, Pustakkosh Pubications, India.
- 4. Donald P.Leach, Albert Paul Malvino, Goutam Saha, (2008), *Digital principle and Applications*, Mc Graw-Hill Publishing Company, 6th Editions, New York.
- 5. Vijayendran V, Viswanathan S, (2004), *Digital Fundamentals*, S. Viswanathan Printers Pvt. Ltd, Revised edition.

### Web References

- 1. <a href="https://wepdf.com/al/allied-physics">https://wepdf.com/al/allied-physics</a>
- 2. https://archive.nptel.ac.in/courses
- 3. <a href="https://nptel.ac.in/courses">https://nptel.ac.in/courses</a>
- 4. https://www.askiitians.com/revision-notes/physics/atomic-physics/

## Pedagogy

Chalk and talk, PPT, Quiz, Assignment and Group discussion

#### **Course Designer**

Dr. R. Mekala

| Semester IV | Internal Marks: 25 ExternalMarks:75 |                  |            |         |  |  |  |
|-------------|-------------------------------------|------------------|------------|---------|--|--|--|
| COURSE CODE | COURSE TITLE                        | CATEGORY         | Hrs / Week | CREDITS |  |  |  |
|             |                                     |                  |            |         |  |  |  |
| 22UCH4GEC2  | FOOD ADULTERANTS                    | <b>GENERIC</b>   | 2          | 2       |  |  |  |
|             | AND HEALTH CARE                     | <b>ELECTIVE</b>  |            |         |  |  |  |
|             |                                     | <b>COURSE-II</b> |            |         |  |  |  |

# **Course Objective**

- > To provide an understanding of food and nutrition
- > To provide an understanding of the chemical basis of food preservation and the effects of processing
  - and storage on food quality
- > To familiarize the student with common experimental methods used in the study of the major food adulterant
- > To know various types of health care, balanced diet and role of water balance in health.

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                          | Cognitive<br>Level |
|--------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Know the outline about the importance of health, sources of food, hazards of food additives and food poisoning.            | K1&K2              |
| CO2          | Classify and identify common adulterants in different foods, food poisoning and impacts on health.                         | К3                 |
| CO3          | Understand the common Food additives in food products, its prevention laws and importance of water balance in health care. | K4                 |
| CO4          | Recognize the significance of nutrients, balanced diet and types of health care.                                           | K5                 |
| CO5          | Predict the nutrient, functions, sources of non-adulterants food and water for health care.                                | K6                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |
| CO5 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation "-" indicates there is no correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOURS | COs                                 | COGNITIVE<br>LEVEL       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------|
| I    | Food and food poisoning:  Sources of food - types - advantages and disadvantages - constituents of food - carbohydrate - protein -fats and oils - vitamins and minerals - natural toxicants - food Poisoning: sources - causes and remedy - causes and remedies for acidity- gastritis- indigestion and constipation.                                                                                                                                                                                                |       | CO1,<br>CO2,<br>CO3,<br>CO4,        | K1, K2, K3, K4,<br>K5,K6 |
| П    | Food adulterants:  Adulterants- common adulterants in different foods - milk and dairy products - vegetable oils - fats - spices - condiments - cereals pulses - sweetening agents and beverages-contamination with toxic chemicals - pesticides and insecticides - Laws of prevention of food adulteration - Methods for detection of common adulterants in milk- milk products- oils and fats -sweetening agents - grains - spices - coriander powder - turmeric powder - coffee powder - tea dust and asafoetida. | 06    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3, K4,<br>K5,K6 |
| Ш    | Food additives: Food additives: artificial sweeteners- saccharin - cyclamate and aspartame- food flavors: esters - aldehydes and heterocyclic compounds- antioxidants: permitted - non- permitted food colors- stabilizers - thickeners and emulsifiers - other functional additives- soft drinks- formulation health drinks- preservatives- baking powder - yeast.                                                                                                                                                  | 06    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3, K4,<br>K5,K6 |

| IV | Health:                                                       |    |                        |                 |
|----|---------------------------------------------------------------|----|------------------------|-----------------|
|    | Definition of Health- WHO standard - balanced diet-           | 06 | CO1, CO2,              |                 |
|    | Primary health care - secondary and tertiary health care-     |    | CO1, CO2,              | K1, K2, K3, K4, |
|    | Primitive health care: preventive - curative - rehabilitative |    | CO5                    | K5,K6           |
|    | health care - spiritual health care- concepts of social       |    |                        |                 |
|    | medicine -preventive medicine and community                   |    |                        |                 |
|    | medicine.                                                     |    |                        |                 |
| V  | Water Balance in health:                                      |    |                        |                 |
|    | As a nutrient- functions- sources- requirements-              |    | CO1 CO2                |                 |
|    | distribution of water in the body- exchange of water in the   |    | CO1, CO2,<br>CO3, CO4, | K1, K2, K3, K4, |
|    | body- composition of body fluids- water exchange              |    | CO5                    | K5,K6           |
|    | between plasma and interstitial fluid-Water imbalance -       | 06 |                        |                 |
|    | dehydration- water intoxication.                              |    |                        |                 |
| VI | Self-Study for Enrichment                                     |    |                        |                 |
|    | (Not to be included for External Examination)                 |    | CO1, CO2,              | K1, K2, K3, K4, |
|    | Preservation of food by use of chemicals-Preservation by      | _  | CO3, CO4,              | K5,K6           |
|    | use of sugar-pickling-principles of Food Preservation-        |    |                        |                 |
|    | diet for children and adults-role of water in                 |    |                        |                 |
|    | health.                                                       |    |                        |                 |

### **Text Books:**

- 1. Seema Yadav, Food Chemistry, Anmol publishing (P) Ltd., New Delhi, 2006.
- 2. Alex Ramani, Food Chemistry, MJP publishers, Chennai., 2009.
- 3. Jayashree Ghosh, Text book of Pharmaceutical Chemistry S. Chand & Co. Publishers, New Delhi, 2003.
- 4. S. Lakshmi, Pharmaceutical Chemistry, S. Chand& Sons, New Delhi, 2004.

### **Reference Books:**

- 1. Thomas M. Devlin, Textbook of Biochemistry with Clinical Correlations, John Wiley & Sons; 7th edition, 2010.
- 2. Ashutosh Kar, Medicinal Chemistry, New Age International, 2007.
- 3. Joshi A.S., Nutrition & Dietetics, Tata Mcgraw hill, New Delhi, 1998.

## Web Reference

https://www.slideshare.net/HiwrHastear/food-poisoning-60301801.

https://www.slideshare.net/swatishikha10/food-adulteration-96507428.

https://www.slideshare.net/bhambieannmalacas/food-additives-ppt.

https://www.slideshare.net/sivanandareddy52/definition-concept-of-health.

https://www.slideshare.net/rajud521/balance-water.

## Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

## **Course Designer**

Dr. K. Uma Sivakami.

| Semester IV | Internal Marks:40 External Marks:60   |                                |               |         |  |
|-------------|---------------------------------------|--------------------------------|---------------|---------|--|
| COURSE CODE | COURSE TITLE                          | CATERGORY                      | HRS./<br>WEEK | CREDITS |  |
| 22UCH4SEC1P | CHEMISTRY OF<br>CONSUMER PRODUCTS (P) | SKILL<br>ENHANCEMENT<br>COURSE | 2             | 2       |  |

## **Course Objectives**

- > To know the basic knowledge in chemistry of consumer products and modern trends in the industry.
- > To provide the practical training to the students in consumer product analysis

### **Course outcomes**

**Course Outcome and Cognitive Level Mapping** 

| CO     | CO Statements                                                                | Knowledge Level |
|--------|------------------------------------------------------------------------------|-----------------|
| Number | On the successful completion of the course, students will be able to         |                 |
| CO 1   | Outline the various adulterants in food products.                            | K1              |
| CO 2   | Explain the procedures for detecting the adulterants.                        | K2              |
| CO 3   | Identify the nature of adulterants added to consumer products.               | K2              |
| CO 4   | Differentiate the pure and impure food samples.                              | K2              |
| CO 5   | Calculate the percentage composition of food colorant in food and beverages. | К3              |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 2    | 2   | 2   | 2   | 2   | 2   |
| CO5 | 3    | 2    | 1    | 1    | 2    | 3   | 2   | 2   | 1   | 2   |

<sup>&</sup>quot;1" - Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation

- 01. Detection of adulterants in milk and milk products.
- 02. Detection of adulterants in oil
- 03, Detection of adulterants in spices and condiments.
- 04. Detection of adulterants in food products.
- 05. Estimation of food colors. (Colorimetric analysis)

#### **Text Books**

 Sally A. Henrie, (2015), Green Chemistry Laboratory Manual for Green Chemistry, Press Taylor & Francis Group and Informa Business.

#### Reference book

**1.** Gajanan Shrike, (2022), Food & Beverage Adulteration and its Implications theory and Practice, Notion Press.

#### **Web References**

1. https://dfda.goa.gov.in/images/PDF-DOCUMENTS/quciktestforsomeadullterantsinfood-

## fssaiinitiative.pdf

- 2. <a href="https://www.hansshodhsudha.com/first-second-issues/New%20Hansraj%20College%20Book-1-20-26.pdf">https://www.hansshodhsudha.com/first-second-issues/New%20Hansraj%20College%20Book-1-20-26.pdf</a>
- 3. https://www.fssai.gov.in/book-details.php?bkid=201

## **Pedagogy**

**Demonstration and Practical Sessions** 

## **Course Designer**

Dr. A.Sharmila

| Semester V | InternalMarks:25       | ExternalMarks:75 |              |         |
|------------|------------------------|------------------|--------------|---------|
| COURSECODE | COURSETITLE            | CATEGORY         | Hrs<br>/Week | CREDITS |
| 22UCH5CC6  | INORGANIC CHEMISTRY -I | Core Course      | 6            | 6       |

# Course Objective:

- > To understand the concept of metallurgy
- > To impart basics and theories of coordination compounds.
- > To study biologically important coordination compounds.

Course Outcome and Cognitive Level Mapping

| CO     | CO Statement                                                                                         | Cognitive |
|--------|------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                 | Level     |
| CO1    | Explain the process of metallurgy and reactions of complexes.                                        | K1, K2    |
| CO2    | Recognize the Ellingham diagram and basic concepts of co-ordination chemistry.                       | К3        |
| CO3    | Examine the purification process, Werner theory, 10Dq and MO diagram of octahedral complexes.        | К3        |
| CO4    | Analyze calcination, roasting, Sidgewick theory, stability and magnetic property of metal complexes. | K4        |
| CO5    | Criticize metallurgical process, VB, CFSE, MO theories and reactions of coordination compounds.      | K5        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 2    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 3   | 3   | 2   |
| CO3 | 3    | 3    | 3    | 2    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 2   | 2   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation
"3"-Substantial (High)Correlation

<sup>&</sup>quot;2"-Moderate(Medium)Correlation
"-"indicates there is no correlation

| UNIT | CONTENT                                                 | HOURS | Cos             | CONGNI        |
|------|---------------------------------------------------------|-------|-----------------|---------------|
|      |                                                         |       |                 | TIVELE<br>VEL |
| I    | UNIT-I Metallurgy                                       | 18    | CO1             | K1            |
|      | Minerals and ores - process - ore dressing - gravity    |       | CO2             | K2            |
|      | separation - froth flotation magnetic separation -      |       | CO3             | K3            |
|      | chemical separation- calcination and roasting.          |       | CO4<br>CO5      | K4            |
|      | Extraction of metal-chemical reduction-auto reduction-  |       | 003             |               |
|      | electrolytic reduction-metal displacement. Refining     |       |                 |               |
|      | methods - Van Arkel method - electrolytic refining -    |       |                 |               |
|      | vapour phase refining-ion exchange method-              |       |                 |               |
|      | Thermodynamic principles of metallurgy-Ellingham        |       |                 |               |
|      | diagram - observations - applications.                  |       |                 |               |
| II   | UNIT-II Coordination Compounds –I                       | 18    | CO1             | K1            |
|      | Introduction – classification of ligands – uses of      |       | CO2             | K2            |
|      | chelates -nomenclature of coordination compounds-       |       | CO3<br>CO4      | K3            |
|      | isomerism - structural isomerism - stereo isomerism -   |       | CO <sub>5</sub> |               |
|      | bonding theories - Werner's theory -Sidgwick's          |       |                 |               |
|      | concept of coordination - Valence bond theory -         |       |                 |               |
|      | postulates - geometries of tetrahedral - square planar  |       |                 |               |
|      | and octahedral complexes - limitations.                 |       |                 |               |
| III  | UNIT-III: Coordination Compounds –II                    | 18    | CO1             | K1            |
|      | Crystal filed theory - shapes of d orbitals-            |       | CO2             | K2            |
|      | assumptions- splitting of d-orbitals in octahedral-     |       | CO3<br>CO4      | K3<br>K4      |
|      | tetrahedral and square-planar complexes - crystal field |       | CO5             | K5            |
|      | stabilization energy- factors affecting magnitude of    |       |                 |               |
|      | 10Dq – color of the transition metal complexes –        |       |                 |               |
|      | number of unpaired electron - magnetic properties of    |       |                 |               |
|      | octahedral complexes- spectro                           |       |                 |               |
|      | chemical series – Jahn -Teller theorem.                 |       |                 |               |
| IV   | UNIT -IV: Stability of Metal Complex                    | 18    | CO1             | K1            |
|      | Labile and inert complexes - thermodynamic              |       | CO2             | K2            |
|      | stability and kinetic stability-stepwise and overall    |       | CO3<br>CO4      | K3<br>K4      |
|      |                                                         |       | - C- T          | **!           |

|    | formation constant- Relation between $\beta_n$ and $K_n$ |    | CO5        |    |
|----|----------------------------------------------------------|----|------------|----|
|    | factors affecting stability of metal complexes-          |    |            |    |
|    | chelate effect - Experimental determination of           |    |            |    |
|    | stability constant and composition of complex.           |    |            |    |
| V  | UNIT-V: Ligand substitution reactions                    | 18 | CO1        | K1 |
|    | Types of substitution reaction - Nucleophilic -          |    | CO2        | K2 |
|    | Electrophilic substitution reactions – hydrolysis        |    | CO3        | K3 |
|    | reaction – Acid hydrolysis - base hydrolysis of          |    | CO4<br>CO5 | K4 |
|    |                                                          |    | COS        |    |
|    | octahedral complexes – Anation reaction-                 |    |            |    |
|    | Substitution reaction in square planar complexes -       |    |            |    |
|    | trans effect – Theories of trans effect - applications.  |    |            |    |
|    | Mechanism of substitution reaction in Pt(II)             |    |            |    |
|    | complexes- Factors affecting rate of                     |    |            |    |
|    | substitution.                                            |    |            |    |
|    | Self-study: (Not included for End Semester               |    | CO1        | K1 |
| VI | Examination)                                             |    | CO2        | K2 |
|    | Diagonal, trigonal and tetragonal distortion,            |    | CO3        | K3 |
|    | instability constant – John Teller Distortion            |    | CO4        |    |
|    | stabilization Energy                                     |    | CO5        |    |

### **Text Books:**

- 1. Malik, W. U., Tuli, G. D., & Madan, R. D. (1998). *Selected topics in inorganic chemistry*. S. Chand Publishing.
- 2. Housecroft, C. E., & Sharpe, A. G. (2008). *Inorganic chemistry* (Vol. 1). Pearson Education.
- 3. Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochmann, M. (1999). *Advanced inorganic chemistry*. John Wiley & Sons.
- 4. Madan, R. D. (2019). Satya Prakash's Modern Inorganic Chemistry. S. Chand Publishing.
- **5.** Prakash, S., Tuli, G. O., Basu, S. K., & Madan, R. D. (2000). Advanced Inorganic Chemistry, Vol 2, S. *Chand Group, New Delhi, India*.

#### **Reference Books:**

- 1. Chhatwal, G. R., & Mehra, H. (1974). Advanced inorganic chemistry.
- 2. Sharma, R. K. (2007). Text Book of Coordination Chemistry. Discovery publishing house.
- 3. Gopalan, R. (2001). *Concise coordination chemistry*. Vikas publishing house.

- 4. Srivastva, A. N. (Ed.). (2020). *Stability and Applications of Coordination Compounds*. BoD–Books on Demand.
- 5. Raj, G. (2010). Advanced Inorganic Chemistry: Vollume II. Krishna Prakashan Media.

### Web Reference:

- 1. https://download.e-bookshelf.de/download/0000/5777/25/L-G-0000577725-0002359455.pdf
- 2. <a href="https://www2.chemistry.msu.edu/courses/cem151/chap24lect\_2019.pdf">https://www2.chemistry.msu.edu/courses/cem151/chap24lect\_2019.pdf</a>
- 3. https://www.scribd.com/document/464488620/INTRODUCTION-TO-COORDINATION-CHEMISTRY
- 4. https://egyankosh.ac.in/bitstream/123456789/71758/3/Unit-4.pdf
- 5. <a href="https://teachmint.storage.googleapis.com/public/555766642/StudyMaterial/4730da7d-1f2a-4a70-a473-0cc7cd84dc13.pdf">https://teachmint.storage.googleapis.com/public/555766642/StudyMaterial/4730da7d-1f2a-4a70-a473-0cc7cd84dc13.pdf</a>

## **Pedagogy**

Chalk and talk, PPT, You tube, E-content, Group Discussion, Assignment, Quiz and Seminar

## **Course Designers**

Dr.P. Pungayee Alias Amirtham

| Semester V  | Internal Marks: 25        | Ext                   | ternal Ma | rks: 75        |
|-------------|---------------------------|-----------------------|-----------|----------------|
| COURSE CODE | COURSE TITLE              | CATEGORY              | Hrs./     | <b>CREDITS</b> |
|             |                           |                       | Week      |                |
| 22UCH5CC5P  | PHYSICAL<br>CHEMISTRY (P) | CORE<br>PRACTICAL - V | 3         | 3              |

## **Course Objectives**

- > To learn the methods of finding CST, TT, Molecular weight and rate constant.
- > To understand the fundamentals of conductometric and potentiometric titrations.

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                |         |  |  |
|--------|-------------------------------------------------------------------------------------------------------------|---------|--|--|
| Number | Level                                                                                                       |         |  |  |
| CO1    | Recall the basic principles related to physical chemistry experiments.                                      | K1 & K2 |  |  |
| CO2    | Scientifically plan and perform kinetics, rast and adsorption experiments.                                  | K3 & K4 |  |  |
| CO3    | Relate the effect of impurity on phenol water system and identify the molecular weight of unknown compound. | K4 &K5  |  |  |
| CO4    | Calculate and process the experimentally measured values and compare with graphical data.                   | K5      |  |  |
| CO5    | Examine the concentration of ions using potentiometer, conductometer and interpret the data scientifically  | K6      |  |  |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |
| CO5 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" - Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

#### **SYLLABUS**

- 1. Determination of rate constant for acid catalyzed ester hydrolysis.
- 2. Critical Solution Temperature Phenol-Water system.
- 3. Effect of impurity (NaCl) on Critical Solution Temperature.
- 4. Rast Method Determination of molecular weight of unknown solute.
- 5. Transition temperature of a salt hydrate determination of molecular weight.
- 6. Phase Diagram of simple eutectic system.
- 7. Adsorption of acetic acid on activated charcoal, verification of Freundlich isotherm.
- 8. Kinetics of Persulphate-Iodide Reaction.
- 9. Preparation of buffer solutions at different pH
  - i) Sodium acetate-acetic acid ii) Ammonium chloride-ammonium hydroxide
- 10. Conductometric Acid-Base Titration (HCl vs NaOH).
- 11. Potentiometric Redox Titration (FAS vs KMnO4).
- 12. Determination of equivalent conductance of a strong electrolyte (NaCl/KCl).

#### **Text Books**

- 1. Viswanathan B and Raghavan P.S, Practical Physical Chemistry (2009), Viva Books, New Delhi.
- 2. Sundaram, Krishnan (1996), Raghavan, Practical Chemistry (Part II), Viswanathan Co. Pvt.
- 3. Athawale and Parul Mathur (2008), Experimental Physical Chemistry, New Age International (P)Ltd., New Delhi.
- 4. Lewers E.G (2011), Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd Ed., Springer, New York.

#### Reference Books

- 1. Yadav J.B, (2001), Advanced Practical Physical Chemistry, Goel Publishing House,
- 2. Gurthu J.N and Kapoor R (1987), Advanced Experimental Chemistry, S. Chand & Champ; Co.,

#### **Web References**

- 1. <a href="https://www.slideshare.net/mohdsakharkar/acid-base-catalysed-ester-hydrolysis">https://www.slideshare.net/mohdsakharkar/acid-base-catalysed-ester-hydrolysis</a>.
- 2. <a href="https://www.slideshare.net/sandeepkumaryadav4/critical-solution-temperature-of-phenolwater-system">https://www.slideshare.net/sandeepkumaryadav4/critical-solution-temperature-of-phenolwater-system</a>.
- 3. https://davjalandhar.com/dbt/chemistry/SOP%20LabManuals/B.Sc.%20SEM%20V.pdf.
- 4. <a href="https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXII/chemistry/lelm106.pdf">https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXII/chemistry/lelm106.pdf</a>.
- 5. https://www.slideshare.net/adujoy/triiodide.

#### **Pedagogy**

Chalk and talk, E-content, Demo, Hands on training, Quiz, Assignments.

### **Course Designer**

Dr. K. Uma Siyakami

| Semester V     | <b>Internal Marks: 25</b> | External Marks: 75 |            |         |  |  |  |
|----------------|---------------------------|--------------------|------------|---------|--|--|--|
| COURSE<br>CODE | COURSE TITLE              | CATEGORY           | Hrs / Week | CREDITS |  |  |  |
| 22UCH5CC7      | ORGANIC<br>CHEMISTRY-I    | CORE               | 6          | 6       |  |  |  |

## **Course Objectives**

- > This course helps to learn the reactions of carboxylic acids, amines, carbonyl compounds
- and Heterocyclic compounds.
- > To recognize the mechanism of rearrangements.

### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On successful completion of the course, the student will be able to        | Knowledge<br>level |
|--------------|-----------------------------------------------------------------------------------------|--------------------|
| CO1          | Recognize the nature of organic compounds and rearrangements                            | K1                 |
| CO2          | Discuss about synthesis of organic compounds.                                           | K2                 |
| CO3          | Demonstrate various reactions of different functional group with mechanism.             | К3                 |
| CO4          | Distinguish the reactivity of organic substances and rearrangements.                    | K4                 |
| CO5          | Predict the appropriate method for separation of amines and pathways of rearrangements. | K5                 |

| Cos  | PSO1 | PSO2 | PSO3 | PO4 | PO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| CO 1 | 3    | 3    | 2    | 2   | 2   | 3   | 2   | 1   | 3   | 2   |
| CO2  | 3    | 2    | 1    | 2   | 2   | 3   | 3   | 1   | 1   | 2   |
| CO3  | 3    | 2    | 2    | 3   | 3   | 3   | 3   | 2   | 2   | 3   |
| CO4  | 3    | 1    | 2    | 3   | 2   | 3   | 3   | 2   | 1   | 2   |
| CO5  | 3    | 2    | 3    | 1   | 2   | 3   | 3   | 2   | 3   | 3   |

<sup>1&</sup>quot; – Slight (Low) Correlation
"3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation "-" indicates there is no correlation

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOURS | COs                             | COGNIT<br>IVE<br>LEVEL   |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|--------------------------|--|--|
| I    | Carboxylic Acid and Their Derivatives Aliphatic acids: Saturated monocarboxylic acid – resonance structure – relative strength of carboxylic acids (effect of substituents) - Reactive methylene compounds: Preparation- properties - uses of ethyl acetoacetate - diethyl malonate.  Aromatic acids: Monocarboxylic acids – general methods of preparation - properties - reactions of benzoic acid - salicylic acid. Dicarboxylic acid: Preparation - properties - uses of phthalic acid - terephthalic acid. | 18    | CO1<br>CO2<br>CO3<br>CO4        | 01 K1, K2,<br>02 K3, K4  |  |  |
| II   | Chemistry of Nitrogen Compounds  Amines: aliphatic and aromatic amines - classification — general methods of preparation- properties and reactions - separation of mixture of amines - Basicity of amines - effect of substituents - distinction between primary, secondary and tertiary amine - Aliphatic diazo compounds: Preparation - properties of diazomethane-Diazonium compounds: Benzene diazonium chloride — structure - reactions - synthetic applications of diazo coupling reaction.               | 18    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1, K2,<br>K3, K4,<br>K5 |  |  |
| III  | Carbonyl Compounds - Aldehydes and Ketones Structure - acidity of α-hydrogen – methods of preparation- physical properties - chemical properties – reactivity of carbonyl group- nucleophilic addition - addition of HCN - addition of derivatives of ammonia - addition of sodium bisulphate - addition of Grignard reagent - Reformatsky - Wittig reaction - oxidation and reduction reactions - Aldol condensation - Benzoin condensation - Cannizzaro reaction – Iodoform reaction.                         | 18    | CO1<br>CO2<br>CO3<br>CO4        | K1, K2,<br>K3, K4        |  |  |
| IV   | Heterocyclic Compounds and Dyes Heterocyclic Compounds: Nomenclature – Chemistry of                                                                                                                                                                                                                                                                                                                                                                                                                             | 18    | CO1<br>CO2                      | K1, K2,<br>K3, K4        |  |  |

|    | furan- thiophene - pyrrole - pyridine- Fused ring heterocyclic compounds: Quinolone - isoquinoline - indole. Dyes: Introduction - colour - constitution - classification based on structure - application. Preparation and applications of the following dyes - methyl orange- Congo red- malachite green and indigo. |    | CO3<br>CO4               |                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------|-------------------|
| V  | Molecular Rearrangements:  Types of rearrangement (nucleophilic and electrophilic) – mechanism with evidence for the following re-arrangements - Pinacol – Pinacolone. Benzil - Benzilic acid, Benzidine, Claisen, Fries, Hofmann, Curtius, Lossen, Beckmann and Dienone – phenol rearrangements.                     | 18 | CO1<br>CO2<br>CO4<br>CO5 | K1, K2,<br>K4, K5 |
| VI | Self-Study for Enrichment (Not to be included for External Examination) Preparation of aliphatic carboxylic acids- nitro alkanes and alkyl nitrites - addition of oxygen nucleophiles - reactions of pyridine-N-Oxide.                                                                                                |    | CO1<br>CO2<br>CO3        | K1, K2,<br>K3     |

## **Text Books**

- Bahl, B.S and Bahl .A. (2010), Advanced Organic Chemistry 12<sup>th</sup> edition, Sultan Chand &Co., New Delhi.
- 2. Soni. P.L, (2006), Text Book of Inorganic Chemistry, S. Chand & Co., New Delhi.
- 3. Bhupinder Mehta and Manju Mehta, (2015), Organic Chemistry, Prentice Hall of India Pvt Ltd., New Delhi.

#### **Reference Books**

- 1. Finar I.L. (1996), Organic Chemistry Volume 1&2 (6<sup>th</sup> edition), Addison Wesley Longman Ltd., England.
- 2. Morrison R.T. and Boyd R.N. and Bhattacharya S.K. (2011) Organic Chemistry (7<sup>th</sup> edition) Pearson India.
- 3. Tewari K.S., Vishil N.K. and Mehotra. S.N (2001), A text book of Organic Chemistry (1<sup>st</sup> edition), Vikas Publishing House Pvt Ltd., New Delhi.

- 4. Pine.S.H, (1987), Organic Chemistry (5<sup>th</sup> edition), McGraw-Hill International Book Company, New Delhi.
- 5. Seyhan N. Ege ., (2005)Organic Chemistry (5<sup>th</sup> edition), Houghton Mifflin Co., New Delhi

## **Web Reference**

- 1. https://byjus.com/chemistry/carboxylic-acid-properties/
- 2. https://www.ch.ic.ac.uk/widdowson/teach\_files/nitrogen/dw1.html
- 3. <a href="https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/aldket1.htm">https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/aldket1.htm</a>
- 4. https://www.chem.gla.ac.uk/staff/stephenc/teaching/HeterocycleLectures2011 2C12.pdf

## Pedagogy

E-content, Lecture, Power Point Presentation, Seminar, Assignment, Quiz, Group discussion, Video/Animation.

## **Course Designers**

1. Dr. A. Sharmila

| Semester V  | Semester V Internal Marks: 25 |                      |            | External Marks:75 |  |  |
|-------------|-------------------------------|----------------------|------------|-------------------|--|--|
| COURSE CODE | COURSE TITLE                  | CATEGORY             | Hrs / Week | CREDITS           |  |  |
| 22UCH5CC8   | PHYSICAL CHEMISTRY –<br>I     | CORE COURSE-<br>VIII | 6          | 6                 |  |  |

## **Course Objective**

- To understand laws of thermodynamics, photochemical process and types of electronic transitions,
- To learn the behaviors of dilute solutions and colligative properties, colloids, adsorption phenomena, phase rule and its significances.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                         | Cognitive |
|--------|----------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to | Level     |
| CO1    | Find equilibrium constant and enthalpy of equilibrium                | K1        |
|        | reaction at different temperature                                    |           |
| CO2    | Discuss thermodynamic conditions favoring chemical                   | K2        |
|        | equilibrium.                                                         |           |
| CO3    | Evaluate physical and chemical adsorption phenomenon                 | K3        |
| CO4    | Explain phase rule and law of dilute solution to predict             | K3        |
|        | composition, molecular weight                                        |           |
| CO5    | Analyse quantum yield and Identify types of electronic               | K4        |
|        | transition in organic molecules                                      |           |

| Cos | PSO <sub>1</sub> | PSO <sub>2</sub> | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------------------|------------------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3                | 3                | 2    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3                | 2                | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 2                | 3                | 2    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3                | 3                | 2    | 2    | 3    | 2   | 2   | 1   | 2   | 3   |
| CO5 | 3                | 3                | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation ¬

<sup>&</sup>quot;3" – Substantial (High) Correlation –

<sup>&</sup>quot;2" – Moderate (Medium) Correlation ¬

<sup>&</sup>quot;-" indicates there is no correlation.

| UNIT | CONTENT                                                   | HOURS | COs          | COGNITIVE<br>LEVEL |
|------|-----------------------------------------------------------|-------|--------------|--------------------|
| I    | Chemical Equilibrium, Zeroth and Third Law                | 18    | CO1,         | K1, K2,            |
|      | Thermodynamics                                            |       | CO2,<br>CO3, | K3,K4,             |
|      | Law of mass action - thermodynamic treatment -            |       | CO4          | K5                 |
|      | Van't Hoff reaction isotherm- temperature                 |       |              |                    |
|      | dependence of the equilibrium constant - Van't Hoff       |       |              |                    |
|      | equation- integrated form of Van'tHoff equation -         |       |              |                    |
|      | homogeneous-heterogeneous systems (NH3, PCl5              |       |              |                    |
|      | and CaCO3) - relationship between Kp and Kc-              |       |              |                    |
|      | Factors affecting chemical equilibrium - Le               |       |              |                    |
|      | - Chatlier principle (Haber's and Contact processes)      |       |              |                    |
|      | - Zeroth law of thermodynamics - absolute                 |       |              |                    |
|      | temperature scale - statement of third law - Nernst       |       |              |                    |
|      | heat theorem.                                             |       |              |                    |
| II   | Molecular Thermodynamics                                  | 18    | CO1,         | K1,                |
|      | Thermodynamics of systems of variable composition         |       | CO2,<br>CO3, | K2,                |
|      | - partial molar properties - chemical potential -         |       | CO4          | K3,                |
|      | relationship between partial molar quantities - Gibbs     |       |              | K4                 |
|      | Duhem equation -applications- thermodynamic               |       |              | ,K5                |
|      | properties of real gases - fugacity concept -             |       |              |                    |
|      | calculation of fugacity of real gas - activity - activity |       |              |                    |
|      | coefficient - concept - definition - standard states -    |       |              |                    |
|      | experimental determinations of activity and activity      |       |              |                    |
|      | coefficient of electrolytes.                              |       |              |                    |
| III  | Surface Chemistry                                         | 18    | CO1,         | K1,                |
|      | Definition of colloids - solids in liquids (Sols) -       |       | CO2,<br>CO3, | K2,                |
|      | preparation – purification - properties – kinetic-        |       | CO4,<br>CO5  | K3,                |
|      | optical - electrical - stability of colloids - Hardy      |       |              |                    |

|    | Schule law - protective colloids - liquids in liquids   |    |              | K4, |
|----|---------------------------------------------------------|----|--------------|-----|
|    | (emulsions) – preparation - properties - uses - liquids |    |              | K5, |
|    | in solids (gels) – preparation- properties - adsorption |    |              |     |
|    | - physical adsorption - chemisorption- Freundlich -     |    |              |     |
|    | Langmuir adsorption isotherms -                         |    |              |     |
|    | applications of adsorption.                             |    |              |     |
| IV | Phase Rule                                              |    |              | K1, |
|    | Concept of phase- component - degrees of freedom -      |    | CO2,<br>CO3, | K2, |
|    | Gibb's phase rule - phase equilibrium - one component   |    | CO4,CO5      | K3, |
|    | system – water system - sulphur system – two component  |    |              | K4, |
|    | system – solid liquid equilibrium. Simple eutectic      |    |              | K5  |
|    | diagram of Pb-Ag system- simple eutectic diagram-       |    |              |     |
|    | desilverisation of lead compound formation with         |    |              |     |
|    | congruent melting point - (Mg-Zn) - incongruent         |    |              |     |
|    | melting point (Na-K) - NaCl -water                      |    |              |     |
|    | system-freezing mixtures.                               |    |              |     |
| V  | . Electronic Spectroscopyand Photochemistry             | 18 | CO1,         | K1, |
|    | Molecular spectra - Energy levels of molecular          |    | CO2,<br>CO3, | K2, |
|    | orbitals - electronic spectroscopy - selection rules -  |    | CO4,         | K3, |
|    | types of electronic transitions- concept of             |    | CO5          | K4, |
|    | chromophore - auxochrome.                               |    |              | K5  |
|    | Photochemistry: Difference between thermal and          |    |              |     |
|    | photochemical processes- laws of photochemistry -       |    |              |     |
|    | Grothus-Draper's law - Stark-Einstein's law of          |    |              |     |
|    | photochemical equivalence - quantum yield-              |    |              |     |
|    | photochemical reaction mechanism- hydrogen-             |    |              |     |
|    | chlorine, hydrogen- bromine reaction - energy           |    |              |     |
|    | transfer processes - Jablonski diagram- qualitative     |    |              |     |
|    | description of fluorescence - phosphorescence -         |    |              |     |
|    | photosensitized reactions.                              |    |              |     |
|    | *                                                       |    |              |     |

|    | Self-Study for Enrichment:                                                                                                    | - | CO1,       | K1,       |
|----|-------------------------------------------------------------------------------------------------------------------------------|---|------------|-----------|
| VI | (Not to be included for External Examination.                                                                                 |   | CO2<br>CO3 | K2,       |
|    | First and second laws of thermodynamics, reduced phase rule equation, Critical solution temperature, BET adsorption isotherm. |   | COS        | K3,<br>K4 |

#### **Text Book**

- 1. Puri B. R., Sharma, L. R. and Pathania, M. S. (2013). Principles of Physical Chemistry, Shoban Lal Nagin Chand & Co., New Delhi
- 2. S. Glasstone and D. Lewis, (2014). Elements of Physical Chemistry, Mac Millon Ltd, London
- **3.** Banwell C.N, (1994). Fundamentals of Molecular Spectroscop, Mc GrawHill Education, Noida

### Reference books

- **1.** Puri B.R., Sharma L.R., and Kalia K.K (1993), Principles of Physical Chemistry 23<sup>rd</sup> edition, Shoban Lal Nagin Chand &Co.New Delhi.
- 2. Maron and Prutton, (1969). Physical Chemistry, Mac Millan, London
- **3.** Atkins P.W., (1994). Physical Chemistry, 5<sup>th</sup> edition, Oxford Uiversity Press.
- **4.** Gabor a Sobarjai and Yimin Li, (2010). Introduction to Surface Chemistry and Catalysis, 2<sup>nd</sup> edition, John Wiley & Sons, New Jersey

#### Web References

- <u>https://ocw.mit.edu/courses/5-61-physical-chemistry-fall-2017/resources/electronic-spectroscopy-and-photochemistry/</u>
- <a href="https://www.chadsprep.com/chads-general-chemistry-videos/3-laws-of-thermodynamics-definition/">https://www.chadsprep.com/chads-general-chemistry-videos/3-laws-of-thermodynamics-definition/</a>)
- $\bullet \underline{ \text{https://www.slideshare.net/ImranNurManik/colligative-properties-of-dilute-solutions-manik} \\$
- https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.ssgopalganj.in%2Fonline%2FOnline%2520Class%2520520PPT%2FClass%252012%2FChemistry%2Fch%25205%2520ppt%2520surface%2520chemistry.pptx&wdOrigin=BROWSELINK
- <u>https://ccsuniversity.ac.in/bridge-library/pdf/Engg-AG-Engg-Chem-2nd-sem-subodh-Lecture-5.pdf</u>

# **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

# Course Designer

Dr. K. Shenbagam, Assistant Professor, Department of Chemistry

| Semester V  | InternalMarks:25                    | ExternalMarks:75       |              |         |
|-------------|-------------------------------------|------------------------|--------------|---------|
| COURSE CODE | COURSE TITLE                        | CATEGORY               | Hrs<br>/Week | CREDITS |
| 22UCH5DSE1A | NUCLEAR AND<br>INDUSTRIAL CHEMISTRY | DISCIPLINE<br>SPECIFIC | 5            | 4       |
|             |                                     | ELECTIVE - I           |              |         |

## Course Objective:

- To impart knowledge about radioactivity and nuclear chemistry.
- To provide knowledge about industrial chemistry.

# Outcome and Cognitive Level Mapping

| CO     | CO Statement                                                                                                                     | Cognitive |
|--------|----------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                                             | Level     |
| CO1    | Recall subatomic particles, isotopes, isobar, isotones, magic number, fuels and fertilizers.                                     | K1, K2    |
| CO2    | Interpret nuclear reaction, radioactive decay and types of hardness.                                                             | К3        |
| CO3    | Analyze pesticides, insecticides, fertilizers, fuels and radioactive isotopes.                                                   | К3        |
| CO4    | Describe stability of nucleus, radioactive series, DDT, BHC, LPG and zeolite process.                                            | К3        |
| CO5    | Illustrate nuclear models, radioactive series, characteristics of pesticides, fertilizers and estimation and removal of hardness | К3        |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 2    | 3   | 3   | 3   | 1   | 3   |
| CO2 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 3   | 3   | 2   |
| CO3 | 3    | 3    | 3    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation

<sup>&</sup>quot;2"-Moderate(Medium)Correlation

<sup>&</sup>quot;3"-Substantial (High)Correlation

<sup>&</sup>quot;-"indicates there is no correlation

| UNIT | CONTENT                                                    | HOURS | Cos             | CONGNITIV<br>ELEVEL |
|------|------------------------------------------------------------|-------|-----------------|---------------------|
| Ι    | UNIT-I: Introduction to nuclear chemistry: Nucleus-        | 15    | CO1             | K1                  |
|      | subatomic particles - nuclear forces (Meson theory)-       |       | CO2             | K2                  |
|      | nuclear size – density -stability of nucleus- n/p ratio,   |       | CO3<br>CO4      | K3                  |
|      | curves, stability belts - Whole number rule- binding       |       | CO <sub>5</sub> |                     |
|      | energy, mass defect -magic number-structure of nucleus-    |       |                 |                     |
|      | Shell model and Liquid drop model- Nuclear reaction        |       |                 |                     |
|      | (capturing, particle – particle and spallation reactions). |       |                 |                     |
|      | Nuclear fission - nuclear fusion reaction - theories -     |       |                 |                     |
|      | characteristics features - comparison between              |       |                 |                     |
|      | nuclear reaction and chemical reaction.                    |       |                 |                     |
| II   | UNIT-II: Radioactivity: Natural radioactivity -            | 15    | CO1             | K1                  |
|      | Radioactive decay-α, β, γ decay, Detection and             |       | CO2             | K2                  |
|      | measurement of radioactivity (Geiger Muller and            |       | CO3<br>CO4      | K3                  |
|      | ionization counter) - radioactive series - group           |       | CO5             |                     |
|      | displacement law Rate of disintegration and half - life    |       |                 |                     |
|      | period - Average life period. Artificial radioactivity -   |       |                 |                     |
|      | Artificial radioactivity - induced radioactivity - uses of |       |                 |                     |
|      | radioisotopes - hazards of radiations - nuclear reactors - |       |                 |                     |
|      | nuclear fusion - thermo nuclear reactions - energy         |       |                 |                     |
|      | source of the sun and stars.                               |       |                 |                     |
| III  | UNIT-III: Agricultural Industries: Plant Nutrient-         | 15    | CO1             | K1                  |
|      | Micro and macro nutrients. Fertilizer: manufacturing of    |       | CO2             | K2                  |
|      | NPK- Complex fertilizers - mixed fertilizers -             |       | CO3<br>CO4      | K3                  |
|      | manufacturing – composition - Pesticides- classification   |       | CO5             |                     |
|      | based on origin -chemical structure - target pest -        |       |                 |                     |
|      | General methods of application - toxicity - safety         |       |                 |                     |
|      | measures in using pesticides - preparation properties -    |       |                 |                     |
|      | uses of organic pesticides – DDT and BHC.                  |       |                 |                     |
|      |                                                            |       |                 |                     |

|    | UNIT -IV: Industrial fuels: Coal power industries-         | 15 | CO1        | K1 |
|----|------------------------------------------------------------|----|------------|----|
|    | composition - manufacturing - applications of water gas    |    | CO2        | K2 |
|    | and producer gas - petroleum refining - chemicals from     |    | CO3        | K3 |
| IV |                                                            |    | CO4        |    |
|    | petroleum refining - natural gas - LPG - petrol - diesel - |    | CO5        |    |
|    | air pollution problems due to automobiles - remedial       |    |            |    |
|    | measures to control pollution - conversion of coal power   |    |            |    |
|    | into petroleum oil by Fischer-Tropsch and                  |    |            |    |
|    | Bergius method - power alcohol -composition and uses.      |    |            |    |
| V  | UNIT-V: Industrial water treatment: Hard water and         | 15 | CO1        | K1 |
|    | industries - industrial water treatment - problems due to  |    | CO2        | K2 |
|    | hardness in boiler feed water - determination of hardness  |    | CO3        | K3 |
|    | of water - Titration method - complexometric method        |    | CO4<br>CO5 |    |
|    | using EDTA - expressing hardness - equivalents of          |    |            |    |
|    | calcium carbonate - water softening methods - Clark's      |    |            |    |
|    | process - permutit or zeolite process                      |    |            |    |
|    | - ion exchange process and reverse osmosis.                |    |            |    |
|    | Self-study: (Not included for End Semester                 |    | CO1        | K1 |
| VI | examination)                                               |    | CO2        | K2 |
|    | Toxicity, threshold limit, manufacturing of power          |    | CO3        | K3 |
|    | alcohol, case studies on nuclear accident, nuclear         |    | CO4        |    |
|    | , , , , , , , , , , , , , , , , , , ,                      |    | CO5        |    |
|    | bomb. Chemistry paper industries, engineering              |    |            |    |
|    | materials used in industries.                              |    |            |    |

## **Text Book:**

- 1. Stocchi, E. Lott, K.A.K. and Short, E.L. (1990). Industrial Chemistry, Vol-I, U.K, Ellis Horwood Ltd.
- 2. Arnikar, J.H. (2022), Essentials of Nuclear chemistry (5<sup>th</sup> Ed), New Delhi, New Age International Private Limited.
- 3. Sharma, B.K. (2014), Industrial Chemistry (17/e Ed), Goel Publishing House

## **Reference Book:**

- 1. Gurdeep Raj. (2016), Advanced Physical Chemistry, (4<sup>th</sup> Ed), Meerut, Krishna prakashan media.
- 2. Puri, Sharma & Pathania (2018) Principles of Physical Chemistry (47<sup>th</sup> Ed), Jalandhar, Vishal

publication.

3. Samir Sakar, (2009), Fuels and Combustion, (3<sup>rd</sup> Ed), India, Universities Press.

## Web Reference:

- 1. https://onlinecourses.nptel.ac.in/noc23\_cy21/preview
- 2. http://www.nou.ac.in/econtent/Msc%20chemistry%20paper%202/MSc%20Chemistry%20Paper-

II%20Unit-2.pdf

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo,

Quiz and Seminar

Course Designers

Dr. V. Sangu.

| Semester V  | Internal Marks: 25                             | 5 External Marks: 75                   |              |             |  |  |
|-------------|------------------------------------------------|----------------------------------------|--------------|-------------|--|--|
| COURSE CODE | COURSETITLE                                    | CATEGORY                               | Hrs/<br>Week | CRED<br>ITS |  |  |
| 22UCH5DSE1B | BASICS OF<br>NANOSCIENCE AND<br>NANOTECHNOLOGY | DISCIPLINE<br>SPECIFIC<br>ELECTIVE – I | 5            | 4           |  |  |

## **Course Objective**

- To know the synthetic methods of nanomaterials.
- To understand the characterization of nanomaterials.
- To understand carbon-based nanomaterials.

## **Course Outcomes**

Course Outcome and Cognitive Level Mapping

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to    | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall the basic concept of nano scale, synthesis and carbon nanomaterials.          | K1                 |
| CO2          | Explicate the synthesis, properties, instrumentation techniques and carbon nanotube. | K2                 |
| CO3          | Describe quantum materials, top down, bottom up approach, AFM, SEM CNT, CNF and CNB. | К3                 |
| CO4          | Analyze the types, properties, size, structure and bonding in nano materials.        | K4                 |
| CO5          | Assess nanomaterials, CVD, TEM, arm chair and Zig zag pattern.                       | K5                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

| UNIT | CONTENT                                                | HOURS | COs  | COGNITIVE<br>LEVEL |
|------|--------------------------------------------------------|-------|------|--------------------|
| I    | Fundamentals of Nanoscience and                        | 15    | CO1, | K1, K2, K3,        |
|      | Nanotechnology Historical perspectives - ancient       |       | CO2, | K4, K5             |
|      | - medieval - modern periods in nanoscience and         |       | CO3, |                    |
|      | nanotechnology - terms and definitions - scale of      |       | CO4, |                    |
|      | material - macro - meso - micro and nanoscale - size   |       | CO5  |                    |
|      | dependent- classification of nanomaterials -           |       |      |                    |
|      | properties of materials - surface and volume -         |       |      |                    |
|      | surface energy - band gap in metals - bulk vs nano     |       |      |                    |
|      | - quantum nanostructures - importance of               |       |      |                    |
|      | nanoscience.                                           |       |      |                    |
| II   | Properties of nanomaterials                            | 15    | CO1, | K1, K2, K3,        |
|      |                                                        |       | CO2, | K4, K5             |
|      | Thermal properties - melting point - heat capacity-    |       | CO3, |                    |
|      | Curie temperature-coefficient of thermal               |       | CO4, |                    |
|      | expansion - electrical properties - lattice constant - |       | CO5  |                    |
|      | phase transformation – mechanical properties -         |       |      |                    |
|      | elastic modulus - hardness and strength - toughness    |       |      |                    |
|      | - optical properties - magnetic properties -           |       |      |                    |
|      | biological properties - antimicrobial activity and     |       |      |                    |
|      | toxicity.                                              |       |      |                    |
| III  | Synthesis of nanomaterials                             | 15    | CO1, | K1, K2, K3,        |
|      | Synthesis of nanomaterials - top-down and bottom-      |       | CO2, | K4, K5             |
|      | up approaches - principles and types - physical        |       | CO3, |                    |
|      | methods - milling - etching - sputtering - LASER       |       | CO4, |                    |
|      | ablation - chemical vapour deposition (CVD) -          |       | CO5  |                    |
|      | chemical methods - chemical reduction -                |       |      |                    |
|      | precipitation - sol- gel method - solvothermal         |       |      |                    |

|    | synthesis - sonochemical synthesis - biological                                                                                                                                                                                                                                                                                                        |    |                                     |                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------|-----------------------|
|    | methods - microbial synthesis - phytosynthesis.                                                                                                                                                                                                                                                                                                        |    |                                     |                       |
| IV | Characterization techniques of nanomaterials  Spectroscopic methods - UV-Visible absorption - emission spectroscopy - IR spectroscopy - scanning probe methods: AFM - electron probe methods - SEM - TEM - X-ray methods - particle size determination-Dynamic light scattering method.                                                                | 15 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |
| V  | Carbon based nanomaterials  Structure - bonding in nano material - arm chair - zig-zag - chiral patterns - theory of formation of different structures - growth process of CNT - single walled carbon nano tubes - multi walled carbon nano tubes - graphite - diamond - different types of carbon nano materials - CNF- CNB - structure - properties. | 15 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |
| VI | Self Study for Enrichment  (Not to be included for External Examination)  Natural - man-made nanomaterial - significance of nanoscale - synthesis using microorganisms - thermal decomposition of complex precursors - carbon based nano materials - fullerenes - structure - properties of supramolecular assemblies.                                 | -  | CO1                                 | K1, K2                |

# **Text Books**

1. Goyal, R.K., (2018). Nanomaterials and Nanocomposites: Synthesis, Properties, Characterization,

- New York: Taylor & Francis Group. CRC Press.
- 2. Hornyak L.G., Tibbals H.F., Dutta J., and Moore J.J., (2009). Introduction to Nanoscience & Nanotechnology, New York: CRC press. Print.
- 3. Sharon M., Pandey S., & Oza G., (2012). Bionanomaterials: Concepts and Applications, New Delhi: Ane Books Pvt. Limited. Print.
- 4. Kumar N., & Kumbhat S., (2016). Essentials in nanoscience and nanotechnology, New Jersey: John Wiley & Sons., Inc.

### Reference Books

- 1. Balaji, S., (2010). Nanobiotechnology, Chennai: MJP Publishers. Print.
- 2. Cao, G. & Wang, Y., (2011). Nanostructures and Nanomaterials:(Synthesis, Properties and Applications),

New Delhi: World Scientific Publishing Co. Pvt. Ltd. Print.

3. Poole, C.P., & Owens F.J., (2010). Introduction to Nanotechnology, New Delhi: John Wiley and Sons (Asia) Pvt. Ltd. Print.

#### Web References

- 1. https://drive.google.com/file/d/1KXRsFv11 ydF02BG43kLyQ2cds1nKQ4Y/view
- 2. https://drive.google.com/file/d/10hqFlDLhatyUEl1wA4-Xvn AuV3hQiz6/view
- 3. https://drive.google.com/file/d/1vq9hJo\_2znn9oxqkIasgwccsCyURzAnM/view
- 4. https://drive.google.com/file/d/1LUQswFQs60brycdtVd2uo1RHsEYGllfx/view

#### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

### **Course Designer**

Dr. P. Thamizhini

| Semester V   | Internal Marks:25    |                        | External Marks:75 |         |  |
|--------------|----------------------|------------------------|-------------------|---------|--|
| COLIDGE CODE | COURSE TITLE         | CATEGORY               | Hrs               | CREDITS |  |
| COURSE CODE  |                      |                        | /Week             |         |  |
| 22UCH5DSE1C  | POLYMER<br>CHEMISTRY | DISCIPLINE<br>SPECIFIC | 5                 | 4       |  |
|              |                      | <b>ELECTIVE</b>        |                   |         |  |

## Course Objectives

- To enrich the knowledge in the chemistry of polymers.
- > To study the concepts of polymerization and techniques
- > To emphasize the impact of less toxic polymers for sustainable development

# Course Outcome and Cognitive Level Mapping

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to          | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall polymers terms, properties, glass transition temperature melting point of polymers. | K1                 |
| CO2          | Illustrate the preparation, properties and applications of Polymers                        | K2                 |
| CO3          | Acquaint various polymer processing technologies andmolding techniques.                    | К3                 |
| CO4          | Analyze the mechanisms of the reactions that lead to the formation of polymers             | K4                 |
| CO5          | Implantation of polymer applications to improve socio economic facts                       | K5                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 2   |
| CO3 | 2    | 3    | 3    | 3    | 3    | 2   | 3   | 3   | 3   | 2   |
| CO4 | 3    | 3    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO5 | 2    | 3    | 1    | 2    | 3    | 3   | 3   | 3   | 2   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation

<sup>&</sup>quot;2"-Moderate(Medium)Correlation

<sup>&</sup>quot;3"-Substantial (High)Correlation

<sup>&</sup>quot;-"indicates there is no correlation

| UNIT | CONTENT                                                                    | HOURS | COs | COGNITIVE |
|------|----------------------------------------------------------------------------|-------|-----|-----------|
|      |                                                                            |       |     | LEVEL     |
| I    | Introduction to Polymers                                                   | 15    | CO1 | K1        |
|      | Definition of monomer, polymer and                                         |       | CO2 | K2        |
|      | polymerization – classification of polymers                                |       | CO3 | К3        |
|      | on the basis of sources and applications -                                 |       | CO4 | K4        |
|      | thermosetting and thermoplastics.                                          |       | CO5 | K5        |
|      | Functionality and degree of polymerization.                                |       |     |           |
|      | Types of polymerization reactions: Chain                                   |       |     |           |
|      | polymerization - free radical and ionic                                    |       |     |           |
|      | polymerization – coordination polymerization-                              |       |     |           |
|      | step polymerization polyaddition –                                         |       |     |           |
|      | polycondensation - ring opening - group                                    |       |     |           |
|      | transfer – electrochemical – metathetical                                  |       |     |           |
|      | polymerization.                                                            |       |     |           |
| II   | Tacticity, Properties and Reactions of                                     | 15    | CO1 | K1        |
|      | Polymers                                                                   |       | CO2 | K2        |
|      | Tacticity in polymers- Isotactic, syndiotactic                             |       | CO3 | К3        |
|      | and atactic polymers - Glass transition                                    |       | CO4 | K4        |
|      | temperature $(T_g)$ -factors affecting $T_g$ .                             |       | CO5 | K5        |
|      | Relationship between $T_{\rm g}$ and $M_{\rm n},T_{\rm g}$ and $T_{\rm m}$ |       |     |           |
|      | -Importance of T <sub>g</sub> . Molecular weight of                        |       |     |           |
|      | polymer - number average (Mn) - weight                                     |       |     |           |
|      | average (Mw). sedimentation - viscosity                                    |       |     |           |
|      | average molecular weights. Reactions -                                     |       |     |           |
|      | Hydrolysis - hydrogenation - addition -                                    |       |     |           |
|      | substitutions – cross linking and cyclisations                             |       |     |           |
|      | reaction. Polymer degradation- thermal,                                    |       |     |           |
|      | photo and oxidation degradation of                                         |       |     |           |
|      | polymers (basics                                                           |       |     |           |
|      | only)                                                                      |       |     |           |

| III | Polymerization Techniques and Moulding                | 15 | CO1 | K1 |
|-----|-------------------------------------------------------|----|-----|----|
|     | Technique                                             |    | CO2 | K2 |
|     | Bulk -solution - emulsion - melt condensation -       |    | CO3 | К3 |
|     | interfacial polycondensation – plasma                 |    | CO4 | K4 |
|     | polymerization – polymerization in supercritical      |    | CO5 | K5 |
|     | fluids. Moulding techniques - Injection -             |    |     |    |
|     | compression - extrusion - rotational -                |    |     |    |
|     | calendaring.                                          |    |     |    |
| IV  | Chemistry of Commercial Polymers                      | 15 | CO1 | K1 |
|     | Preparation, properties and uses of the               |    | CO2 | K2 |
|     | polymers – polyethylene- polypropylene –              |    | CO3 | К3 |
|     | polystyrene – PVC – Teflon –                          |    | CO4 | K4 |
|     | polymethylmethacrylate - polycarbonate -              |    | CO5 | K5 |
|     | polyurethanes - polyamides (Kevlar) -                 |    |     |    |
|     | phenol- formaldehyde - urea-formaldehyde              |    |     |    |
|     | resin - epoxy resins - rubber-styrene -               |    |     |    |
|     | neoprene rubbers.                                     |    |     |    |
| V   | Biopolymers and Recycling of plastic waste            | 15 | CO1 | K1 |
|     | Biopolymer films – biodegradable mulching-            |    | CO2 | K2 |
|     | properties – uses - disadvantages of biodegradable    |    | CO3 | К3 |
|     | polymers- applications of biopolymers in horticulture |    | CO4 | K4 |
|     | Food Packaging - nanocomposite films - coating -      |    | CO5 | K5 |
|     | preparation - uses of PHBV- PGA- PLA – PCL- steps     |    |     |    |
|     | involved in recycling of plastics.                    |    |     |    |
|     | Self-Study for Enrichment                             | -  | CO1 | K1 |
| VI  | (Not to be included for External Examination)         |    | CO2 | K2 |
|     | Polydispersity and polydispersity index of polymers.  |    | CO3 | К3 |
|     | Examples of monodispersed and polydispersed           |    | CO4 | K4 |
|     | polymers. Molecular mass &                            |    |     |    |
|     | mechanical properties. Size of polymer molecules.     |    |     |    |

## **Text Books**

- 1. Gowariker V.R., Viswanathan N.V. and Jayadev Sreedhar, (1978). Polymer Science
  - Wiley Eastern Ltd., NewDelhi
- 2. Sharma, B.K, 1989, Polymer Chemistry, Goel Publishing House, Meerut.
- 3. Premamoy Ghosh, 2011, Polymer Scienceand Technology, 3<sup>rd</sup> edition, Tata McGraw HillEducation Private Limited, New Delhi.
- 4. George Odian, 2004, Principles of Polymerization, 4<sup>th</sup> edition, John Wiley and Sons, New York.
- 5. F. W. Billmayer, Text book of Polymer Science, 3rd edition, John Wiley &Sons

## Reference Books

- 1. Arora M.G., Singh,M. and Yadav M.S (1989), Polymer Chemistry, 2nd Revised edition, Anmol Publications Private Ltd., New Delhi.
- 2. Joel R. Fried, 2014, Polymer Scienceand Technology, 3<sup>rd</sup> Edition, Pearson.
- 3. Anilkumar & S.K. Gupta , 2020, Fundamentals of Polymer Science and Engineering, Tata McGraw Hill, New Delhi

**Pedagogy** 

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

1. Dr. R.Subha

| Semester: V | InternalMarks:40      | ExternalMarks:60                  |              |         |  |  |
|-------------|-----------------------|-----------------------------------|--------------|---------|--|--|
| COURSECODE  | COURSETITLE           | CATEGORY                          | Hrs<br>/Week | CREDITS |  |  |
| 22UCH5SEC2P | WATER<br>ANALYSIS (P) | SKILL<br>ENHANCEMENT<br>COURSE-II | 2            | 2       |  |  |

## **Course Objective:**

- 1. To learn the techniques of titrimetric analyses.
- 2. To know the estimation of several cations and anions
- 3. To know the estimation of total hardness of water.

# Course Outcome and Cognitive Level Mapping

| CO     | CO Statement                                                                                               | Cognitive |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Number | On the successful completion of the course, students will be able to                                       |           |  |  |  |  |  |  |
| CO1    | Recall the basic principles of volumetric analysis and estimation                                          | K1, K2    |  |  |  |  |  |  |
| CO2    | Estimate water quality parameters such as dissolved oxygen content, chloride content of the water samples. | К3        |  |  |  |  |  |  |
| CO3    | Interpret quality of water from the experimentally measured values.                                        | К3        |  |  |  |  |  |  |
| CO4    | Exhibit ethical principles in engineering practices                                                        | К3        |  |  |  |  |  |  |
| CO5    | scientifically plan and perform experiments to estimate water quality parameters.                          | К3        |  |  |  |  |  |  |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation

<sup>&</sup>quot;2"-Moderate(Medium)Correlation

<sup>&</sup>quot;3"-Substantial (High)Correlation

<sup>&</sup>quot;-"indicates there is no correlation

- 1. Determination of total hardness of water by EDTA method.
- 2. Determination of methyl orange alkalinity of water.
- 3. Determination of phenolphthalein alkalinity of water.
- 4. Determination of chloride content of water by argentometric method.
- 5. Estimation of dissolved oxygen in water by Winkler's method.
- 6. Estimation of chemical oxygen demand of water.
- 7. To determine the TDS of a given sample of water.
- 8. Determination of Phosphates in given water sample.
- 9. Determination of Sulphates in given water sample.

#### **Text Book:**

- 1. Khanna, D.R. Bhutiani, R. Daya. (2008). Laboratory Mannual of Water and Wastewater Analysis, New Delhi, Publishing House.
- 2. Venkateswaran, V. Veeraswamy, R. Kuandaivelu. (1997). Basic Principles of Practical Chemistry. 2nd edition. New Delhi, Sultan Chand & Sons

#### **Reference Book:**

1. Vogel A. I. (2000). Text book of quantitative inorganic analysis. The English language book Society.

#### Web Reference:

- 1. <a href="http://www.titrations.info/EDTA-titration-calcium">http://www.titrations.info/EDTA-titration-calcium</a>
- 2. https://www.youtube.com/watch?v=qmVQs6Q7tso
- 3. <a href="https://srmvalliammai.ac.in/wp-content/uploads/2022/05/1903610-water-and-waste-water-analysis-laboratory-manual.pdf">https://srmvalliammai.ac.in/wp-content/uploads/2022/05/1903610-water-and-waste-water-analysis-laboratory-manual.pdf</a>
- 4. <a href="https://youtu.be/Lp\_O8dolCXk">https://youtu.be/Lp\_O8dolCXk</a>
- 5. https://youtu.be/zXvEmlFqicw
- 6. https://youtu.be/Sa0WfA9UGG0
- 7. https://youtu.be/6QsRkG5jy90
- 8. https://youtu.be/ve53HN9za7E

### Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz and Seminar

### Course Designers

Dr.V. Sangu.