CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI

PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

M. Sc. COMPUTER SCIENCE SYLLABUS 2024-2025 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

VISION

To create an ambience for a quality academic erudition which drives technologically adept, innovative and globally competent graduates with ethical values

MISSION

- To have a breath of knowledge across the subject areas of Computer Science
- To professionally enrich the students for successful career in Academic, Industry and Research
- To promote and inculcate ethics and code of professional practice among students

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning
PEO1	practices to match the highest quality standards and train the students to be effective leaders in
	their chosen fields.
	ACADEMIC EXCELLENCE
PFO2	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of
1202	critical thinking and encourage them to achieve their goal.
	EMPLOYABILITY
PFO3	To equip students with the required skills in order to adapt to the changing global scenario and
1205	gain access to versatile career opportunities in multidisciplinary domains.
	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform
PEO4	students into committed professionals with a strong attitude towards the development of the
	nation.
	GREEN SUSTAINABILITY
PFO5	To understand the impact of professional solutions in societal and environmental contexts and
reus	demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc. COMPUTER SCIENCE PROGRAMME

	Programme Outcome							
PO NO.	On completion of M.Sc. Computer Science							
	The students will be able to							
	DOMAIN KNOWLEDGE							
PO 1	Acquire the in-depth computing knowledge both conceptual and applied pertaining to							
	the core discipline							
	PROBLEM SOLVING							
PO 2	Procure knowledge-based skills to satisfy the needs of society and the industry by							
	providing hands on experience of various technologies in Computer Science							
	INNOVATION AND CRITICAL THINKING							
PO 3	Critically evaluate global issues, recognize the need and identify sustainable solutions							
	through research capabilities towards Nation building initiatives							
	LIFE LONG LEARNING							
PO 4	Capable of upgrading and advancing knowledge through innovation and technology as							
	evidenced by current developments							
	LEADERSHIP AND TEAMWORK							
PO 5	Work in collaborative environment through applications of scientific reasoning and							
	communicate effectively to the stakeholders							

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc COMPUTER SCIENCE PROGRAMME

PSO NO.	Programme Specific Outcomes Students of M.Sc. Computer Science will be able to	PO s Addressed
PSO 1	Identify, formulate and develop solutions for computational challenges	PO 1 PO 2
PSO 2	Inculcate broad knowledge in core areas of Computer Science and emerging technologies in related domains	PO 1 PO 2
PSO 3	Integrate computing knowledge on crafting innovative solutions and to provide a gateway for research.	PO 2 PO 3 PO 4
PSO 4	Develop analytical and technical skills to enhance employment potential and entrepreneurship	PO 3 PO 4 PO 5
PSO 5	Imbibe professional and ethical skills to become a competent citizen for the betterment of society	PO 3 PO 4 PO 5

Cauvery College for Women (Autonomous), Trichy PG & Research Department of Computer Science M.Sc. Computer Science LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS- LOCF) (For the Candidates admitted from the Academic year 2024-2025 and onwards)

Semester I

Ţ				Ś		Exam			
este	Course	Course Title	Course Code	Hr ek	lits	Hrs.	Mar	ks	.
Semo				Inst. / wee	Cred		Int.	Ext.	Total
	Core Course–I (CC)	Analysis & Design of Algorithms	23PCS1CC1	6	5	3	25	75	100
	Core Course – II (CC)	Object Oriented Analysis and Design & C++	23PCS1CC2	6	5	3	25	75	100
т	Core Course –III (CC)	Mathematical and Logical Computing	24PCS1CC3	6	5	3	25	75	100
1	Core Practical - I (CP)	Algorithm and OOPS (P)	23PCS1CC1P	6	5	3	40	60	100
	Discipline Specific	A. Advanced Software Engineering	23PCS1DSE1A						
	Elective Course-I	B. Advanced Computer Architecture	23PCS1DSE1B	6	3	3	25	75	100
	(DSE)	C. Advanced Database Systems	23PCS1DSE1C						
			30	23	-	-	-	500	
		15 Days INTERNSHIP d	luring Semester	Holic	lays				

Semester: I	Internal Mar	rks: 25	External Mars: 75		
COURSE	COURSE TITLE	CATECORV	HOURS /	CREDITS	
CODE	COURSE IIILE	CATEGORI	WEEK	CREDITS	
23PCS1CC1	ANALYSIS & DESIGN OF ALGORITHMS	CORE	6	5	

- To learn the Elementary Data Structures and algorithms
- To understand the basics of an algorithm, their analysis and design
- To inculcate the knowledge of Basic Traversal and Search Techniques, Greedy method, Divide and Conquer method, Dynamic programming and Backtracking

Prerequisite

Basic concepts of data structures and algorithms

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Get knowledge about algorithms and determine their time complexity	K1
CO2	Demonstrate specific search and sort algorithms using divide and conquer technique	K2
CO3	Apply different methods to analyze the algorithm performance	K3
CO4	Compare the concept of various algorithm technique	K4
CO5	Explore the algorithm technique on Real time applications	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	1	3	2
CO2	3	3	3	2	3	3	3	2	3	3
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	2	1	2
CO5	3	3	3	3	3	3	3	2	3	3

"1"–Slight (Low) Correlation "3"–Substantial (High) Correlation "2"–Moderate (Medium) Correlation "-"–indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Introduction: - Algorithm Definition and Specification – Space complexity – Time Complexity –Asymptotic Notation. Elementary Data Structures: Stacks and Queues – Binary Trees - Binary Search Trees - Heaps – Heap sort - Graphs.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Basic Traversal And Search Techniques: Techniques for Binary Trees – Techniques for Graphs. Divide and Conquer: General Method – Binary Search – Merge Sort– Quick Sort.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	The Greedy Method : General Method – Knapsack Problem – Minimum Cost Spanning Trees: Prim's Algorithm – Kruskal Algorithm – Optimal storage on Tapes – Single Source Shortest Paths.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Dynamic Programming: General Method – Multistage Graphs – All Pair Shortest Path – Optimal Binary Search Trees – 0/1 Knapsack – Traveling Sales person Problem –Flow Shop Scheduling.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Back tracking : General Method – 8-Queens Problem – Sum of Subsets – Graph Coloring– Hamiltonian Cycles. Branch And Bound: -The Method–Traveling Sales person.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) NP Hard and NP Complete Problems: Basic Concept – COOK's theorem – NP Hard Graph Problems – NP Hard Code Generation.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

TextBook

1. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekan.(2017). *Fundamentals of Computer Algorithms*. 2ndEdition, University Press.

Reference Books

- 1. Alfred V. Aho, John E Hopcraft, Jefffrey D. Ullman.(2004). *Data Structures and Algorithms*. Pearson Education.
- 2. Goodrich. Data Structures & Algorithms in Java. 3rd Edition, Wiley.
- 3. Skiena.(2008). The Algorithm Design Manual. 2ndEdition, Springer.
- 4. Anany Levith.(2003). Introduction to the Design and Analysis of algorithm. Pearson Education Asia.
- 5. Robert Sedgewick, Phillipe Flajolet.(1996). *An Introduction to the Analysis of Algorithms*. Addison-Wesley Publishing Company.

Web References

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://www.tutorialspoint.com/design_and_analysis_of_algorithms/index.htm
- 3. https://www.javatpoint.com/daa-tutorial

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Ms.P.Muthulakshmi

Semester: I	Internal Ma	rks: 25	External	Mars: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS1CC2	OBJECT ORIENTED ANALYSIS AND DESIGN &C++	CORE	6	5

- To Present the object model, classes and objects, object orientation, machine view and model management view
- To learn the basic functions, principles and concepts of object oriented analysis and design
- To understand C++ language with respect to Object Oriented Analysis and Design

Prerequisites

Basics of Programming and Object Oriented Programming Concepts

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand the concept of Object Oriented development and modeling techniques	K1, K2
CO2	Gain knowledge about the various steps performed during object design	K2, K3
CO3	Abstract object-based views for generic software systems	K3
CO4	Link OOAD with C++ language	K4,K5
CO5	Apply the basic concepts of OOPs and familiarize to write C++ program	K5, K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	2
CO2	3	2	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" – Moderate (Medium) Correlation "-" –indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	The Object Model : The Evolution of the Object Model – Elements of the Object Model – Applying the Object Model. Classes and Objects : The Nature of an Object – Relationships among Objects- The Nature of Class – Relationship among Classes – The Interplay of Classes and Objects.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Π	Introduction to C++-Input and Output in C++- C++ Declarations - Control Structures.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Functions in C++ - Classes and Objects in C++- Constructors and Destructors–Operator Overloading and Type Conversion.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Inheritance – Pointers and Arrays-C++ And Memory: the new and Delete operators – Polymorphism and Virtual Functions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Applications with Files–Exception Handling – Working with Strings - Overview of Standard Template Library (STL).	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self-StudyforEnrichment:(Not included for End Semester Examinations)Classification:The Importance of ProperClassification –Identifying Classes and Objects –Key Abstractions and Mechanisms.Notation:The Unified Modeling Language –Component Diagrams-Deployment Diagrams-UseCaseDiagrams-ActivityDiagrams-Object Diagrams.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Books

- 1. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, BobbiJ.Young, Jim Conallen, Kelli A.Houston.(2014).*Object Oriented Analysis and Design with Applications*.3rdEdition, Pearson Education.(**Unit: I**)
- 2. Ashok N.Kamthane.(2009), *Object-Oriented Programming with ANSI & TurboC++*, 7th *Impression*, Pearson Education Limited.(**Unit:II V**)

Reference Books

- 1. Balagurusamy (2003), Object Oriented Programming with C++, Second Edition, TMH.
- 2. Yashwant Kanetkar .(2019). Let Us C++, Third Edition, BPB.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc19_cs48/preview
- 2. https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-cs19/
- 3. https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_an alysis.htm

Pedagogy

Chalk and Talk, PPT , Discussion, Assignment, Quiz, Seminar

Course Designer

Ms. K. Pradeepa

Semester I	Internal Marks:	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
24PCS1CC3	MATHEMATICAL AND LOGICAL COMPUTING	CORE	6	5

- **Explore** the basic concepts of Discrete Mathematics, Graph Theory.
- Acquire the knowledge of Fundamentals in combinatorics.
- Analyze the method of logical reasoning to solve variety of problems.

Prerequisite

Basic Knowledge in Relations, Functions and Graph Theory.

CourseOutcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Define the various concepts in Relations, Combinatorics and Graphs.	K1
CO2	Understand the different terminologies of functions, Predicate Calculus, Recurrence Relations and Graphs and Fuzzy sets.	K2
CO3	Analyze the problems in different aspects and give solutions in their respective streams.	К3
CO4	Examine some methodologies for the related area in an effective manner.	K4
CO5	Apply the notions to distinct problems and get solutions in a easy way.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2	3	2	2	2	3
CO2	2	2	3	2	2	2	2	2	2	3
CO3	3	2	3	2	2	3	2	2	3	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	2	2	2	3	3	2	3	3	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation – "3" – Substantial (High) Correlation – "-" indicates there is no correlation.

UNIT	CONTENT	HOU RS	COs	COGNITIVE LEVEL
I	Relations: - Binary Relations-Operations on Relations- Propertie of Binary Relations in a Set–Equivalence Relations and Partia Orderings— Representation of a Relation by a Matrix Representation of a Relation by a Digraph. Functions: - More or Functions- Some Important Functions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Foundations: Logic– Predicate Calculus: Well Formed formulas Truth Table of Well Formed Formula –Tautology, Contradiction and Contingency-Equivalence of Formulas-Algebra o Propositions- Normal Forms of Well -Formed Formulas-Rules o Inference for Propositional Calculus.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
ш	Combinatorics:- Permutations-Combinations-Permutations with Repetitions- Combinations with Repetitions -Permutations of set with indistinguishable Relations:Formulation objects.Recurrence Relations-Solving Recurrence Relations Solving Recurrence Relations Solving Linear Homogeneous Recurrence Relations of Order Two.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Graphs -Connected Graphs –Examples of Special Graphs-Eule Graphs-Hamiltonian Circuits and Paths.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	From Classical(Crisp) Sets to Fuzzy Sets: Fuzzy sets: Basic types – Fuzzy sets: Basic Concepts. Fuzzy Sets Versus Crisp Sets: Additional Properties of α – cuts. Operations on Fuzzy Sets: Types of Operations– Fuzzy Complement.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment:(Not included for End Semester Examination)Hashing Functions-Functionally Complete Sets- Solving LinearNon homogeneous Recurrence Relations-Crisp sets: AnOverview	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Chandrasekaran. N, and Umaparvathi. M(2015), *Discrete Mathematics*, PHI Learning Private Limited, New Delhi.
- 2. George. J. Klir and Bo Yuan(2013), *Fuzzy Sets And Fuzzy Logic*, Prentice Hall of India, New Delhi.

Chapters and Sections

UNIT-I Chapter 5: Sections 5.1- 5.5, 5.8, 5.9[1]

UNIT-II Chapter 1: Section1.1[1] Chapter 2: Sections2.1-2.5, 2.7, 2.8[1]

UNIT-III Chapter 3: Sections3.1-3.5[1] Chapter 6: Sections6.1-6.4[1]

UNIT- IV Chapter 10: Sections 10.1-10.4[1]

UNIT- V Chapter 1: Sections 1.3, 1.4 [2] Chapter 2: Sections 2.1 [2] Chapter 3: Sections 3.1, 3.2 [2]

ReferenceBooks

- 1. Tremblay, J. P.& Manohar, R. (1997). *Discrete Mathematical Structures with Applications to Computer Science*, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Ralph, P. Grimaldi. (2002). Discrete and Combinatorial Mathematics, Pearson Asia Education.
- 3. Narsingh Deo. (1997). *Graph Theory With Applications To Engineering & Computer Science*. Prentice Hall of India, New Delhi.
- 4. Ganesh, G.J.M. (2006). *Introduction To Fuzzy Sets And Logic*, Prentice-Hall of India, New Delhi.

Web References

- 1. <u>https://www.youtube.com/results?search_query=negation+of+the+statement</u>
- 2. <u>https://www.youtube.com/results?search_query=permutation</u>
- 3. <u>https://www.youtube.com/results?search_query=graph+theory+definitions+and+exa</u> mples
- 4. <u>https://www.youtube.com/results?search_query=trees+in+graph+theory</u>
- 5. https://discrete.openmathbooks.org/pdfs/dmoi-tablet.pdf
- 6. https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Dr. S. Saridha

Semester: I	Internal Mar	ks: 25	External	Mars: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS1CC1P	ALGORITHM AND OOPS (P)	CORE	6	5

- To learn the applications of the data structures using various techniques
- To understand C++ language with respect to Object Oriented Analysis and Design (OOAD) concepts
- T build application of OOPS concepts

Prerequisites

Basic understanding of C++ Programming

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Identify and apply the suitable data structure for the given real world problem	K2, K3
CO2	Able to understand and implement OOPS concepts.	K2,K3
CO3	Apply the concepts of Stack, Queue, Tree, List using C++	K3
CO4	Analyze the concepts of sorting and searching algorithms using relevant data structures.	K4
CO5	Interpret and Solve problem involving graphs, trees and heaps	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	2
CO2	3	2	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" –indicates there is no Correlation.

Exercises

- 1. Write a program to solve the Tower of Hanoi using recursion.
- 2. Write a program to traverse through Binary Search Tree using traversals.
- 3. Write a program to perform various operations on Stack using Linked list.
- 4. Write a program to perform various operations in a circular queue.
- 5. Write a program to sort an array of elements using Quick sort.
- 6. Write a program to solve the number of elements in ascending order using Heap sort.
- 7. Write a program to solve the knapsack problem using Greedy method
- 8. Write a program to search an element in a tree using Divide & Conquer strategy.
- 9. Write a program to place the 8 queens on an 8 x 8 matrix so that no two queens Attack.
- 10. Write a C++ program to perform Virtual Function
- 11. Write a C++ program to perform Parameterized Constructor
- 12. Write a C++ program to perform Friend Function
- 13. Write a C++ program to perform Function Overloading
- 14. Write a C++ program to perform Single Inheritance
- 15. Write a C++ program to perform Employee Details using files.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc19_cs48/preview
- 2. https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented __analysis.htm
- 3. https://www.geeksforgeeks.org/c-plus-plus/?ref=shm
- 4. https://www.tutorialspoint.com/cplusplus-program-to-implement-stack-using-linked-list
- 5. https://webeduclick.com/cpp-program-tower-of-hanoi-using-recursion/

Pedagogy

Power Point Presentation, Live Demonstration

Course Designer

Ms. S.Saranya

Semester: I	Internal Ma	rks:25	External	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS1DSE1A	ADVANCED SOFTWARE ENGINEERING	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To learn the concepts of Software Engineering
- To provide the idea of decomposing the given problem into Analysis, Design, Testing and Maintenance phases
- To inculcate knowledge on Software Project Management, Software Design & Testing

Prerequisites

Basics of Software Engineering & Software Project Management

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

СО	CO Statement	Cognitive Level
Number		
CO1	Understand about Software Engineering process	K1, K2
CO2	Make use of Software Project Management Skills, Design and Quality Management	К3
CO3	Analyze on Software Requirements and Specification	K4
CO4	Analyze and Compare Software Testing, Maintenance and Software Re-Engineering	K4, K5
CO5	Design and conduct various types and levels of software quality or a software project	K5, K6

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	2	2	3	3	3	2	2	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Introduction: The Problem Domain – Software	16	CO1,	K1,
	Engineering Challenges - Software Engineering		CO2,	K2,
	Approach. Software Processes: Software Process		CO3,	КЗ,
	- Characteristics of a Software Process - Software		CO4,	K4,
	Development Process Models – Other software		CO5	K5,
	processes.			K6
II	Requirements Analysis and Specification:	20	CO1,	K1,
	Requirements Gathering and Analysis- Software		CO2,	K2,
	Requirements Specification (SRS) - Formal		CO3,	K3,
	System Specification – Axiomatic Specification –		CO4,	K4,
	Algebraic Specification. Software Quality		CO5	K5,
	Management: Software Quality-Software Quality			K6
	Management System-ISO 9000 - SEI Capability			
	Maturity Model.			
III	Software Project Management: Responsibilities	18	CO1,	K1,
	of a Software Project Management. Responsionnes		CO2,	K2,
	Metrics for Project Size Estimation Project		CO3,	K3,
	Estimation Techniques Empirical Estimation		CO4,	K4,
	Techniques – COCOMO – Halstead's Software		CO5	K5,
	Science _ Staffing Level Estimation _			K6
	Scheduling_Organization and Team Structures_			
	Staffing – Risk Management – Software			
	Configuration Management			
IV	Software Design: Outcome of the Design Process	16	CO1	K1
	- Characteristics of a good software design -	10	CO2.	K2.
	Cohesion and Coupling -Lavered Arrangement of		CO3.	K3.
	Modules- Function Oriented Design – Object		CO4.	K4.
	Oriented Design. Function Oriented Software		CO5	K5.
	Design: Structured Analysis-Structured Design-			K6
	Detailed Design-Design Review.			
V	Software Testing: Basic concepts and	20	CO1,	K1,
	Terminologies – Design Test Cases: Functional		CO2,	K2,
	testing– Structural testing – Levels of testing: Unit		CO3,	K3,
	testing, Integration Testing and System Testing –		CO4,	K4,
	Debugging–Program Analysis tools-Some General		CO5	K5,
	Issues Associated with Testing: Regression			K6
	testing. Software Maintenance: Characteristics			
	of Software Maintenance - Software Reverse			
	Engineering – Software Maintenance Process			
	Models: Software Re-engineering.			
VI	Self-Study for Enrichment:	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Requirement engineering -Strategy of Design-		CO3,	K3,
	IEEE Recommended Practice for Software		CO4,	K4,
	Design Descriptions - Reliability Estimation. Case		CO5	K5,
	Study: Student Result Management System.			K6

Text Books

- 1. Pankaj Jalote, (2005). *An Integrated Approach to Software Engineering*, 3rd Edition, Springer Science + Business Media. (**Unit: I**)
- Rajib Mall,(2018).*Fundamentals of Software Engineering*,5thEdition, PHI Learning Private Limited. (Unit: II V)

Reference Books

- 1. K.K.Aggarwal and Yogesh Singh,(2005). *Software Engineering*. Revised 2nd Edition, New Age International Publishers.
- 2. R.S.Pressman(2010). *A Practitioner's Approach-Software Engineering*. McGraw-Hill Higher Education.
- 3. Carlo Ghezzi.M, Jazayeri, D.Mandrioli (2010). *Fundamentals of Software Engineering*, PHI Publication

Web References

- 1. https://www.javatpoint.com/software-engineering-tutorial
- 2. https://onlinecourses.swayam2.ac.in/cec20_cs07/preview
- 3. https://onlinecourses.nptel.ac.in/noc19_cs69/preview
- 4. https://www.google.co.in/books/edition/FUNDAMENTALS_OF_SOFTWARE_ENGINEER ING_FIF/-
- 5. https://www.google.co.in/books/edition/_/pJc3xKQfD-MC?hl=en&gbpv=1

Pedagogy

Chalk & Talk, PPT, Group Discussion, Seminar and Assignment

Course Designer

Dr.K.Reka

Semester: I	Internal Ma	arks: 25	External	Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS1DSE1B	ADVANCED COMPUTER ARCHITECTURE	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To understand the micro-architectural design of processors
- To learn about the various techniques used to obtain performance improvement and power savings in current processors
- To gain knowledge in distributed and Parallel Computing Architecture

Prerequisites

Basic Knowledge about Microprocessor

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Remember and Understand the computer architecture	K1, K2
CO 2	Interpret and Experiment with different pipelined processor	K2, K3, K5
CO 3	Organize and Analyze the architectural features of advanced processors	K3, K4
CO 4	Examine and Evaluate the cache and memory related issues in multiprocessors	K4, K5
CO 5	Assess the historical and current developments in computer architecture and adopt to the needs	K5, K6

Mapping of CO with PO and PSO

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	2	3	2	3	2	2	3
CO 3	2	3	2	3	2	3	3	3	3	3
CO 4	3	3	3	2	3	3	3	3	2	2
CO 5	2	3	3	3	2	2	3	3	3	3

"1"–Slight (Low) Correlation

"3"-Substantial (High) Correlation

"2"–Moderate (Medium) Correlation "-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Fundamentals of Quantitative Design and Analysis: Classes of Computers - Defining Computer Architecture-Trends in Technology, Power, Energy and Cost – Dependability- Measuring, Reporting, and summarizing Performance - Quantitative Principles of Computer Design	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	Instruction-LevelParallelism:ConceptsandChallenges – Basic Compiler Techniques for ExposingILP – Reducing Branch Costs with Advanced BranchPrediction - Overcoming Data Hazards with DynamicScheduling-Hardware-Based Speculation - ExploitingILP Using Dynamic Scheduling, Multiple Issue, andSpeculation	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Data-Level Parallelism in Vector SIMD and GPU Architectures: Vector Architecture - SIMD Instruction Set Extensions for Multimedia -Graphics Processing Units- Detecting and Enhancing Loop-Level Parallelism	19	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Thread-Level Parallelism: Centralized Shared-Memory Architectures-Performance of Symmetric Shared- Memory multiprocessor-Distributed Shared-Memory and Directory-Based Coherence-Synchronization- Models of Memory Consistency	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Warehouse-scale Computers to Exploit Request Level and Data-Level Parallelism:Programming Models and Workloads for Warehouse- Computer Architecture of Warehouse-Scale Computers – The Efficiency and cost of Warehouse-Scale Computers	17	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment (Not included for End Semester Examinations) Historical Perspectives Quantitative Design and Analysis: Limitations of Instruction-Level Parallelism and Its Exploitation-Fallacies and pitfalls of Data-Level Parallelism in Vector-Cross Cutting Issues in Thread - Level Parallelism-Using Energy Efficiency inside the server.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Book

1. John L Hennessey, David A Patterson (2019). *Computer Architecture A Quantitative Approach*. Sixth Edition, Morgan Kaufmann Elsevier.

Reference Books

- 1. KaiHwang, FayeBrigg(2000). *Computer Architecture And Parallel Processing*. International Edition, McGraw-Hill.
- 2. SimaD, FountainT, KacsukP(2000). Advanced Computer Architectures: A Design Space Approach. Addison Wesley.

Web References

- 1. www.cs.iiie.edu.in/
- 2. https://passlab.githlub.io/CSE565/note

Pedagogy

Chalk and talk & Seminar

Course Designer

Ms. A. Jabeen

Semester: I	Internal Mark	External Marks: 75		
COURSE CODE	OURSE CODE COURSE TITLE CATEGORY		HOURS / WEEK	CREDITS
23PCS1DSE1C	ADVANCED DATABASE SYSTEMS	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To inculcate knowledge in Transaction Management with ACID properties
- To learn about advanced concepts of Database Management System
- To gain Knowledge in Information retrieval using XML and Internet Databases

Prerequisites

Basic knowledge about Relational Database Management Systems.

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Remember and Understand the concepts of databases	K1, K2
CO2	Demonstrate and make use of different kinds of databases	K2, K3
CO3	Identify and analyze databases for real life applications	K3, K4
CO4	Compare and evaluate the performance of databases based on its transaction and concurrency control feature	K4, K5
CO5	Interpret and develop parallel, distributed, object oriented And advanced databases for handling real time data	K5, K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	2	3	3	3	2	2	3
CO3	2	3	2	3	2	3	3	3	3	3
CO4	3	3	3	2	3	2	3	3	2	2
CO5	2	3	3	3	2	3	3	3	3	3

"1"–Slight (Low) Correlation "3"–Substantial (High) Correlation "2"–Moderate (Medium) Correlation "-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Transactions Management: Transaction Concepts – A	18	CO1,	K1,
	Simple Transaction Model - Transaction Atomicity and		CO2,	K2,
т	Durability – Transaction Isolation- Serializability		CO3,	K3,
1	Transaction Isolation and Atomicity. Concurrency		CO4,	K4,
	Control: Lock based Protocols – Deadlock Handling –		CO5	K5,
	Multiple Granularity – Timestamp - Based Protocols –			K6
	Validation - Based Protocols.	16	001	17.1
	Parallel Databases: 1/O Parallelism – Interquery	10	COI,	KI, K2
	Parallelism - Intraquery Parallelism - Intraoperation		CO2,	K2, K2
тт	Parallelism-Interoperation Parallelism- Query		CO3,	K3,
11	Optimization - Design of Parallel Systems - Parallelism		CO4,	K4,
	on Multicore Processors		C05	K5,
		20	001	КО
	Distributed Databases: Homogeneous and	20	CO1,	K1,
	Heterogeneous Databases – Distributed Data Storage -		CO2,	K2,
Ш	Distributed Transactions - Commit Protocol –		CO3,	K3,
	Concurrency Control in Distributed Databases-		CO4,	K4,
	Availability - Distributed Query Processing-		CO5	K5,
	Heterogeneous Distributed Databases-Cloud Based			K6
	Databases - Directory Systems			
	Object Based Databases: Complex Data Types –	18	CO1,	K1,
	Structured types and Inheritance in SQL – Table		CO2,	K2,
IV	Inheritance - Array and Multiset Types in SQL – Object		CO3,	K3,
	Identity and Reference Types in SQL - Implementing		CO4,	K4,
	O-R features-Object Relational Mapping - Object-		CO5	K5,
	Oriented versus Object-Relational.			K6
	XML: Extensible Markup Language: Structured,	18	CO1,	K1,
	Semi Structured and Unstructured Data – XML		CO2,	K2,
V	Hierarchical (Tree) Data Model - XML Documents,		CO3,	K3,
v	DTD, XML Schema - Storing and Extracting XML		CO4,	K4,
	documents from Databases -XML Languages -		CO5	K5,
	Extracting XML documents from Relational Databases.			K6
	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Case Studies: SQL - MYSQL - Oracle - PostgreSQL-		CO3,	K3,
V I	NOSQL -DynamoDB- MongoDB.		CO4,	K4,
			CO5	K5,
				K6

Text Books

- 1. Abraham Silberschatz., Henry F. Korth. S. Sudarshan (2013). *Database System Concepts*.6thEdition, McGraw Hill.(**Unit I IV**)
- 2. Ramez Elmasri, Shamkant. B.Navathe (2015). *Fundamentals of Database Systems*. 6th Edition,PearsonEducation.(**Unit V**)

Refer0.

.nce Books

- 1. Thomas Connolly, Carolyn Begg. (2015). *Database Systems, A Practical Approach to Design, Implementation and Management*. 6thEdition, PearsonEducation.
- Raghu Ramakrishnan, Johannes Gehrke. (2007). Database Management System. 3rd Edition, McGraw Hill Higher Education.

Web References

- 1. https://www.exploredatabase.com/p/advanced-database-concepts
- 2. https://www.wideskills.com/introduction-to-database

Pedagogy

Chalk and talk, Lecture, Discussion, Quiz, Demonstration, and PPT

Course Designer

Ms.R. Sridevi