CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED (III CYCLE) WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI – 620 018

DEPARTMENT OF BIOTECHNOLOGY

B.Sc., BIOTECHNOLOGY SYLLABUS 2024 – 2025 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF BIOTECHNOLOGY

VISION

- To educate a broad range of basic lab skills applicable to biology and biotechnology.
- Make the students know and understand broad range of basic biological concepts and can apply and analyse these in at least one specialty area.
- Make the students generate a hypothesis, design approaches to test them and interpret the data from those tests to reach valid conclusions.
- To develop the ability to place their own works in a broader scientific context.

MISSION

- To produce ambitious, creative graduates who are interested in continuing their education in biosciences.
- Make the students to read and critically evaluate the original scientific literature.
- To produce responsible biotechnology professionals to fulfill the employment and research needs in the biotechnology industry.
- Enhance the student's ability to integrate their acquired computer and biosciences knowledge and skills to investigate and solve the biological problems.
- To create opportunities for placement in leading industries through Internships.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO 1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by
	integrating innovative learning practices to match the highest quality
	standards and train the students to be effective leaders in their chosen
	fields.
PEO 2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash students hidden talents
	and to nurture the spirit of critical thinking and encourage them to
	achieve their goal.
PEO 3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the
	changing global scenario and gain access to versatile career opportunities
	in multidisciplinary domains.
PEO 4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and
	equity to transform students into committed professionals with a strong
	attitude towards the development of the nation.
PEO 5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and
	environmental contexts and demonstrate the knowledge for overall
	sustainable development.

PROGRAMME OUTCOMES FOR B.Sc., BIOTECHNOLOGY PROGRAMMES

PO NO	On completion of B.Sc., Biotechnology Programme, the students will be able to										
PO 1	Academic Excellence and Competence: Elicit firm fundamental										
knowledge in theory as well as practical for coherent understanding											
	academic field to pursue multi and interdisciplinary science careers in the										
	future.										
PO 2	Holistic and Social approach: Create novel ideas related to the scientific										
	research concepts through advanced technology and sensitivity towards										
	sustainable environmental practices as well as social issues.										
PO 3	Professional ethics and Teamwork: Explore professional responsibility										
100	through projects, internships, field trips/industrial visits and mentorship										
	programmes to transmit communication skills.										
PO 4	Critical and Scientific thinking: Equip training skills in Internships,										
	Research Projects to do higher studies in multidisciplinary paths with a higher										
	level of specialization to become professionals of high - quality standards.										
PO 5	Social Responsibility with ethical values: Ensure ethical, social and										
105	holistic values in the minds of learners and attain gender parity for										
	building a healthy nation.										

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc., BIOTECHNOLOGY

PSO NO	The students of B.Sc., Biotechnology will be able to	POs Addressed
	Acquire knowledge of biological sciences with the implementation of	PO1
PSO 1	technology on different living systems like plants, animals and	PO 2
	microbes.	
	Explain the fundamental concepts and develop skills in Immunology,	PO 1
PSO 2	Developmental biology, Nanobiotechnology, Genomics, Proteomics,	PO 2
	Bioinformatics, Agriculture and Medicine	
PSO 3	Apply the technical aspects related to the improvement of microbes,	PO 2
1505	plants and live-stocks for the welfare of human and environment.	PO 4
PSO 4	Impart hands-on techniques in various thrust areas of biotechnology to	PO 2
1504	meet the emerging demands in industry, academia and research.	PO 4
	Gaining knowledge to transform theoretical concepts to practical	PO 2
PSO 5	products/process to move ahead in entrepreneurship and apply the	PO 3
	laws concerning to IPR and bioethics	PO 5

Cauvery College for Women (Autonomous), Trichy -18

Department of Biotechnology

B.Sc., Biotechnology

Learning Outcome Based Curriculum Framework (CBCS - LOCF) (For the Candidates admitted from the Academic year 2024-2025 and onwards)

er	rt				<u>.</u>			Exam	la	
lest	Pa			Inst Hrs	dits	rs.	Marks		Tota	
Seme. F		Course	Course I tile	Course Code		Cre	H	Int	Ext	
			Pothu Tamil –I	23ULT1						
			Hindi ka Samanya	23ULH1						
-			Gyan aur Nibandh							
			Poetry, Grammar and History of Sanskrit	23111 \$1						
	Ι	Language Course-I (LC)	Literature	250151	6	3	3	25	75	100
			Foundation Course:	23UI F1						
			Paper I - French I	230111						
Ι		English Language	General English -I	23UE1	-			~ ~		100
	Ш	Course- I(ELC)			6	3	3	25	75	100
		Core Course – I (CC)	Cell Biology	22UBT1CC1	5	5	3	25	75	100
		Core Practical - I (CP)	Cell Biology (P)	22UBT1CC1P	3	3	3	40	60	100
	III	First Allied Course-I(AC)	General	22UBT1AC1	4	3	3	25	75	100
		First Allied Course- II (AC)	Biochemistry	22UBT1AC2	4	3	3	25	75	100
		Ability Enhancement	UGC Jeevan Kaushal-				_			
	IV	Compulsory Course-I (AECC)	UniversalHuman	22UGVE	2	2	-	100	_	100
			Values	20	22				700	
					30	22				700
		Language Course - II (LC)	Pothu Tamil -II	23ULT2			3	25	75	
	Ι		Hindi Literature							
			&Grammar – II	22ULH2	6	3				100
			Prose, Grammar and	22111 62						
			literature	2301.82						
			Basic French – II	22ULF2						
		English Language Course	General English -II	23UF2	6	3	3	25	75	100
	Π	-II (ELC)	Ocheral Linghish -II	25012	0	5	5	23	15	100
		Core Course – II (CC)	Molecular Biology&	22UBT2CC2	5	5	3	25	75	100
			Genetics Molecular Biology&		-		_	_		
11	ш	Core Practical - II (CP)	Genetics (P)	22UBT2CC2P	3	3	3	40	60	100
	111	Core Course - III (CC)	Biomolecular	23UBT2CC3	2	2	3	25	75	100
		First Allied Course – III	Microbiology &							
		(AP)	Biochemistry (P)	22UBT2AC3P	4	3	3	40	60	100
		Ability Enhancement	Environmental Studies	22UCEVS	2	2	-	100	-	100
	IV	Ability Enhancement	х	2200EVS						
		Compulsory Course-III	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100
		(AECC) Extra Credit Course	SWAVAM	A	r UC			mondati	01	
			Total	As pe	30	22.		menuali		800

Semester – I	Internal Marks:	25	Ext	ernal Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22UBT1CC1	CELL	CORE	5	5
	BIOLOGY			

- To study about the basic concepts of cells and their cellular organelles and their functions.
- > To study the specialized cells.
- > To study about cell cycle and its regulations.
- To study cell signaling pathways

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Relate and explain the basics of cell biology, types, structure, and	K1, K2
	properties of cells.	
CO2	Apply the knowledge of cell biology in diverse research areas.	К3
CO3	Illustrate the Ultra structure and list the functions of cellular	K2, K4
	organelles in various types of cells	
CO4	Explain the significance of cells and specialized cells	K5
CO5	Interpret the concepts of cell, cell division, compartmentalization,	K5
	transport of nutrients and cell signalling in different types of cells.	

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	1	2	2	1	3	1	1	3	1
CO2	3	2	2	2	1	3	1	1	2	2
CO3	3	1	1	3	1	3	3	2	1	1
CO4	3	3	2	2	1	3	3	2	3	1
CO5	3	3	3	3	1	3	3	3	3	2

"1" – Slight (Low) Correlation, "2" – Moderate (Medium) Correlation, "3" – Substantial (High) Correlation, "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
I	Fundamentals of cell structure: Cell as basic unit of life: Basic properties of cells, cell theory, cell morphology, Ultrastructure - Prokaryotic and Eukaryotic cells.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	Cellular membranes and matrices: Cell Membrane: Plasma Membrane – Fluid Mosaic Model and Sandwich Model; Chemical composition and fluidity of membranes; transport of nutrients - diffusion, facilitated diffusion and osmosis. Cell wall: Structural organization; Cytoskeleton: Microtubules and intermediate filaments; Cell Motility – Flagella.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
ш	Endomembrane System: Ultrastructure and functions: Nucleus; Endoplasmic Reticulum - Rough and Smooth; Golgi Complex, Ribosomes - Types and functions; Mitochondria - Ultrastructure, Chemical Composition and functions; Chloroplast - Ultrastructure, Chemical Composition and functions; Microbodies: Types - Peroxisomes, Glyoxisomes and Lysosomes - Types, structure and function.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Cell Division and Signaling: Cell division in prokaryotes and eukaryotes: Cell cycle, mitosis, meiosis, crossing over; Apoptosis; Signal transduction - Cell to cell recognition.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Specialized cells: Motile cells (amoeboid and Sperm cells), nerve cells and nerve impulse conduction, muscle cells and muscle contraction and Egg cells.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment (Not included for End Semester Examination) Discovery of Cells, Cytoskeleton - Microfilaments, Types of Microbodies, Cell adhesion and Red Blood Cells.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Books

- 1. Veer Bala, R. (2021). Cell Biology. Latest edition. Med tech.
- 2. Rastogi, S. C. (2020). Cell and Molecular Biology. New Age International Private Ltd.
- 3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Karen, H., Dennis, B., & Walter,
- 4. P. (2019). Essential Cell Biology. 5th International Student Edition. Garland Science.
- De Robertis, E.D.D. & De Robertis, E.M.F. (2017). Cell & Molecular Biology. 8th Edition. Waverly.
- 6. Verma, P. S. & Agarwal, V. K. (2016). Cell Biology. S. Chand Publication.

Reference Books

- Cooper, G.M. & Hausman, R.E. (2018 Reprint). *The Cell A Molecular Approach*. 6thEdition. Ingram Publication.
- 2. Griffith, R. (2017). Cell biology (Meiosis & Mitosis). Larsen and Keller Education.
- Thomas, D. P., William, C. E., Jennifer, L. S. & Graham, J. (2017). *Cell Biology*. 3rd Edition. Elsevier IE (short Disc).
- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Karen, H., Dennis, B. & Walter, P. (2017). *Molecular Biology of Cell*. 6th Edition. Garland Science, Taylor & Francis group.
- 5. Hardin, J., Bertoni, G.P. & Kleinsmith, L.J. (2017). *Becker's World of the Cell*. Pearson Education.

E - Books

- 1. https://open.umn.edu/opentextbooks/textbooks/244
- 2. http://standring.weebly.com/uploads/2/3/3/5/23356120/8_-_unit_30c.pdf
- 3. <u>https://www.infobooks.org/free-pdf-books/biology/cell-biology/</u>
- 4. <u>http://www.freebookcentre.net/Biology/Cell-Biology-Books.html;</u>
- 5. <u>https://tripurauniv.ac.in/Page/SubjectWiseOnline_EBooks_Cell_Molecular_Biology</u>

Web Reference

- 1. https://ocw.mit.edu/courses/7-06-cell-biology-spring-2007/
- 2. <u>https://sciencewiz.com/portals/cells/tour-inside-the-cell/a-tour-of-the-cell-more-advanced/</u>
- 3. <u>http://naturedocumentaries.org/17217/virtual-tour-cell-xvivo-scientific-animation-2018/</u>
- 4. https://nptel.ac.in/courses/102103012

Pedagogy

Chalk and Talk, PPT, Videos and Animations

- 1. Ms. P. ILAMATHY
- 2. Dr. S. ABINAYA

Semester – I	Internal Marks: 40	External	l Marks: 60	
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22UBT1CC1P	CELL BIOLOGY (P)	CORE	3	3

- > To perform experiments using microscopes and micrometry.
- > To study about cells and their morphology by appropriate techniques.
- > To gain knowledge in cell division and their stages.
- > To perform experiments on cell counting and viability.

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

СО	CO Statement	Cognitive
Number	CO Statement	Level
CO 1	Define and describe the basic instruments involved in Biology.	K1, K2
CO 2	Discuss and differentiate the morphology of various types of cells.	K2
CO 3	Classify and illustrate the different cell organelles.	K3
CO 4	Categorize the different types and stages of cell division.	K4
CO 5	Illustrate and conclude cell viability and counting.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	2	3	3	1
CO2	3	3	3	3	2	3	2	3	3	1
CO3	3	2	3	3	2	3	2	3	3	1
CO4	3	2	3	3	1	3	2	2	3	1
CO5	3	3	3	3	1	3	2	2	3	2

"1" - Slight (Low) Correlation, "2" - Moderate (Medium) Correlation,

"3" – Substantial (High) Correlation, "-" indicates there is no correlation.

Syllabus

- 1. Laboratory rules, regulations and safety measures.
- 2. Demonstration of Principles and working mechanism of Light Microscope.
- 3. Principles and working mechanism of rotary Microtome (Demo).
- 4. Measurement of Cell Size by Micrometry.
- 5. Prokaryotic Cell Observation E. coli.
- 6. Eukaryotic Cell Observation Yeast and Onion.
- 7. Morphological Characterization of various types of Plant tissue cells.
- 8. Separation of cell organelles by centrifugation method.
- 9. Barr body identification from Buccal Smear.
- 10. Cell Division Mitotic stages.
- 11. Cell Division Meiotic stages.
- 12. Cell Division Binary fission of Yeast Cells.
- 13. Enumeration of Eukaryotic Cells (Yeast), Red Blood Cells and White Blood Cells.
- 14. Assessment of Cell Viability by trypan blue staining.
- 15. Experiment on Osmosis.

Reference Books

- 1. Gupta, R., Seema, M. & Ravi, T. (2018). *Cell Biology: Practical Manual*. Prestige Publishers.
- 2. William, H. H. (2017). Cell Biology: Laboratory Manual, Pearson Education.
- 3. Amit, G. & Bipin Kumar, S. (2019). *Practical Laboratory Manual Cell Biology*. Lambert Academic Publishing.
- 4. Thompson, D. A. (2011). *Cell and Molecular Biology Lab. Manual*. Create Space Independent Publishing Platform.
- 5. Mary, L. L. (1993). Cell Biology: Laboratory Manual. Ron Jon Publishing Incorporated.

E - Books

- 1. <u>https://www.bjcancer.org/Sites_OldFiles/_Library/UserFiles/pdf/Cell_Biology_Laboratory</u> <u>_Manual.pdf</u>
- 2. <u>http://www.ihcworld.com/_protocols/lab_protocols/cell-biology-lab-manual-heidcamp.htm</u>
- 3. <u>https://www.deanza.edu/faculty/heyerbruce/b6b_pdf/Bio6B-Manual_W19.pdf</u>
- 4. <u>https://www.researchgate.net/publication/330654692_Cell_Biology_Practical_Manual</u>
- 5. https://www.pdfdrive.com/cell-biology-protocols-d13735633.html

Pedagogy

Practical Observation and Demo

- 1. Dr. R. UMA MAHESWARI
- 2. Dr. G. GOMATHI

Semester – I	Internal Marks: 25	25 External Mar				
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS		
22UBT1AC1	GENERAL MICROBIOLOGY	ALLIED	4	3		

- > To create basic knowledge on the History and classification of Microorganisms.
- > To study the structure and characteristics of microorganisms like bacteria, algae, fungi, protozoa and virus.
- \blacktriangleright To study the media composition and their types.
- > To study the microbial diseases, pathogenesis, diagnosis and preventive measures.

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

СО	CO Statement					
Number	CO Statement					
CO 1	Recall and infer the factual and conceptual information required for understanding microbiology.	K1, K2				
CO 2	Illustrate the different structural organization of bacteria, Algae, Fungi, protozoa and virus.	К2				
CO 3	Develop the different microbial culture media for isolation of microbes and Compare the lifecycle of bacteria, algae, fungi, protozoa and virus.	K3, K4				
CO 4	Classify the different kind of microbes (Classification) and explain the general characteristic features of the Algae, Fungi, protozoa and virus.	K4, K5				
CO 5	Elaborate the diagnostic methods and controlling measures of various pathogenic microbial diseases for the human welfare.	K6				

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	1	3	3	2	3	1	1	2	3
CO2	3	1	3	2	3	2	2	1	1	3
CO3	2	1	2	2	1	2	2	2	3	3
CO4	2	1	2	2	2	1	1	2	2	3
CO5	3	1	3	3	3	3	3	3	3	3

"1"-Slight (Low) Correlation, "2"- Moderate (Medium) Correlation,

"3"-Substantial (High) Correlation "-" - indicates no Correlation

				COGNITIVE
UNIT	CONTENT	HOURS	COS	LEVEL
Ι	History and Classification: Historical development of Microbiology – Theories of Spontaneous generation – Biogenesis. General principles and nomenclature – Bergey's Manual of Determinative Bacteriology, Whittaker's five kingdom concept- Carl Woese's three domain classification. Cavalier – Smith's Eight kingdom classification.	12	CO1, CO2, CO3, CO4, CO5	K1, K2 K3, K4, K5, K6
П	Media Preparation and Sterilization: Media Composition and their types based on physical state & ingredients. Microbial Growth- Factors influencing the growth of Microorganisms – Growth Curve.	10	CO1, CO2, CO3, CO4, CO5	K1, K2 K3, K4, K5,K6
III	Bacteria, Virus and Protozoa: Structural organization of bacteria – Size, shape and arrangement of bacterial cells – Ultrastructure of a bacterial cell. Size & Morphology of Virus; Viroids. Lifecycle – Lytic & Lysogenic. Morphology & Anatomy of Protozoa - Amoeba & Paramecium.	12	CO1, CO2, CO3, CO4, CO5	K1, K2 K3, K4, K5,K6
IV	Algae and Fungi: General characteristics of Algae (<i>Chlamydomonas sp.</i>) including occurrence, thallus organization, Ultra structure, pigments, eyespot, food reserves. Reproduction – Sexual and Asexual reproduction. Fungi (<i>Aspergillus sp.</i>) – General characteristics of fungi including habitat, distribution, nutritional requirements, Ultrastructure, thallus organization and aggregation.	13	CO1, CO2, CO3, CO4, CO5	K1, K2 K3, K4, K5, K6
V	Microbial Diseases: General account on Microbial diseases - Causative Organism, Pathogenesis, Epidemiology, Diagnosis, Prevention & Control. Bacterial Diseases: Typhoid & Tuberculosis. Fungal diseases: Candidiasis & Aspergillosis. Viral Diseases: Hepatitis, AIDS. Protozoan Diseases:Malaria & Amoebiasis.	13	CO1, CO2, CO3, CO4, CO5	K1, K2 K3, K4, K5, K6
VI	Self - Study for Enrichment (Not included for End Semester Examination) Scope of Microbiology, Types of Sterilization, Size and morphology of Virus – Prions, Ultrastructure of Flagella and Corona Virus	-	CO1, CO2, CO3, CO4, CO5	K1, K2 K3, K4, K5, K6

Text Books

- 1. Barry, C. (2020). Talaro's Foundations in Microbiology. 11th Edition. Mc Graw Hill.
- 2. Rajan, S. & Selvi Christy, R. (2020). Essentials of Microbiology. CBS Publishers Pvt. Ltd.
- 3. Ananthanarayan, R. & Paniker, C.K.J. (2020). *Textbook of Microbiology*. 11th Edition. Orient Blackswan Pvt. Ltd.
- 4. Gerarad, J.T., Berdell, R.F. & Christine, L.C. (2018). *Microbiology An Introduction*. 11th Edition. Pearson.
- 5. Robert, W. B. (2017). *Microbiology with Diseases by taxanomy*. 4th Edition. Pearson.
- 6. Dr. Baveja, C. P. (2017). *Text Book of Microbiology*. Anja Publications.

Reference Books

- 1. Apurba, S. S. & Sandhya, B. (2021). *Essentials of Medical Microbiology*. 3rd Edition. Jaypee Brothers.
- 2. Willey, J.M., Kathleen, M.S. & Dorothy, H.W. (2019). Prescott's Microbiology. Mc GrawHill.
- 3. Gerarad, J.T., Berdell, R.F. & Christine, L.C. (2018). *Microbiology: An Introduction*. 13th Edition. Pearson.
- 4. Madigam, M.T., Bender, K.S., Buckley, D.H., Sattley, W.M. & Stahl, D.A. (2017). *Brock Biology of Microorganism*.15th Edition. Pearson Education.
- 5. Rathoure, A.K. (2017). Essentials of Microbiology. Brillion Publishing.

E – Books

- 1. <u>https://www.pdfdrive.com/essentials-of-medical-microbiology-e33538815.html</u>
- 2. https://www.pdfdrive.com/medical-microbiology-e18737002.html
- 3. https://www.pdfdrive.com/textbook-of-microbiology-and-immunology-e175896260.html
- 4. https://www.pdfdrive.com/sherris-medical-microbiology-d193153850.html
- 5. <u>https://www.pdfdrive.com/oxford-handbook-of-infectious-diseases-and-microbiology-d158084200.html</u>
- 6. https://www.pdfdrive.com/microbiology-with-diseases-by-body-system-d185840565.html

Web References

- 1. <u>https://nptel.ac.in/courses/102103015</u>
- 2. <u>http://ecoursesonline.iasri.res.in/course/view.php?id=108</u>
- 3. <u>https://www.digimat.in/nptel/courses/medical/microbiology/MB11.html</u>
- 4. <u>https://www.iaritoppers.com/2019/06/fundamentals-of-microbiology-icar-ecourse-pdf-book-download.html</u>
- 5. <u>https://microbiologysociety.org/why-microbiology-matters/what-is-microbiology/</u> <u>microbes-and-the-human-body/microbes-and-disease.html</u>

Pedagogy

Chalk and talk, PPT, Group Discussion, Assignment, Demo, Quiz, Seminar

- 1. Ms. P. JENIFER
- 2. Dr. M. KEERTHIGA

Semester – I	Internal Marks	External N	Iarks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22UBT1AC2	BIOCHEMISTRY	ALLIED	4	3

- > To study the basics of biomolecules.
- To study classification, structure and functional properties of carbohydrates, proteins, lipids, vitamins and minerals.
- > To study the impact of proteins and enzymes.
- > To study vitamin deficiency diseases.

Course Outcome and Cognitive Level Mapping

Upon the Successful completion of the course the student would be able to

СО		Cognitive
Number	CO Statement	Level
CO1	Understand and remember the chemistry and salient features of Macromolecules	K1, K2
CO2	In depth knowledge about the properties and significance of the Biomolecules	K2
CO3	Explain and differentiate the relationship between different kinds of biomolecules such as carbohydrates, lipids, nucleic acid and proteins.	K2, K4
CO4	Classify and demonstrate the various sources and functions of the nutrients. Calorific value of food.	K3, K4
CO5	Evaluate and analyze the concept of nutrition in health and disease, with metabolism and functions of a living system	K4, K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	1	3	2	1	2	1
CO2	3	2	2	1	1	3	2	1	1	1
CO3	3	2	2	1	1	3	2	2	2	1
CO4	3	2	3	2	2	3	3	2	2	2
CO5	3	2	3	2	2	3	3	3	2	2

"1" – Slight (Low) Correlation,

"2" – Moderate (Medium) correlation,

"3" – Substantial (High) Correlation, "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
Ι	Carbohydrates: Definition, structure, classification and functions of carbohydrates - Monosaccharides: Glucose and Fructose. Disaccharides: Sucrose and Maltose, Oligosaccharides: Raffin. Polysaccharides: Starch and Glycogen. Physical and chemical properties of carbohydrates.	12	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
П	Lipids: Definition, classification and importance of lipids - Simple lipids: Triglycerides, Compound lipids: Phosphatides and Derived lipids: Cholesterol. Structure and functions of glycerol, phospholipids, glycolipids and lipoproteins. Physical and chemical properties of lipids.	12	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
III	Amino acids: Introduction, structure and classification of amino acids - Essential amino acids, Semi - essential amino acids, non-essential amino acids and carboxyl groups of amino acids. Physico-chemical properties of amino acids. Functions of amino acids.	12	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
IV	Proteins: Definition and classification based on shape, composition, solubility and functions of proteins. Structure of proteins - Primary, secondary, tertiary and quaternary structure - protein folding. Structure, classification and properties of enzymes. Mechanism of enzyme activity. Enzyme inhibition - Competitive, non-competitive and uncompetitive inhibition.	12	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
V	Vitamins and Minerals: Vitamins: Definition and Classification. Fat soluble vitamins - sources, structure and physiological functions; Water soluble vitamins - sources, structure and physiological functions. Vitamin deficiency diseases (Scurvy and Rickets). Minerals: Macro minerals and micro minerals - sources and functions.	12	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
VI	Self-Study for Enrichment: (Not Included for End Semester Examination) Oligosaccharides – Stachyose, Structure and functions of – sphingolipids, importance of amino acids, Protein – denaturation and Vitamin deficiency diseases - Anemia.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Singh, S. P., & Singh, A. N. (2021). Textbook of Biochemistry. CBS Publications.
- 2. Gupta, S. N. (2020). Concepts of Biochemistry. Rastogi Publications.
- 3. Sathyanarayana, U., and Chakrapani, U. (2020). Biochemistry. 5th Edition. Elsevier India.
- 4. Seema, P. U. (2020). Textbook of Biochemistry. 1st Edition. Dreamtech Press.
- 5. Padmaja H. A., Dr. Yogesh, K. & Dr. Rammohan R. (2019). *Biochemistry*. Nirali Prakashan Publications.
- 6. Denise, R.F. (2017). *South Asian Edition of Lippincott Illustrated Reviews Biochemistry*. 7th Edition. Wolters Kluwer Publications.

Reference Books

- 1. Manzoor, M. M. (2021). Fundamentals of Biochemistry. Lambert Academic Publishing(LAP).
- 2. Voet, D. & Voet, J.G.(2021). Voet's Biochemistry. Adapted Edition 2021. Wiley India.
- 3. Brailsford, R. T. (2020). Principles of Biochemistry. MJP Publisher.
- 4. Jeremy M., Berg, Lubert, S., John, T., Gregory, G. (2019). *Biochemistry*. Freeman and Company publications.
- 5. Appling D.R., Anthony-Cahill, S. J., Mathews, C. K. (2017). *Biochemistry: Concepts and Connections*. Pearson Education.
- 6. Vikrant, V. (2021). Biochemistry. Discovery Publishing House Pvt Ltd.

E-Books

- 1. https://www.pdfdrive.com/lehninger-principles-of-biochemistry-d158404366.html
- 2. https://www.pdfdrive.com/biochemistry-d196362531.html
- 3. https://www.pdfdrive.com/biochemistry-genetics-molecular-biology-d18198970.html
- 4. https://www.pdfdrive.com/biochemistry-biochemistry-e19576202.html

5. https://www.pdfdrive.com/marks-basic-medical-biochemistry-a-clinical-approach-5th-edition-e158491166.html

Web References

- 1. <u>http://ecoursesonline.iasri.res.in/course/view.php?id=422</u>
- 2. https://nptel.ac.in/courses/102105034/
- 3. https://youtu.be/DhwAp6yQHQI
- 4. <u>https://sites.google.com/a/uasd.in/ecourse/biochemistry https://youtu.be/f7jRpniCsaw</u>
- 5. https://agrimoon.com/fundamentals-of-biochemistry-pdf-book/

Pedagogy

Blackboard, PPT, Videos, Animations, Group Discussion and Quiz.

Course Designer Ms. M. AZEERA

Semester – II	Internal Marks:	Internal Marks: 25		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22UBT2CC2	MOLECULAR BIOLOGY & GENETICS	CORE	5	5

- > To study the basics of Genetics and molecular biology.
- > To study about laws and concepts of Mendelian inheritance.
- > To study the process of DNA replication, transcription, and translation process.
- > To study Gene expression, post-transcriptional and post-translational modifications

Course Outcome and Cognitive Level Mapping

Upon the Successful completion of the course the student would be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand and remember chemistry and salient features of DNA and the concepts of inheritance.	K1, K2
CO2	In-depth knowledge of the mendelian laws, sex determination, replication, transcription and translation.	K2
CO3	Explain and differentiate the process of DNA replication, transcription and translation between prokaryotes and Eukaryotes.	K2, K4
CO4	Compare and distinguish the laws of segregation, law of independent assortment, linkage, multiple alleles, and Eukaryotic and prokaryotic gene expression.	K3, K4
CO5	Evaluate and analyze the basic concepts of classical and molecular genetics	K4, K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	1	3	3	1	2	1
CO2	3	3	2	1	1	3	3	2	2	1
CO3	3	3	3	2	1	3	3	2	2	1
CO4	3	3	3	2	1	3	3	2	3	1
CO5	3	3	2	2	1	3	3	2	2	2

"1" – Slight (Low) Correlation, "2" – Moderate (Medium) correlation,

"3" – Substantial (High) Correlation, "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Historical developments of molecular biology and Genetics; DNA and RNA as genetic material - Griffith's, Hershey - chase Experiments and Fraenkel-Conrat Experiment; Structure and functions of Nucleic acids: Nucleosides and Nucleotides, Purines and Pyrimidines. Watson and Crick model of DNA. A, B & Z forms of DNA. Structure of RNA and its Types.	13	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
II	Early concepts of inheritance; Discussion on Mendel's Laws of inheritance - Law of Dominance and Uniformity – Incomplete dominance and codominance; Law of Segregation of genes - Morgan's work on <i>Drosophila</i> ; Law of Independent Assortment – Dihybrid. Test cross and Back Cross.	14	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
III	Sex determination, differentiation and sex-linkage, Sex – linked inheritance, Sex-influenced and sex-limited traits; Linkage Analysis – Fruit Fly. Recombination and genetic mapping in eukaryotes, Multiple Alleles – ABO Blood Grouping. Somatic cell genetics.	14	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
IV	Chromosome structural organization – Chromatin and chromatids; Special types of Chromosomes: Polytene and Lampbrush chromosomes. DNA Replication- Prokaryotic and Eukaryotic DNA replication, enzymes and proteins involved in DNA replication. Models of replication – Semi-conservative, Unidirectional, Bidirectional, Rolling circle mechanism. Inhibitors of DNA replication. DNA repair mechanisms.	16	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
V	Transcription – Prokaryotic and Eukaryotic transcription, Enzymes involved in t ranscription. Posttranscriptional modifications – 5' – CAP formation, 3'processing and polyadenylation, splicing. Regulation of Transcription - Prokaryotes: lac operon and trp operon. Translation – Prokaryotic and Eukaryotic translation, Mechanisms of initiation, elongation and termination.Post-translational modifications - Importance of Glycosylation and Phosphorylation.	18	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5
VI	Self-Study for Enrichment (Not Included for End Semester Examination) Extra Nuclear inheritance, Crossing over, Replisomes and Primosomes, Wobble hypothesis, hormonal control of gene expression, Regulation of transcription.	-	CO1, CO2, CO3, CO4, CO5	KI, K2, K3, K4, K5

Text Books

- 1. Verma, P.S & Agarwal, V.K. (2022). *Cell Biology, Genetics, Molecular Biology, Evolution and Ecology*. S Chand and Company Ltd.
- 2. Vishnu Shankar, S. (2021). *Fundamentals of Genetics and Molecular Biology*. Red'shine Publication Pvt. Ltd.
- 3. Pragya, K. (2020). Essentials of Genetics. Dream tech Press.
- 4. Veer Bala, R. (2019). Genetics, 4th edition. Med tech.
- Andreas, H & Samuel, C. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology 8th Edition. Cambridge University Press.

Reference Books

- 1. Poonam, A. (2022). *Lippincott Illustrated Reviews: Cell and Molecular Biology*. Wolters Kluwer India Pvt Ltd.
- Harvey, L., Arnold B., Chris, A. K & Monty, K. (2021). *Molecular Cell Biology Ninth edition*.
 W. H. Freeman
- **3.** Nancy, L.C., Rachel, R.G., Carol, C.G., Gisela, G.S & Cynthia, W. (2020). *Molecular Biology: Principles of Genome Function 3rd Edition*. Oxford University Press.
- **4.** Lieberman. (2020). *BRS Biochemistry, Molecular Biology, and Genetics*. 7th edition. Wolters Kluwer India Pvt Ltd.
- 5. Jocelyn, E.K., Elliott, S.G & Stephen, T.K. (2017). *Lewin's GENES XII 12th edition*. Jones and Bartlett Publishers, Inc

E - books

- 1. https://www.pdfdrive.com/lewins-genes-xii-e185848559.html
- 2. https://www.pdfdrive.com/introduction-to-genetics-a-molecular-approach-e187102063.html
- 3. https://www.pdfdrive.com/the-cell-a-molecular-approach-e186369576.html
- 4. https://www.pdfdrive.com/genetics-a-conceptual-approach-e186741220.html
- 5. <u>https://www.pdfdrive.com/cell-biology-genetics-molecular-biology-evolution-and-ecology-e157248372.html</u>

Web References

- 1. <u>https://microbenotes.com/category/molecular-biology/</u>
- 2. https://www.easybiologyclass.com/topic-genetics/
- 3. https://ocw.mit.edu/courses/7-03-genetics-fall-2004/pages/lecture-notes/
- 4. <u>http://ndl.iitkgp.ac.in/document/bnZnR2hPaUVqRU9TbFc2Rmp1MVJzN0dyTCs3OGxyRz</u> <u>daUWpPTzdRV2pBTT0</u>
- 5. <u>http://ndl.iitkgp.ac.in/document/Qkh4R2FGUkRNZjFicFUvWmpzQ2loU1NPaEl6eWpVaX</u> <u>pnNGUwc21iQzZKbUdaczdobHlyeWNpditXM2hpaFNOS1F6dVc4NGltYWZEQ09YbEV1</u> WjJtelE9PQ

Pedagogy

Blackboard, PPT, Videos, Animations, Group Discussion and Quiz.

- 1. Ms. P. ILAMATHY
- 2. Dr. M. KEERTHIGA

Semester-II	Internal Marks: 40	External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/ WEEK	CREDITS
22UBT2CC2P	MOLECULAR BIOLOGY & GENETICS (P)	CORE	3	3

- > To develop skills related to DNA Isolation Techniques.
- > To study about the Quantification of Nucleic acids.
- > To gain knowledge in mutagenesis.
- > To perform experiments on *Drosophila* and observe their genetic variations.
- > To gain knowledge about simple traits in man.

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

СО	CO Statement	Cognitive
Number	CO Statement	Level
CO1	Demonstrate and analyze the DNA isolation methods.	K3, K4
CO2	Infer the separation techniques for DNA and protein and their quantification methods.	K4
CO3	Illustrate and interpret the different mutagenesis techniques.	K3
CO4	Explain the Mendelian traits and distinguish the male and female <i>Drosophila</i> cultures.	K4
CO5	Categorize the different genetic disorders in man using the Pedigree Chart.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	2	3	3	1
CO2	3	3	3	3	2	3	2	3	3	1
CO3	3	2	3	3	2	3	2	3	3	1
CO4	3	2	3	3	1	3	2	2	3	1
CO5	3	3	3	3	1	3	2	2	3	2

"1" – Slight (Low) Correlation, "2" – Moderate (Medium) Correlation, "3"– Substantial (High) Correlation, "-" indicates there is no Correlation.

Syllabus

- 1. Isolation and purification of Genomic DNA from Prokaryotes
- 2. Isolation and purification of Genomic DNA from Eukaryotes
- 3. Isolation and purification of Plasmid DNA
- 4. Separation of DNA by using AGE
- 5. Separation of Protein by using NATIVE PAGE
- 6. Separation of Protein by using SDS PAGE
- 7. Quantification of Nucleic Acids DNA by chemical method
- 8. Quantification of Nucleic Acids RNA by chemical method
- 9. Bacterial mutagenesis using Physical Method
- 10. Transformation
- 11. Observation of simple Mendelian traits among humans.
- 12. Drosophila male and female Identification and Culture.
- 13. Karyotyping with the help of photographs
- 14. Pedigree charts of some common characters like blood group and color blindness.

15. Determination the ABO blood groups in a random sample and calculation of the allele frequency using Hard

Reference Books

- <u>Taneri</u>, B., <u>Asilmaz</u>, E., <u>Delikurt</u>, T., <u>Savas</u>, P., <u>Targen</u>, S., & <u>Esemen</u>, Y. (2020). *Human Genetics and Genomics: A Practical Guide*, John Wiley & Sons.
- Hofmann, A.C., Willson, S & Walker's. (2017). Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press.
- 3. Joshi, S., & Dhamij, N., (2015). Rediscovering Genetics: A Laboratory Manual, Wiley India.
- Malacinski, G.M., & Freifeder's. (2013). *Essentials of Molecular Biology*, Norosa Publishing House.
- 5. Thompson, D. (2011). Cell and Molecular Biology Lab Manual, Norosa Publishing House.

E-Books

- 1. https://jru.edu.in/studentcorner/lab-manual/agriculture/Fundamentals%20of%20Genetics.pdf
- 2. <u>https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1008&context=ny_oers</u>
- 3. https://sjce.ac.in/wp-content/uploads/2018/04/Cell-Biology-Genetics-Laboratory-Manual-17-18.pdf

- 4. <u>https://www.academia.edu/27721547/LABORATORY_MANUAL_BTY108_BASIC_GENETICS</u> _<u>LABORATORY</u>
- 5. https://www2.umbc.edu/summerstem/documents/biology/BIOL302L-SU14-Caruso.pdf

Web References

- 1. https://www.jove.com/v/5058/separating-protein-with-sds-page
- 2. http://www.uwyo.edu/molb2021/virtual-edge/lab13/exp_13a.html
- 3. <u>https://www.youtube.com/watch?v=oBwtxdI1zvk</u>
- 4. <u>https://www.jove.com/v/5082/an-introduction-to-drosophila-melanogaster</u>

Pedagogy

Practical Observation and Demo

- 1. Ms. R. NEVETHA
- 2. Dr. G. GOMATHI

Semester – II	Internal Marks: 25	Internal Marks: 25 E					
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/ WEEK	CREDITS			
23UBT2CC3	BIOMOLECULAR TECHNIQUES	CORE COURSE	2	2			

- > To understand the working principles of different instruments used in the biological field
- ➤ To provide a better understanding of various analytical techniques
- ➤ To operate and maintain common bio instruments effectively and safely.
- To understanding of biomedical instrumentation principles in aspects of device design and applications.
- An ability to analyze contemporary bioinstrumentation studies to make connections and decisions based on their scientific merit.

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define and Express the principle of Microscopy, Electrophoresis, Chromatography, Colorimeter and tracing Techniques	K1, K2
CO2	Demonstrate and analyze of the economic and environmental aspects of bioinstrumentation, including cost-effective instrument selection, maintenance, and sustainable practices	K2, K4
CO3	Interpret the types and applications of microscopy, Electrophoresis, Chromatography, Colorimeter and Centrifugation techniques	К3
CO4	Appraise the advantages of advanced techniques like HR_TEM,2D-GEL, LC-MS, FTIR and NMR	K5
CO5	Elaborate the role of Bioinstrumentation techniques in advancing healthcare, scientific discovery, and the understanding of biological systems	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	1	2	2	1	3	1	2	3	1
CO2	3	2	2	2	1	3	1	2	2	1
CO3	3	3	2	2	1	3	3	2	2	1
CO4	3	3	2	2	1	3	3	2	3	1
CO5	3	3	3	3	1	3	3	3	3	2

"1" - Slight (Low) Correlation, "2" - Moderate (Medium) Correlation,

"3" – Substantial (High) Correlation, "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COS	COGNITIVE
I	Microscopy: Light Microscopy, Bright and Dark field Microscopy, Fluorescence Microscopy, Confocal Microscope, Electron microscopy	5	CO1, CO2, CO3	K1, K2, K3, K4
II	pH Meter & Spectrophotometer: pH Meter: Principle and Operation of pH meter, Calomel Electrode, Glass Electrode, Combined Electrode, Methods of determining pH. Colorimeter – Principle and its applications, Beer Lambert's Law, Spectrophotometer- Principle and its applications, Types of Spectrophotometer- UV – Visible	4	CO1, CO2, CO3	K1, K2, K3, K4
ш	Centrifugation and Imagining Techniques: Centrifugation – Principle, Types – Zonal, Differential, Density gradient centrifugation and ultracentrifugation its applications. Imaging Techniques- X-ray and NMR. Tracer Techniques - Radioactive isotope –Half life, GM Counter, Liquid Scintillation Counter.	5	CO2, CO3, CO4	K1, K2, K3, K4
IV	Electrophoresis: Principle and Applications of Electrophoresis – Types of electrophoresis- Pulsed Field Gel Electrophoresis, SDS-PAGE and 2 D gel; Immunoelectrophoresis; Blotting Techniques; Gel documentation	8	CO3, CO4, CO5	K1, K2, K3, K4
V	Chromatography: Fundamentals of Chromatography - Principle and its applications, Types –TLC, Column, Affinity, Ion –exchange, HPLC.	8	CO3, CO4, CO5	K1, K2, K3, K4
	Self-Study for Enrichment: (Not Included for			
VI	End Semester Examination) Introduction to Instrumentation, AGE	-	CO1, CO2	K1, K2, K3, K4

Text Books

- 1. Agarwal, P.K., Baqri, S.R & Gau, K. (2022). Molecular Biology, Bioinstrumentation and Biotechniques. Pragati Prakashan Publishers.
- 2. Vitha, M. F. (2018). Spectroscopy: Principles and instrumentation. John Wiley & Sons.
- 3. Ohlendieck, K., & Harding, S. E. (2018). Centrifugation and ultracentrifugation. Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology, 1(2), 424-453.
- 4. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). *Principles of instrumental analysis*. Cengage learning.

- 5. Ismail, B., & Nielsen, S. S. (2010). Basic principles of chromatography. *Food analysis*, 27, 473-498.
- 6. Enderle, J., & Bronzino, J. (Eds.). (2012). *Introduction to biomedical engineering*. Academic press.

Reference Books

- 1. Bogusław, B & Irena B (2022). Handbook of Bioanalytics. Springer InternationalPublishing.
- 2. Webster, J. G. (Ed.). (2003). Bioinstrumentation. John Wiley & Sons.
- 3. Khandpur, R. S. (2005). *Biomedical instrumentation: Technology and applications* (Vol. 1). New York: Mcgraw-hill.
- 4. Upadhyay, A., Upadhyay, K., & Nath, N. (1993). Biophysical chemistry principles and techniques.
- 5. Chatterjee, S., & Miller, A. (2012). Biomedical instrumentation systems. Cengage Learning.

E books

- 1. https://www.academia.edu/30824186/6846793_Bioinstrumentation_pdf
- 2. https://files.eric.ed.gov/fulltext/ED407284.pdf
- 3. https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SMB2103.pdf
- 4. https://www.pdfdrive.com/bioanalytical-chemistry-e185517690.html
- 5. https://www.pdfdrive.com/bioanalytical-chemistry-e180345635.html

Web links

- 1. https://nptel.ac.in/courses/102103044
- 2. https://kamarajcollege.ac.in/wp-content/uploads/Allied-I-Bioinstrumentation.pdf
- 3. <u>https://www.youtube.com/watch?v=MvkFWmzFqNM</u>
- 4. <u>https://www.nature.com/scitable/definition/gel-electrophoresis-286/</u>
- 5. https://www.khanacademy.org/science/class-11-chemistry-india/xfbb6cb8fc2bd00c8:ininorganic-chemistry-some-basic-principles-and-techniques/xfbb6cb8fc2bd00c8:in-inmethodsof-purification-of-organic-compounds/a/principles-of-chromatography

Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment, Animations.

Course Designer

Ms. R. NEVETHA

Semester – II	Internal Marks: 40	External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/ WEEK	CREDITS
22UBT2AC3P	MICROBIOLOGY AND BIOCHEMISTRY (P)	ALLIED	4	3

- > To impart the students with hands on skills related to biochemical techniques.
- > To enable the students to perform qualitative analysis of biomolecules.
- > To make the students to maintain aseptic and pure culture techniques of microorganisms.
- > To enhance the students with knowledge about biochemical characterization of microorganisms.

Course Outcome and Cognitive Level Mapping

Upon successful completion of the course, students will be able to

СО	CO Statement	Knowledge Level
Number		
CO 1	Define and Demonstrate aseptic and pure culture techniques in isolation and culture of microorganisms	K1, K2
CO 2	Identify and Classify the type of microorganism using staining techniques & biochemical tests.	K2, K3
CO 3	Make use of various tests for examination of urine & enzymes.	К3
CO 4	Apply various qualitative tests to identify the biomolecules.	K3
CO 5	Identify and Examine the biomolecules present in the given sample.	K3, K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	2	3	1	1	3	1
CO2	3	2	3	3	2	3	1	1	3	1
CO3	3	2	3	3	2	3	2	2	3	1
CO4	3	2	2	3	2	3	2	2	3	1
CO5	3	2	2	3	2	3	2	3	3	1

"1" – Slight (Low) Correlation, "2" – Moderate (Medium) Correlation,
"3" – Substantial (High) Correlation, "-" indicates there is no correlation.

Syllabus

- 1. Preparation of Molarity, Normality solutions and Buffers.
- 2. Qualitative analysis of Carbohydrates
- 3. Qualitative analysis of proteins
- 4. Qualitative analysis of Lipids.
- 5. Estimation of Glucose by DNS method.
- 6. Qualitative chemical examination of Urine.
- 7. Determination of salivary amylase activity.
- 8. Separation of plant pigments using Paper chromatography.
- 9. Media Preparation & Sterilization.
- 10. Isolation and Enumeration of Microorganisms from Water and Soil.
- 11. Pure Culture Techniques Spread plate, Streak plate, Pour plate and Slant preparation.
- 12. Measurement of Bacterial Growth Turbidometric method
- 13. Staining Techniques –Simple staining, Gram's staining & Capsule Staining.
- 14. Cell Motility Hanging drop technique.
- 15. Biochemical Characterization of microorganisms IMViC tests.

Reference Books

- Arora, B., & Arora, D. R. (2020). *Practical Microbiology (2nd Edition)*. CBS Publishers & Distributors.
- Chawla, R. (2020). Practical Clinical Biochemistry: Methods and Interpretations. JP Medical Ltd.
- *3.* Aneja, K.R. (2018). *Laboratory Manual of Microbiology and Biotechnology (2nd Edition)*. ED-TECH.
- 4. Gupta, R.C., Bhargava, S. (2018). Practical Biochemistry (5th Edition). CBS Publishers.
- 5. Cappucino, J. G. (2017). *Microbiology Laboratory Manual*. Pearson.
- Plummer, D. T. (2017). An Introduction to Practical Biochemistry (3rd Edition). Tata McGraw-Hill Education.

E- Books

1. <u>https://www.pdfdrive.com/bensons-microbiological-applications-laboratory-manual-in-general-microbiology-short-version-d185416575.html</u>

- 2. https://www.pdfdrive.com/laboratory-manual-for-general-microbiology-e33507828.html
- 3. <u>https://www.pdfdrive.com/microbiology-laboratory-exercises-justmedeu-d15396585.html</u>
- 4. https://www.pdfdrive.com/laboratory-manual-of-biochemistry-d44169898.html
- 5. https://www.pdfdrive.com/biochemistry-laboratory-manual-e33724502.html

Web References

- 1. <u>https://vlab.amrita.edu/?sub=3&brch=63</u>
- 2. https://vlab.amrita.edu/?sub=3&brch=73
- 3. <u>https://profiles.uonbi.ac.ke/jamesmuthomi/files/acp101_microbiology_practical_exer</u>
- <u>cises.pd</u> f
- 4. https://nptel.ac.in/courses/102103015
- 5. <u>https://jru.edu.in/studentcorner/lab-manual/bpharm/Lab%20Manual%20-</u> %20Biochemistry.pdf

Pedagogy

Practical Observation and Demo

- 1. Dr. R. RAMESHWARI
- 2. Ms. P. JENIFER