CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

M.Sc., Chemistry Syllabus 2024-2025 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG DEPARTMENT OF CHEMISTRY

VISION

 To progress into a centre of superiority in Chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

MISSION

- To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
- To enhance services to the community and build partnerships with the industry.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc., Mathematics, M.Sc., Physics,

M.Sc., Chemistry PROGRAMMES

PO No.	Programme Outcome
	On completion of M.Sc., Programme, the students will be able to
PO1	Problem analysis:
	Provide opportunities to develop innovative design skills, including the ability to
	formulate problems, to think creatively, to synthesize information, and to
	communicate effectively.
PO2	Scientific skills:
	Create and apply advanced techniques and tools to solve the societal environmental
	issues.
PO3	Environment and Sustainability:
	Ascertain eco-friendly approach for sustainable development and inculcate
	scientific temper in the society.
PO4	Ethics:
	Imbibe ethical and social values aiming towards holistic development of learners.
PO5	Lifelong learning:
	Instill critical thinking, communicative knowledge which potentially leads to
	higher rate of employment and also for higher educational studies.

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc. CHEMISTRY

PSO NO.	Programme Specific Outcomes` Students of M.Sc., Chemistry will be able to	POs Addressed			
PSO1	Acquire knowledge in basic concepts, fundamental principles, and applications of chemical and scientific theories and their relevancies in the day-to-day life.	PO1 PO2			
PSO2	PSO2 Design experiments, analyze, synthesize and interpret data to provide solutions to different industrial problems by working in the pure, inter and multi-disciplinary areas of chemical sciences.				
PSO3	Attain maneuver in diverse contexts with Global Perspective	PO3 PO4			
PSO4	Gain a thorough Knowledge in the subject to be able to work in projects at different research as well as academic institutions.	PO1 PO2 PO5			
PSO5	Afford Global level research opportunities to pursue Ph.D programme targeted approach of CSIR – NET examination	PO1 PO2 PO3 PO4 PO5			

Cauvery College for Women (Autonomous), Trichy-18 PG AND Research Department of Chemistry

M.Sc., Chemistry

(For the Candidates admitted from the Academic year 2024-2025 onwards)

ter				Inst.	ts		Ε	xam	_
Semester	Course	Course	Course Code	Hrs. /	Credits	s.	Marks		Total
Se		Title		week	Ŭ	Hrs.	Int.	Ext.	
		Organic Reaction Mechanism – I	23PCH1CC1	6	5	3	25	75	100
	Core Course – II (CC)	Structure and Bonding in Inorganic Compounds	23PCH1CC2	6	5	3	25	75	100
	Core Course –III (CC)	Molecular Spectroscopy	23PCH1CC3	6	5	3	25	75	100
	Core Practical - I (CP)	Organic Chemistry – I (P)	24PCH1CC1P	6	5	6	40	60	100
Ι	Discipline Specific Elective Course-I (DSE)	A. Analytical Instrumentation Techniques (P)	24PCH1DSE1AP						
		B. Nanoscience and Nanotechnology (P)	22PCH1DSE1BP	6	3	6	40	60	100
		C. Biochemistry (P)	22PCH1DSE1CP						
		Total	1	30	23				500
	15 Days INTERNSHIP during Semester Holidays								

S. No	Courses	No. of Courses	No. of Credits	Marks
1.	Core Course – (CC)	6	30	600
2.	Core Choice Course– (CCC)	3	12	300
3.	Core Practical - (CP)	6	30	600
4.	Discipline Specific Elective- (DSE)	3	09	300
5.	Generic Elective Course - (GEC)	2	04	200
6.	Project	1	05	100
7.	Internship	1	02	100
	Total	22	92	2200

Courses & Credits for PG Science Programmes

The internal and external marks for theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	25	75

Separate passing minimum is prescribed for Internal and External

For Theory:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e.30 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Practical:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e.24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project:

Marks for Dissertation: 80

Marks for Viva Voce : 20

Total marks : 100

Internal Component (Theory)

Component	Marks
Library	05
Assignment &	10
Seminar	
CIA -I	05
CIA-II	05
Total	25

Internal Component (Practical)

Component	Marks
Observation	05
Record	05
Continual	05
performance	
Model	10
Total	25

Question Paper Pattern

PART A (10 X 2=20) Answer all the questions

PART B (5 X 5=25) Answer all the questions

PART C (3 X 10=30) Answer any three questions

Semester I	Internal Mark	s:25	External Marks:75		
COURSE CODE	COURSET ITLE	CATEGORY	Hrs /Week	CREDITS	
23PCH1CC1 ORGANIC REACTION		CORE	6	5	
	MECHANISM-I				

Course Objective

- > To learn the basic concepts of aromaticity and stereochemistry of various organic molecules.
- > To understand the feasibility and the mechanism of various organic reactions.
- > To comprehend the techniques in the determination of reaction mechanisms.
- > To understand the concept of stereochemistry involved in organic compounds.
- To correlate and appreciate the differences involved in the various types of organic reaction Mechanisms.

Prerequisites

Aromaticity, oxidation, reduction and symmetry

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to				
CO1	Recall and summarize the fundamentals of reaction intermediates, electrophilic and nucleophilic substitution reactions, aromaticity, and stereochemistry.	K1, K2			
CO2	Interpret the concept to Huckels theory, thermodynamic and kinetic requirements of reactions: conformation analysis and substitution reactions	К3			
CO3	Categorize the determination of intermediates, aromaticity, configuration and reactivity of aliphatic and aromatic compounds towards substitution reaction.	K4			
CO4	Evaluate aromatic character, stereo analysis, pathway of reaction mechanism.	K5			
CO5	Predict the intermediate, conditions and product of substitution mechanism.	K6			

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	2

"1"- Slight (Low) Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High) Correlation

"-"indicates there is no correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	CONGNITIVE LEVEL
Ι	Methods of Determination of Reaction	18	CO1,	K1, K2, K3,
	Mechanism: Reaction intermediates-transition		CO2, CO3,	K4, K5, K6
	state-energy profile diagrams - Thermodynamic		CO4,	
	and kinetic requirements of reactions -		CO5	
	Hammond's postulate - Methods of			
	determining mechanism: non-kinetic methods -			
	product analysis - determination of			
	intermediates – isolation - detection and			
	trapping. Cross-over experiments - isotopic			
	labelling - isotope effects and stereo chemical			
	evidences. Kinetic methods - relation of rate			
	and mechanism- Effect of structure on			
	reactivity- Hammett and Taft equations -			
	Linear free energy relationship - partial rate			
	factor- substituent and reaction constants.			
II	Aromaticity: Aromatic character: Huckel's	18	CO1,	K1, K2, K3,
	theory of aromaticity - three, four, five, six,		CO2, CO3,	K4, K5, K6
	seven and eight membered rings- other		CO4, CO5	
	systems with aromatic sextet- concept of homo		COS	
	aromaticity and anti-aromaticity- Craig'srule –			
	applications - consequences of aromaticity			
	non-alteration in bond length -Huckel's MO			
	calculation - Electron occupancy in -NMR			
	concept of aromaticity and anti-aromaticity.			
III	Stereochemistry and Conformational	18	CO1,	K1, K2, K3,
	Analysis: Stereoisomerism–optical activity and		CO2, CO3,	K4, K5, K6
	chirality – types of molecules exhibiting optical		CO4,	
	activity – R, S and E, Z configuration -		CO5	

	absolute configuration – chirality in molecules with non-carbon stereo centres (N, S and P) – molecules with more than one chiral centre. Biphenyls, allenes, spiranes and analogues- Atropisomerism- Helicity and chirality- Resolution–methods of resolution – Conformations of mono and di substituted cyclohexane system and decalin. Quantitative correlation between conformation and reactivity.			
IV	AromaticandAliphaticElectrophilicSubstitution:Aromatic electrophilic substitution: Orientationand reactivity of di- and polysubstitutedphenol,nitrobenzene andhalobenzene.Reactions involving nitrogenelectrophiles:nitration,nitrosationanddiazoniumcoupling;Sulphonation-Halogenelectrophiles:chlorinationandbromination-Carbonelectrophiles:Friedel-craftsalkylation,acylationand arylationnettrophilic substitutionMechanisms: SE1, SE2and SEi-Mechanism and evidences.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	AromaticandAliphaticNucleophilicSubstitution:Aromaticnucleophilicsubstitution:Mechanisms - S_NAr , S_N1 andBenzyne mechanisms - Evidences - reactivityEffect of structure - leaving group andattacking nucleophile.Reactions: Oxygen andSulphur-nucleophiles-Buchererand	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	Rosenmund reactions, von Richter, Sommelet- Hauser and Smiles rearrangements - S_N1 , ion pair, S_N2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon. Swain- Scott, Grunwald- Winstein relationship			
	- Ambident nucleophiles			
VI	Self-Study for Enrichment: ((Not to be included for External Examination)	-	CO1, CO2 CO3	K1, K2, K3, K4
	Rules of resonance-tautomerism -steric effects- Enantiomers and diastereomers- Bredt's rule- neighbouring group participation.			

Text Books

- Mukherji, S. M Singh. S. P. (2015). Reaction Mechanism in Organic Chemistry (Revised Edition): Trinity; New Delhi.
- 2. Kalsi. P.S. (1993). Stereochemistry. Wiley eastern limited; New Delhi.
- 3. Jagdamba Singh. (2016). Organic synthesis: Pragati Prakashan.
- 4. Bansal. R. K. (1975). Organic Reaction Mechanisms. Tata McGraw Hill.

Reference Books

- March and Smith. M. B March's Advance Organic Chemistry Reactions, Mechanisms and Structure, 7thEdition. (2013), Wiley, New York.
- 2. Finar. I. R,Organic Chemistry Vol.II 7th edition. (2009), Pearson, New Delhi.
- Nasipuri. D, Stereo chemistry of organic compounds Principles, 2ndEdition. (2002), New Age International and applications.
- Lowry, T. H. E and Richardson. K. S, Mechanism and Theory in Organic chemistry, 3rdedition. (1997), Benjamin Cummings Publishing, USA.

 Carey. F. A and Sundberg. R. J, Advanced Organic chemistry Part A and B,5thedition. (2007), Springer, Germany.

Web References

- 1. <u>https://openstax.org/books/chemistry-2e/pages/12-6-reaction-mechanisms</u>.
- 2. http://courses.washington.edu/medch562/pdf/MEDCH400_Stereochem.pdf
- 3. https://universe.bits-pilani.ac.in/uploads/Dubai/rusalraj/Substitution%20Reactions.pdf
- 4. <u>https://iscnagpur.ac.in/study_material/dept_chemistry/5.1_RRT_ARSN.pdf</u>.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. C. Rajarajeswari

Semester I	Internal Marks: 25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	HRs/ WEEKS	CREDITS	
23PCH1CC2	STRUCTURE AND BONDING IN INORGANIC COMPOUNDS	CORE	6	5	

Course Objective

- To articulate the learning of solid state in chemistry
- The subject lays a foundation to clusters and organometallic compounds

Prerequisites

Clusters, Solid state, organometallic compounds, Band theory

Course Ou	tcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course students will be able to	Cognitive Level
CO1	Outline the geometry of inorganic compounds	K1, K2
CO2	Identify the nature of binding and packing of ions in solids	К3
CO3	Classify the structure of clusters, metal carbonyls and crystals	K4
CO4	Compare the structural features of various inorganic compounds	К5
CO5	Predict the radius ratio and defects of crystals	K6

Mapping with Programme Out comes

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	2	3	3	3	2	2
CO2	2	3	2	2	1	3	2	3	3	3
CO3	3	2	2	3	3	3	3	3	2	2
CO4	3	3	2	1	2	3	2	3	3	2
CO5	3	2	3	2	2	3	3	2	3	2

"1" - Slight or No Correlation

"2" -(Moderate(/Medium) correlation

"3" – Substantial (High) Correlation

"-" – indicates No Correlation

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITI VE
				LEVEL
I	Structure of main group compounds and clusters: VB theory – Effect of lone pair and electro negativity of atoms (Bent's rule) on the 	18	CO1 CO2 CO3 CO4 CO5	LEVEL K1 K2 K3 K4 K5 K6
II	Organo metallic Compounds:	18	C01	K1
	Hapticity of ligands- 18 Electron rule and its limitation-Classification of organometallic compounds – structure of methyl lithium, Zeise's salt and Ferrocene- Metal carbonyls – EAN rule – Mono and poly nuclear carbonyls – preparation, reactions and structure (Ni(CO)4, Fe(CO)5, Cr(CO)6, Mn ₂ (CO) ₁₀ , Co ₂ (CO) ₈ and Fe ₂ (CO) ₉ – Bonding in metal Carbonyls – Metal- ethylenic complexes – methods of formation	10	CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

	-bonding – chemical properties.			
	containg chomical properties.			
III	Solid state Chemistry – I	18	C01	K1
	Ionic crystals: Packing of ions in simple,		CO2 CO3	K2 K3
	hexagonal and cubic close packing, voids in		CO4	K4
	crystal lattice, Radius ratio, Crystal systems		CO5	K5 K6
	and Bravis lattices, Symmetry operations in			
	crystals, glide planes and screw axis; point			
	group and space group; Solid state			
	energetics: Lattice energy – Born-Lande			
	equation - Kapustinski equation, Madelung			
TT 7	constant.	10	001	174
IV	Solid state Chemistry – II	18	CO1 CO2	K1 K2
	Structural features of the crystal systems:		CO3	K3
	Rock salt, zinc blende &wurtzite, fluorite		CO4 CO5	K4 K5
	and anti-fluorite, rutile and anatase,			K6
	cadmium iodide and nickel arsenide; Spinels			
	-normal and inverse types and perovskite			
	structures. Crystal Growth methods: From			
	melt and solution (hydrothermal, sol-gel			
	methods) – principles and examples.			
V	Band theory and defects in solids	18	CO1 CO2	K1 K2
	Band theory – features and its application		CO2 CO3	K2 K3
	of conductors, insulators and		CO4 CO5	K4 K5
	semiconductors, Intrinsic and extrinsic			K5 K6
	semiconductors; Defects in crystals - point			
	defects (Schottky, Frenkel, metal excess			
	and metal deficient) and their effect on the			
	electrical and optical property, laser and			
	phosphors; Linear defects and its effects			

	due to dislocations.		
VI	Self-Study for Enrichment(Not to be included for ExternalExamination)High-valent metal Clusters and halideClusters-Bragg's law, powder diffractionpattern. X-ray diffraction and Electrondiffraction comparison	CO1 CO2	K2, K3

Text Books

- Greenwood. (1996). Chemistry of the Elements, United Kingdom, Elsevier Science & Technology Books.
- Kaesz, H., Adams, R., Shriver, D., Kaesz, H., Adams, R., Shriver, D. (1990). The Chemistry of Metal Cluster Complexes.
- Sharma, L. R., Puri, B. R., Sharma, L. R., Puri, B. R. (1976). Principles of Inorganic Chemistry: For B.Sc. and B.Sc. (Hons.) Classes of Indian Universities. India:S.Nagin.
- Cotton, F. A., Wilkinson, G., Cotton, F. A., Wilkinson. (2007). Advanced Inorganic Chemistry,6th Edition, India: Wiley India Pvt. Limited.
- 5. Keiter, E.A. (2006). Inorganic Chemistry: Principles of Structure and Reactivity. India: Pearson Education.
- Arthur, W. Adamson Paul, D. (1975). Fleischauer, Concepts of Inorganic Photochemistry. United Kingdom: Wiley.
- West, A. R., (2014). Solid state Chemistry and its applications, 2ndEdition (Students Edition), John Wiley & Sons Ltd.,.
- 8. Bhagi, A.K., Chatwal, G. R. (2001). A textbook of inorganic polymers, Himalaya Publishing House.
- 9. Smart, L., Moore E. (2012). Solid State Chemistry An Introduction, 4th Edition, CRC Press.
- 10. Purcell, K. F., Kotz, J. C. (1977). Inorganic Chemistry; W.B. Saunders company: Philadelphia.
- 11. Huheey, J. E., Keiter, E. A., Keiter R. L. (1983). Inorganic Chemistry; 4th ed.; Harper and Row: NewYork.

Reference Books

- 1. Lee, J.D., (2008). ConciseInorganicChemistry,5th Edition. (2008).India:Wiley India Pvt. Limited.
- 2. Gurdeep Raj, (2020). Advanced Inorganic ChemistryVol-1, KrishnaPrakashan.
- Ferraudi, G. J., Ferraudi, G. J. (1988). Elements of Inorganic Photochemistry. United Kingdom: Wiley.
- Pearson, R. G., Basolo, F., Pearson, R. G., Basolo, F. (1967). Mechanisms of Inorganic Reactions: A Study of Metal Complexes in Solution. United Kingdom: Wiley.
- Sharma, R.K., Sharma, R. K. (2007). Inorganic Reaction mechanisms. India: Discovery Publishing House.
- 6. Douglas, D. E. McDaniel, D.H., Alexander, J. J. (1994). Concepts and Models in Inorganic Chemistry, 3rd Ed, John Wiley & Sons, Inc., New York.
- 7. Tilley, R. J. D., (2013). Understanding Solids The Science of Materials, 2nd edition, Wiley Publication.
- 8. Rao, C. N. R., Gopalakrishnan, J., (1997). New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press.

Web References

- 1. https://www2.chemistry.msu.edu/courses/cem151/chap24lect_2019.pdf
- 2. http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry.pdf
- 3. https://www.usb.ac.ir/FileStaff/2896_2019-4-18-0-9-32.pdf
- 4. https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf
- 5. https://www.chem.uci.edu/~lawm/11-16.pdf
- 6. https://www.usb.ac.ir/FileStaff/5269_2018-9-18-10-21-39.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. K. Shenbagam

Semester I	Internal Marks:25	External Marks:75		
COURSECODE	COURSETITLE	CATEGORY	Hrs /Week	CREDITS
23PCH1CC3	MOLECULAR SPECTROSCOPY	CORE COURSE	6	5

Course Objective

- > To understand, rotational and vibrational level transition in polyatomic molecules.
- To know the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions
- > To interpret first and second order splitting pattern NMR signals of the molecules using correlation techniques such as COSY, HETCOR, NOESY.
- > To learn the principle of ESR, EPR and Raman spectroscopy.
- > To understand fragmentation pattern of molecules in Mass spectroscopy.
- > To predict the structure of molecules using various spectral data.

Prerequisites

Electromagnetic radiation, molecular energy level, non-Rigid rotor, selection rules for spectroscopy

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand principle of various spectral techniques involving molecular absorption and emission of electromagnetic radiations.	K1, K2
CO2	Apply NMR and MS spectroscopic techniques in solving structure of organic molecules.	K3
CO3	Explain the principle, rules to analyses, compare and identify the structure of organic molecules using various spectral techniques.	K4
CO4	Discriminate structural and stereoisomers of compound using NMR, ESR and mass spectral techniques.	K5
CO5	Evaluate energy of rotational levels, isotopic mass of the elements.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"–Slight (Low)Correlation

"3"-Substantial (High)Correlation

"2"—Moderate (Medium)Correlation "-" indicates there is no correlation

SYLLABUS

UNIT	CONTENT	HOURS	COs	CONGNITIVE LEVEL
Ι	Rotational and Raman Spectroscopy:Rotational spectra of diatomic and polyatomicmolecules- intensities of rotational spectral lines- isotopic substitution effect - non-rigid rotatorsRaman effect - pure rotational Raman spectra oflinear and asymmetric top molecules - stokes andanti-Stokes lines- Vibrational Raman spectra -rule of mutual exclusion- rotational fine structureO and S branches - Polarization of Ramanscattered photons.	18	C01 C02 C03 C04 C05	K1 K2 K3 K4 K5
Π	Vibrational Spectroscopy:Vibrational Spectroscopy:Vibrations of molecules - harmonic and anharmonic oscillators - energy expression - vibrational wave functions — symmetry - selection rules - energies of spectral lines - hot bands - effect of isotopic substitution - Diatomic vibrating rotorvibrational - rotational spectra of polyatomic molecules - symmetry properties - overtone - combination frequencies- P, Q and R branches - parallel and perpendicular vibrations of linear and symmetric top molecules.	18	C01 C02 C03 C04 C05	K1 K2 K3 K4 K5
III	Electronic spectroscopy : Electronic spectroscopy of diatomic molecules Frank-Condon principle - dissociation and pre- dissociation spectra- $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection rules - Photoelectron Spectroscopy: Principle - photoelectron spectra of simple molecules - X-ray photoelectron spectroscopy	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

	(XPS) - Lasers: Laser action population inversion			
	- properties of laser radiation examples of simple			
	laser systems.			
IV	NMR and Mass spectrometry:	18	CO1	K1
	NMR spectroscopy - Principle -Chemical shift,		CO2 CO3	K2 K3
	Factors influencing δ - shielding and deshielding.		CO3 CO4	K3 K4
	spin-spin interactions- spin decoupling- Nuclear		CO5	K5
	over Hauser effect (NOE)- Factors influencing			
	coupling constants- 2D NMR – COSY, NOESY			
	Mass Spectrometry: Ionization techniques isotope			
	abundance- molecular ion -base peak meta stable			
	ions -fragmentation processes of organic			
	molecules- deduction of structure through mass			
	spectral fragmentation.			
V	ESR and Mossbauer Spectroscopy: ESR-	18	CO1	K1
	principle-selection rule- g value-hyperfine		CO2 CO3	K2 K3
	coupling parameter (A) –zero field splitting -		CO4	K4
	Kramer's degeneracy – isotropy and anisotropy in		CO5	K5
	g value- application of ESR to organic and			
	inorganic system (H, CH3, p-benzo semiquinone			
	and bis (salicylaldimine) copper (II) complex)-			
	Principle of Mossbauer spectroscopy: Doppler			
	shift - recoil energy. Isomer shift, quadrupole			
	splitting - magnetic interactions - applications:			
	high and low spin Fe and Sn compounds.			
X 7 X	Self-study: (Not for final examination)		001	171
VI	Problems based on joint application, PMR,	-	CO1 CO2	K1 K2
	CMR, and Mass. (Including reaction sequences),			
	DEPT, INTEPT, Chemical spin decoupling of			
	rapidly exchangeable protons (OH, SH, COOH,			
	NH, NH2).			

Text Books

- 1. Banwell C.N (2017), Fundamentals of molecular Spectroscopy, 4th edition, McGraw Hill, New Delhi.
- 2. Silverstein. P. M and Western. F.X (2014), Spectroscopic Identification of Organic compounds, 8th edition, John Wiley, New York
- 3. Kalsi. P. S (2016), Spectroscopy of Organic Compounds, 7th edition, New Age International Publishers, New Delhi
- 4. William Kemp (2019), Organic spectroscopy, 3rd edition, Macmillan publisher Pvt, Bangalure.
- 5. Williams D.H and Fleming I, Spectroscopic Methods in Organic Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 6. Drago R. S, Physical Methods in Chemistry; Saunders: Philadelphia, 1992

Reference Books

- 1. Drago R.S (2012), Physical Methods in Inorganic Chemistry; Affiliated East-West press Pvt. Ltd, New Delhi.
- 2. Kaur. K, (2014), Spectroscopy, 16th edition, Pragati Prakashan Educational Publisher.
- 3. Sharma Y. R (2016), Elementary organic spectroscopy, revised 4th edition, S. Chand &Co Ltd, New Delhi.
- 4. Atkins P.W and de Paula J, Physical Chemistry, 7th Ed., Oxford University Press, Oxford, 2002.
- 5. Rahman A, Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag, New York, 1986.
- 6. Levine N.I, Molecular Spectroscopy, John Wiley & Sons, New York, 1974.

Web References

- 1. http://www.organic-chemistry.org/
- 2. http://www.organicworldwide.net/
- 3. http://www.ccdc.cam.ac.uk/products/csd/
- **4.** <u>http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Chemistry%20Paper-IX%20</u> Unit-5. pdf
- 5. <u>http://www.rcsb.org/pdb/home/home.do</u>
- 6. <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u>
- 7. https://www.digimat.in/nptel/courses/video/104106122/L14.html

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. V. Sangu.

Internal Marks: 40		External Marks: 60					
COURSE TITLE	CATEGORY	Hrs / Week	CREDITS				
ORGANIC CHEMISTRY-I (P)	CORE	6	5				
	COURSE TITLE ORGANIC	COURSE TITLECATEGORYORGANICCORE	COURSE TITLECATEGORYHrs / WeekORGANICCORE6				

Course Objectives

To perform the qualitative analysis of a given organic mixture and to carry out thepreparation of organic compounds.

Pre-requisites

Separation of components, Qualitative analysis

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Apply the principles of separation in organic mixtures.	K1
CO2	Prepare the organic compounds by single stage method.	K2
CO3	Identify various functional group in organic compounds.	К3
CO4	Develop skills in separating techniques	К3
CO5	Analyze the nature of organic mixture containing two components.	K4

Mapping of CO with PO and PSO

CCOs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO 1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	3	2	3	1	1	1	2	1
CO4	3	2	2	3	2	2	3	2	3	2
CO5	2	3	3	3	2	1	2	2	2	2

"1" – Slight (Low) Correlation

"3" - Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

SYLLABUS

I. QUALITATIVE ANALYSIS OF AN ORGANIC MIXTURE CONTAINING TWO

COMPONENTS

Mixtures containing two components are to be separated (pilot separation) and purified (bulk separation).

II PREPARATION OF ORGANIC COMPOUNDS (SINGLE STAGE)

- 1. Methyl-*m*-nitrobenzoate from methyl benzoate (nitration)
- 2. Glucose pentaacetate from glucose(acetylation)
- 3. Resacetophenone from resorcinol(acetylation)
- 4. Benzophenone oxime from benzophenone (addition)
- 5. o-Chlorobenzoic acid from anthranilic acid (Sandmayer reaction)
- 6. *p*-Benzoquinone from hydroquinone (oxidation)
- 7. Phenylazo-2-naphthol from aniline(diazotization)

Text Books

- 1. Mohan. J (2003), Organic Analytical Chemistry: Theory and Practice, Narosa
- 2. Ahluwalia. V. K Bhagat. P, And Agarwal. R (2005), Laboratory Techniques in Organic

Chemistry, I.K. International

Reference Books

- 1. Gnanaprakasam, N.S and Ramamurthy. G (1987), Organic Chemistry Lab Manual, S. V. Printers
- 2. Vogel. A. I Tatchell. A. R Furniss B.S Hannaford. A. Jand Smith P. W. G, (1989), Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall

Web References

- 1. https://authors.library.caltech.edu/25034/10/BPOCchapter9.pdf
- 2. http://do.chem.uni.wroc.pl/system/files/Preparatory%20classes.pdf.

Pedagogy

Demonstration and practical sessions

Course Designers

Dr. P. Pungayee Alias Amirtham

Dr. R. Subha

Semester I	Internal Marks: 40		External Marks: 60						
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS					
24PCH1DSE1AP	ANALYTICAL INSTRUMENTATION TECHNIQUES (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3					

Objectives

- Gain proficiency in the use of analytical pipettes, volumetric measurements, and analytical instruments.
- ➤ Learn how to correctly use a UV/Vis spectrophotometer.
- ➢ Gain familiarity with a new technique.
- Perform quantitative analytical methods including titrations, pH measurements, spectrophotometry, and chromatography.

Prerequisites

Chromatography, qualitative analysis and spectroscopy

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Become familiar with fundamental concepts of instruments.	K1
CO2	Observe the application of Instrumentation Techniques	K2
CO3	Equipped with knowledge and skills in lab safety, preparation of solutions numerically.	K3
CO4	Develop the core skills to parse existing chromatographic protocols and identify the key factors influencing a chromatography experiment	K4
CO5	Acquire expertise in calibration techniques.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO	PSO3	PSO	PSO5	PO1	PO	PO3	PO	PO
		2		4			2		4	5
CO1	2	3	3	3	3	2	3	2	3	3
CO2	2	2	2	1	2	2	2	3	2	2
CO3	3	2	2	2	2	1	2	2	2	2
CO4	3	2	3	2	2	3	2	2	2	3
CO5	2	3	2	3	3	2	2	2	2	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Corretation

"-" indicates there is no correlation.

Syllabus

- 1. Use and calibration of volumetric equipment(volumetric flasks, pipette's and burette's).
- 2. Separation of monosaccharide present in a given mixture by paper chromatography.
- 3. Determination of chlorine in water using colorimetry.
- 4. Analysis of soil
 - i) Determination of pH of soil.
 - ii) Determination of total soluble salts by conductometry
- 5. Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps(use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.
- 6. Separation of a mixture of metals by TLC.
- 7. Determining the concentration of citric acid in soft drink using titration.
- 8. Determination of equilibrium constant by colorimetry.
- 9. Verification of Beer-Lambert's law by colorimetry.
- 10. Determination of ascorbic acid in lime juice by titration.
- 11. Spectrophotometric determination of iron in vitamin tablets.
- 12. Estimation of aspirin from tablet using titration method.
- 13. Determination of strength of commercial vinegar by conductometry.
- 14. Analysis of potassium permanganate by UV/visible spectrophotometer.
- 15. Estimation of sugar by titrimetric method.

Text Books

- 1. Fifield, F.W. (2011). Principles and Practice of Analytical Chemistry. United States: Springer US.
- 2. Lundanes, E., Reubsaet, L., Greibrokk, T., Lundanes, E., Reubsaet, L., Greibrokk, T. (2013). Chromatography: Basic Principles, Sample Preparations and Related Methods. Germany: Wiley.
- 3. Franson, S., Mary, H. (2007). Standard Methods for the Examination of Water and Wastewater. United States: American Public Health Association.

Reference Books

- 1. Harris, D. C. (2012). Exploring Chemical Analysis: International Edition. United Kingdom: Macmillan Learning.
- 2. Dilts, R. V. (2010). Analytical Chemistry: Methods of Separation. United Kingdom: Van Nostrand.
- 3. Harris, D. C., Lucy, C. A. (2019). Quantitative Chemical Analysis. United States: W. H. Freeman.
- 4. Mikeš, O., Mike S, O., Chalmers, R. A. (2007). Laboratory Handbook of Chromatographic Methods. United Kingdom: Van Nostrand.

Web References

- 1. https://www.epa.gov/sites/default/files/2015-12/documents/9214.pdf
- 2. https://chem.libretexts.org/Ancillary_Materials/Laboratory_Experiments/Wet_Lab_Experiments/Gen eral_Chemistry_Labs/Online_Chemistry_Lab_Manual/Chem_10_Experiments/11%3A_Titration_of_ Vinegar_(Experiment)
- 3. https://www.lacitycollege.edu/Departments/Chemistry/documents/Chemistry-101-Experiments-Documents/E12B_titration2016
- 4. https://www.uobabylon.edu.iq/eprints/publication_10_11891_250.pdf

Pedagogy

Table Work

Course Designer

Dr. G. Sivasankari

Semester I	Internal Marks: 25		External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS			
22PCH1DSE1BP	NANOSCIENCE AND NANOTECHNOLOGY (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3			

Course Objectives

- Covers the whole spectrum of nanomaterials ranging from overview, synthesis, properties, and characterization of nano phase materials to application including some new developments in various aspects.
- Provides introduction to the theory and practice on Nanomaterials and various techniques used for the fabrication and characterization of nanostructures.

Prerequisites

Precipitation, reduction and absorption methods.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Exhibit proficient knowledge of the Nanoscience and related fields	K1
CO2	Understand in broad outline of Nanoscience and Nanotechnology.	K2
CO3	Acquire an understanding the Nanoscience and Applications	K3
CO4	Apply principles of basic science concepts in understanding, analysis and prediction of matter at Nano scale.	K3
CO5	Synthesis nanomaterials and explore their application and the impact of nanomaterials on environment	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	2
CO2	2	3	2	3	2	3	2	1	3	2
CO3	2	3	3	2	3	1	1	2	2	1
CO4	3	2	2	3	2	2	3	2	2	2
CO5	2	3	3	3	2	1	2	2	2	2

"1" – Slight (Low) Correlation \neg "2" – Moderate (Medium) Correlation \neg

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

SYLLABUS

- 1. Synthesis of CuO nano particles by sonochemical method.
- 2. Synthesis of ZnO nano particles by sonochemical method
- 3. Synthesis of Carbon nano particles by Microwave Irradiation Method.
- 4. Characterization of nanoparticles by UV- Visible Spectrophotometer.
- 5. Synthesis of Silver Nanoparticles by Chemical reduction method and their UV-VIS absorption studies.
- 6. Synthesis of Iron Oxide Nanoparticles by Polyol method and their UV-VIS absorption studies.
- 7. Synthesis of ZnO Nanoparticles by Co-Precipitation Method.
- 8. Preparation of thiolated silver nanoparticles.
- 9. Synthesis of Nanoparticles from plant materials by Sono chemical Method.

Text Books

- Edelstein, A.S., Cammaratra, R.C. (2017). Nanomaterials: Synthesis, Properties and Applications, Second Edition. United Kingdom: Taylor & Francis.
- 2. Wiederrecht, G. (2010). Handbook of Nanofabrication. Italy: Elsevier Science.
- Altavilla, C., CilibertoE.(2017). Inorganic Nanoparticles: Synthesis, Applications, and Perspectives. United Kingdom: CRC Press.

Reference Books

- 1. Fritzsche, W., Köhler, M., Fritzsche, W., Köhler, M. (2008). Nanotechnology: An Introduction to Nanostructuring Techniques. Germany: Wiley.
- Muller, A., A.K., Cheetham., Rao C.N.R. (2006). The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Germany: Wiley.

Web References

- <u>https://www.researchgate.net/publication/229419482_Sonochemical_synthesis_size_controlling_an_d_gas_sensing_properties_of_NiO_nanoparticles</u>
- 2. https://www.sciencedirect.com/science/article/pii/S1569441018301445
- 3. https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj01360a
- 4. <u>https://www.researchgate.net/publication/231240704_UreaMelt_Assisted_Synthesis_of_NiNiO_Na_noparticles_Exhibiting_Structural_Disorder_and_Exchange_Bias_</u>

Pedagogy

Table Work

Course Designers

- 1. Dr. G. Sivasankari
- 2. Dr. R. Subha

Semester I	Internal Marks:25	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS		
22PCH1DSE1CP	BIOCHEMISTRY(P)	DISCIPLINE SPECIFIC ELECTIVE	6	3		

Course Objectives

- > To expertise the student to identify and isolate various biomolecules.
- To acquire training to estimate the quantity of biomolecules present by applying biochemical techniques.

Prerequisites

Chromatographic techniques, biomolecules and plant pigments.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall and understand the techniques involved in isolation, separation and estimation of various biomolecules	K1 & K2
CO2	Develop and apply the skills in handling various chromatographic and colorimetric techniques	K3
CO3	Qualitatively and quantitatively analyze the biomolecules	K4
CO4	Exemplify in handling various chromatographic techniques of biomolecules.	K5
CO5	Interpret the importance of technical analysis required for various biomolecules	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	3	2	2	3	2	2	3
CO2	3	3	2	3	3	3	3	2	2	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	2	3	3	3	3	2	2	3
CO5	3	3	3	3	3	2	3	3	3	3

"1"-Slight (Low) Correlation

"3"-Substantial (High) Correlation

"2"–Moderate (Medium)Correlation "-"indicates there is no correlation.

Syllabus

I. EXTRACTION OF BIOMOLECULES

- 1. Starch from potato.
- 2. Casein from milk.
- 3. Oil from oil seeds.
- 4. Cellulose from plant material.

II. BIOCHEMICAL TECHNIQUES

- 1. Identification of amino acid by circular and ascending paper chromatography.
- 2. Separation of amino acids and carbohydrates in a mixture by paper chromatography.
- 3. Separation of lipids by thin layer chromatography.
- 4. Separation of a mixture of proteins and salt by column chromatography.
- 5. Separation of plant pigments using Chromatography techniques TLC, Paper chromatography.

III. QUALITATIVE ANALYSIS OF BIOMOLECULES

- 1. Carbohydrate-Glucose, Fructose, Sucrose, Lactose and Starch.
- 2. Proteins Precipitation reactions of proteins, Colour reactions of proteins, colour reactions of amino acids like tryptophan, tyrosine, cysteine, methionine, arginine, proline and histidine.
- 3. Lipids-solubility, acrolein test, Salkowski test, Lieberman-Burchard test.
- 4. Qualitative tests for nucleic acid.

IV. COLORIMETRIC ESTIMATION

- 1. Glucose by DNS method.
- 2. Protein by Biuret/Bradford and Lowry's method.
- 3. Uric acid.
- 4. Urea by DAM method.
- 5. Creatinine by Jaffe's method.
- 6. Phosphorous by Fiske and Subbarow's method.

Text Books

- Rajan, S. & Selvi Christy. R.(2018). Experimental Procedures in Life Sciences. CBS Publishers & Distributors.
- 2. Wilson, K.&Walker, J. (2000). Principles and Techniques of Practical Biochemistry. Fifth edition. Cambridge University Press.
- 3. Upadhyay & Upadhyay Nath (2016). Biophysical Chemistry: Principles and Techniques. Himalaya Publishing House.

Reference Books

- Hofmann, A. & Clokie, S. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. 8thedition. Cambridge University Press.
- 2. Wood, W. B.(1981).Biochemistry-A problem Approach. Addison Wesley.

Web References

- 1. <u>http://nec.edu.np/Publications/Chemistry_LAB_Manual/Experiment%204.pdf</u>
- 2. <u>https://www.mlsu.ac.in/econtents/1616_Biochemical%20Tests%20of%20Carbohydrate, %20protein,%20lipids%20and%20salivary%20amylase.pdf</u>
- 3. <u>https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/files/files/2% 20 ESTIMATION% 20</u> OF%20PROTEIN%20BY%20LOWRY.pdf
- 4. <u>https://orbitbiotech.com/estimation-of-reducing-sugars-by-dnsa-method/</u>
- 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575183/
- 6. http://atlas-medical.com/upload/productFiles/208011/Creatinine%20Package%20Insert.pdf

Pedagogy

Demonstration and practical sessions

Course Designers

Dr. P. Pungayee Alias Amirtham