CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

NATIONALLY ACCREDITED (III CYCLE) WITH "A" GRADE BY NAAC ISO 9001:2015 Certified

TIRUCHIRAPPALLI - 18

DEPARTMENT OF COMPUTER APPLICATIONS

Bachelor of Computer Applications

2024-2027 onwards

SYLLABUS

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF COMPUTER APPLICATIONS

VISION

- ❖ To produce globally competent computer professionals by providing high quality education and also focus on developing the skills of technical competency.
- ❖ To make an incorporated framework that meets the higher instructive necessities of the community.
- ❖ To prepare the students for technical training with revolutionary vision so they can create employment opportunities for themselves as well as for others.

MISSION

- ❖ To produce a quality learning environment that helps students to enhance problem solving skills and practical knowledge.
- ❖ To provide technical education to the students through well-equipped labs.
- ❖ Giving personal attention to slow learners consequently, allowing them to cope-up with other wards.
- ❖ To impart the professional and communication skills training to the students to get better placement.

PROGRAMMEEDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES for B.Sc Computer Science.

B.Sc Computer Science with Cognitive Systems , BCA and B.Sc Information Technology PROGRAMME

PO NO.	On completion of B. Sc Computer Science / B. Sc Computer Science with Cognitive Systems / BCA/ B. Sc Information Technology Programme, the students will be able to				
	ACADEMIC SKILLS & SOCIAL RESPONSIBILITY				
PO 1	Apply Computing, Mathematical and Scientific Knowledge in Various disciplines by understanding the concerns of the society.				
	CRITICAL THINKING AND INNOVATIVE PROGRESS				
PO 2	2 Design the software applications with varying intricacies using programming languages for innovative learning intechno world to meet the changing demands.				
	PERSONALITY DEVELOPMENT				
PO 3	Perceive Leadership skills to accomplish a common goal with effective communication and understanding of professional, ethical, and social responsibilities.				
	LIFELONG LEARNING				
PO 4	Identify resources for professional development and apply the skills and tools necessary for computing practice to gain real life experiences.				
	CREATIVITY AND HOLISTIC APPROACH				
PO 5	Create a scientific temperament and novelties of ideas to support research and development in Computer Science to uphold scientific integrity and objectivity.				

PROGRAMME SPECIFIC OUTCOMES FOR BCA

PSO NO.	The students of Bachelor of Computer Applications will be able to	POs Addressed
PSO 1	Understand the concepts of logical and critical thinking with adequate practical skills.	PO1 PO2 PO4 PO5
PSO 2	Adopt necessary technical, scientific, managerial and financial knowledge to be employable or purse higher education.	PO1 PO2 PO4
PSO 3	Apply neoteric technology in various domains and evaluate the method of implementing it.	PO1 PO2 PO4
PSO 4	Design and create innovative ideas that meet the requirements of an entrepreneur and software industry.	PO1 PO2 PO4 PO5
PSO 5	Explore the ethical values, sustainability and productivity.	PO3 PO4 PO5

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) DEPARTMENT OF COMPUTER APPLICATIONS

BCA

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK (CBCS – LOCF) (For the Candidates admitted from the Academic year 2023-2024 and onwards)

er					s./	Š	Exam			
Semester	Part	Course	Course Title	Course Code	t. Hrs week	Credits	edit	Mar	ks	Total
Sen	P	Comse	Course Time	Course Code	Inst. Hrs. week	Cr	Hrs.	Int	Ext	\mathbf{T}
			Podhu Tamil – 1	23ULT1						
		Language Course - I(LC)	Hindi ka Samanya Gyan aur Nibandh	23ULH1						
	I		Poetry, Grammar and History of Sanskrit Literature	23ULS1	6	3	3	25	75	100
			Foundation Course: Paper I- French I	23ULF1						
	II	English Language Course - I (ELC)	General English –I	23UE1	6	3	3	25	75	100
I		Core Course – I (CC)	Python Programming	23UCA1CC1	5	5	3	25	75	100
		Core Practical - I (CP)	Python Programming Lab (P)	23UCA1CC1P	3	3	3	40	60	100
	III	First Allied Course - I (AC)	ESSENTIAL MATHEMATICS	22UCA1AC1	4	3	3	25	75	100
		First Allied Course - II (AC)	NUMERICAL ANALYSIS AND STATISTICS	22UCA1AC2	4	3	3	25	75	100
	Ability Enhancement IV Compulsory Course -I(AECC) Value Education 23UGVE		2	2	-	100	-	100		
		Total								700
		I Language Course – II (LC)	Podhu Tamil –II	23ULT2				25	75	100
	Ι		Hindi Literature & Grammar – II	22ULH2						
			Prose, Grammer and History of Sanskrit literature	23ULS2	6	3	3			
			Basic French-II	22ULF2						
	II	English Language Course - II (ELC)	General English -II	23UE2	6	3	3	25	75	100
		Core Course – II (CC)	Programming in C++	23UCA2CC2	4	4	3	25	75	100
	III	Core Practical - II (CP)	Programming in C++ (P)	23UCA2CC2P	3	3	3	40	60	100
II		Core Course -III (CC)	Data Structures	22UCA2CC3	3	3	3	25	75	100
		First Allied Course – III (AC)	Operations Research	22UCA2AC3	4	3	3	25	75	100
	IV	Ability Enhancement Compulsory Course - II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	-	100
	1 V	Ability Enhancement Compulsory Course - III (AECC)	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100
		Extra Credit Course	SWAYAM		As	per U	GC Re	comme	endatio	n
	Total					22				800

The Internal and external marks for theory and practical papers are as follows:

Subject	Internal Marks	External Marks		
Theory	25	75		
Practical	25	75		

For Theory:

The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks).

The passing minimum for End Semester Examinations shall be 40 % out of 75 marks(i.e. 30 marks).

For Practical:

The passing minimum for CIA shall be 40 % out of 25 marks (i.e. 10 marks).

The passing minimum for End Semester Examinations shall be 40 % out of 75 marks(i.e .30 marks).

Internal Component (Theory)

Component	Marks
Attendance	03
Library	03
Seminar/ Quiz/	4
Assignment	
CIA –I	7.5
CIA-II	7.5
Total	25

Internal Component (Practical)

Component	Marks
Observation	05
Record	05
Continual performance in practical	05
Model	10
Total	25

Question Paper Pattern

Answer all the questions

PART A (20 X 1 = 20)

Answer all the questions

PART B (5 X 5 = 25)

Answer any three questions

PART C $(3 \times 10 = 30)$

SEMESTER - I

Semester I	Internal Marks: 25 External Marks: 7			
COURSE CODE	COURSE TITLE	CATEGORY	HRS / WEEK	CREDITS
23UCA1CC1 / 23UCS1CC1	PYTHON PROGRAMMING	CORE	5	5

Course Objectives

- To make students understand the concepts of Python programming
- To apply the OOPs concept in Python programming
- To make the students learn best practices in Python programming

Course Outcome and Cognitive Level Mapping

CO Number	()n the successful completion of the course students will				
CO1	CO1 Recall the fundamental concepts of Python				
CO2	CO2 Demonstrate the problem-solving approach using Python statements				
CO3	CO3 Construct the Python program using functions and modules				
CO4	Analyze the Python programming concepts to develop programs	K4			
CO5	Develop a Python program to solve real-time problems	K5			

Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	1	1	3	3	2	3	2
CO2	3	2	3	1	1	3	2	2	3	3
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	2	3	2	2	3	3	2	3	2
CO5	3	3	3	2	2	3	3	2	2	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;3" - Substantial (High) Correlation

[&]quot;-" - Indicates there Is no Correlation

UNIT	Contents	HOURS	COs	COGNITIVE LEVEL
I	Basics of Python Programming: Features of Python -History of Python- Literal Constants-Variables and Identifiers—Data Types- Input Operation- Comments— Reserved Words- Indentation- Operators and Expressions—Other Data Types- Type Conversion.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	Decision Control Statements: Selection/Conditional Branching statements: if, if-else, nested if and if-elif-else statements. Basic Loop Structures / Iterative Statements: while loop, for loop- Nested Loops- The break Statement- The continue Statement.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Functions and Modules: Function Definition – Function Call: Function Parameters – Variable Scope and Lifetime: Local and Global Variables-Using the Global Statement-Resolution of Names. The return Statement. More on Defining Functions: Required Arguments, Keyword Arguments, Default Arguments and Variable Length Arguments. Python Strings: Strings are Immutable- Built-in String Methods and Functions – Comparing Strings. Modules: The fromimport statement- Name of Module – The dir() function – Modules and Namespace.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Lists: Access values in List-Updating values in Lists-Nested lists -Basic list operations-List Methods. Tuple: Creating, Accessing, Updating and Deleting Elements in a tuple – Nested tuples. Dictionaries: Creating a dictionary, Accessing values, Modifying an Entry -Deleting items – Built-in Dictionary Functions and Methods - Difference between a List and a Dictionary.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	File Handling: Types of files in Python - Opening and Closing files- Reading and Writing files : write() and writelines() methods- append() method - read() and readlines() methods - Splitting words -File Positions.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not to be included for End Semester Examination) Difference between lists and tuples - Defining our own modules- Renaming and deleting files.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Textbook

1. Reema Thareja. (2017), Python Programming using problem solving approach, 1st Edition, Oxford University Press.

References

- 1. Dr. R. Nageswara Rao. (2017), Core Python Programming, 1st Edition, Dream tech Publishers.
- 2. VamsiKurama. (2017), Python Programming: A Modern Approach, 1st Edition, Pearson Education.
- 3. Mark Lutz. (2013), Learning Python, Fifth Edition, Orielly.
- 4. Adam Stewarts. (2017), Python Programming, Online.
- 5. Fabio Nelli. (2015), Python Data Analytics, 1st Edition, APress.
- 6. Kenneth A. Lambert. (2019), Fundamentals of Python First Programs, 2nd Edition, CENGAGE Publication.

Web References

- 1. https://www.programiz.com/python-programming
- 2. https://www.guru99.com/python-tutorials.html
- 3. https://www.w3schools.com/python/python intro.asp
- 4. https://www.geeksforgeeks.org/python-programming-language/
- 5. https://en.wikipedia.org/wiki/Python_(programming_language)

Pedagogy

Chalk & Talk, PowerPoint Presentation, Discussion, Assignment, Demo, Quiz and Seminar

Course Designer

Dr.K.Akila, Associate Professor, Department of Computer Applications

Semester I	Internal Marks: 25 External Marks:				
COURSE CODE	COURSE TITLE	CATEGORY	HRS / WEEK	CREDITS	
23UCA1CC1P	Python Programming Lab (P)	CORE	3	3	

Course Objectives

- To provide programming knowledge in Python.
- To create loops and decision statements in Python.
- To build and package Python modules for reusability.
- To read and write files in Python.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the syntax and semantics of Python.	K1
CO2	Identify the problem and solve using Python programming techniques.	K2
CO3	Identify suitable programming constructs for problem solving.	К3
CO4	Analyze various concepts of Python language to solve the problem in an efficient way.	K4
CO5	Develop a Python program for a given problem and test for its correctness.	K5

Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	1	1	3	3	2	3	2
CO2	3	2	3	1	1	3	2	2	3	3
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	2	3	2	2	3	3	2	3	2
CO5	3	3	3	2	2	3	3	2	2	3

[&]quot;1"-Slight(Low)Correlation

[&]quot;2"-Moderate(Medium)Correlation

[&]quot;3" -Substantial(High)Correlation

[&]quot;-"- Indicates there Is no Correlation

List of Practicals

- 1. Program using variables, constants, I/O statements in Python.
 - 2. Program using Operators in Python.
 - 3. Program using Conditional Statements.
 - 4. Programusing Loops.
 - 5. Program using Jump Statements.
 - 6. Program using Functions.
 - 7. Program using Recursion.
 - 8. Programusing Arrays.
 - 9. Program using Strings.
 - 10. Program using Modules.
 - 11. Program using Lists.
 - 12. Program using Tuples.
 - 13. Program using Dictionaries.
 - 14. Program for File Handling.

Web References

- 1. https://www.programiz.com/python-programming
- 2. https://www.guru99.com/python-tutorials.html
- 3. https://www.w3schools.com/python/python_intro.asp
- 4. https://www.geeksforgeeks.org/python-programming-language/
- 5. https://en.wikipedia.org/wiki/Python_(programming_language)

Pedagogy

Chalk & Talk, PowerPoint Presentation, Discussion, Assignment, Demo, Quiz and Seminar

Course Designer

Dr.K.Akila, Associate Professor, Department of Computer Applications.

FIRST ALLIED COURSE –I (AC) ESSENTIAL MATHEMATICS

(For B.Sc Computer Science , B.Sc Information Technology & BCA)

(2022-2023 and Onwards)

Semester I	Internal	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS
22UCS1AC1/ 22UCA1AC1/ 22UIT1AC1	ESSENTIAL MATHEMATICS	ALLIED	4	3

Course Objective

- Apply the basic concepts of Differentiation, Integration and their applications.
- Compute mathematical quantities using ordinary and partial differential equations.
- **Explore** fundamental concepts in graph theory.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	
CO1	Remember and recall the basic concept of essential mathematics.	K1
CO2	Illustrate the various notions in the respective streams.	K2
CO3	Applythe different terminologies of essential mathematics.	К3
CO4	Classify the solution of mathematical problems using various techniques.	K4
CO5	Examine the solution of mathematical problems.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	2	2
CO4	3	2	2	3	3	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	2	2

[&]quot;1" – Slight (Low) Correlation –

Syllabus

[&]quot;2" – Moderate (Medium) Correlation \neg

[&]quot;3" – Substantial (High) Correlation –

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Matrices Matrix – Special types of matrices – Scalar multiplication of a matrix – Equality of matrices – Addition of matrices – Subtraction – Multiplication of Matrices – Inverse matrix – Relation between adjoint and inverse matrices – Solution of simultaneous equations – Rank of a matrix – A system of m homogeneous linear equations in n unknowns – System of non-homogeneous linear equations – Eigen values and Eigenvectors – Similar matrices – Cayley-Hamilton Theorem (proof not needed) – Simple applications only	12	CO1, CO2, CO3, CO4, CO5	K1,K2,K3, K4
II	Differentiation Maxima and Minima (Problems Only) –Points of inflexion. Partial differentiation Functions of function rule – Total Differential Coefficient – A Special case – Implicit Functions – Homogeneous functions – Euler's Theorem (proof not needed) – Simple problems only.	12	CO1, CO2, CO3, CO4, CO5	K1,K2,K3, K4
III	Integration: Integration of Rational algebraic functions – Rule (a) – Rule (b): Type i: $\int \frac{dx}{ax^2 + bx + c}$, Type ii: $\int \frac{lx + m}{ax^2 + bx + c} dx$ – Integration of Irrational functions : Case (ii) Integration of the form $\int \frac{px + q}{\sqrt{ax^2 + bx + c}}$ – Type $\int \frac{dx}{a + b \cos x}$ – Properties of definite integrals.	12	CO1, CO2, CO3, CO4, CO5	K1,K2,K3, K4
IV	Differential Equations: Linear Differential Equation with constant coefficients – The Operators D and D^{-1} – Particular Integral – Special methods of finding P.I.: X is of the form (a) $e^{\alpha x}$ (b) $\cos \alpha x$ or $\sin \alpha x$, where α is a constant (c) x^m (a power of x), m being a positive integer (d) $e^{\alpha x}V$, where V is any function of x .	12	CO1, CO2, CO3, CO4, CO5	K1,K2,K3, K4
V	Graph Theory Introduction – Definition of Graphs – Applications of Graphs – Finite and infinite graphs – Incidence and Degree – Isolated Vertex, Pendant Vertex and Null Graph. Path and Circuits Isomorphism – Subgraphs – Walks, Paths and Circuits – Connected Graphs, Disconnected Graphs and Components – Euler graphs.	12	CO1, CO2, CO3, CO4, CO5	K1,K2,K3, K4

VI	Self-Study for Enrichment (Not included for End Semester Examination) Symmetric matrix – Skew symmetric matrix – Hermitian and skew Hermitian matrices Concavity and Convexity– Integration by parts – Linear equation – Hamiltonian Paths and Circuits.	-	CO1, CO2, CO3, CO4, CO5	K1,K2,K3, K4
----	---	---	-------------------------------------	-----------------

Text Books

- 1. T.K.Manicavachagom Pillay, T.Natarajan, K.S.Ganapathy.(2015). *Algebra, Volume II.* S. Viswanathan (Printers & Publishers) Pvt., Ltd.
- 2. S.Narayanan, T.K.Manicavachagom Pillay.(2015). *Calculus, Volume I.* S. Viswanathan (Printers & Publishers) Pvt., Ltd.
- 3. S.Narayanan, T.K.Manicavachagom Pillay.(2015). *Calculus, Volume II*. S. Viswanathan (Printers & Publishers) Pvt., Ltd.
 - 4. S.Narayanan, T.K.Manicavachagom Pillay.(2015). *Calculus, Volume III*. S. Viswanathan (Printers & Publishers) Pvt., Ltd.
- 5. Narsingh Deo. (2003). *Graph Theory with applications to Engineering and Computer*. Prentice Hall of India Private Limited

UNIT-I Chapter 2: Section 1 to 5, 7, 8, 10 to 16[1]

UNIT-II Chapter V: Section 1.1 to 1.5[2], Chapter VIII: Section 1.2 to 1.6[2]

UNIT-III Chapter 1: Section 7.1 to 7.3, 8 (CASE II), 9, 11[3]

UNIT-IV Chapter 2: Section 1 to 4[4]

UNIT-V Chapter 1: Section 1.1 to 1.5[5], Chapter 2: Section 2.1, 2.2, 2.4 to 2.6[5]

Reference Books

- 1. A.Singaravelu. (2003). *Allied Mathematics*. A.R.Publications
- 2. P.R. Vittal. (2014). Allied Mathematics. Margham Publications, Chennai.
- 3. S.Arumugam and S.Ramachandran.(2006). *Invitation to Graph Theory*. Sci Tech Publications (India) Pvt Ltd., Chennai

Weblinks

- 1. https://youtu.be/rowWM-MijXU
- 2. https://youtu.be/TOvxWaOnrqI
- 3. https://voutu.be/pvLi1s7SOtk
- 4. https://youtu.be/Gxr3AT4NY O
- 5. https://voutu.be/xlbbefbYLzg
- 6. https://youtu.be/b0RJkIBhfEM
- 7. https://youtu.be/s5KZw1Eo

Pedagogy

Assignment, Seminar, Lecture, Quiz, Group discussion, Brain storming, e-content.

Course Designers

- 1. Dr. V. Geetha
- 2. Dr. S. Sasikala

FIRST ALLIED COURSE-II (AC) NUMERICAL ANALYSIS AND

STATISTICS

(For B.Sc Computer Science , B.Sc Information Technology & BCA) (2022-2023 and Onwards)

Semester I	Internal Marks: 25	25 External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22UCS1AC2/	NUMERICAL				
22UCA1AC2/	ANALYSIS AND	ALLIED	4	3	
22UIT1AC2	STATISTICS				

Course Objective

- Understand the implementation of various methods of Numerical Analysis.
- Organize and summarize the statistical data.
- Analyze and evaluate the strengths of the conclusions based on data.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand the list of basic ideas of Numerical Methods and Statistics.	K1, K2
CO2	Solve the problems using various methods and also classify the given datas.	K2, K3
CO3	Identify the conceptual collection and classification of variables.	К3
CO4	Analyze the accuracy and graphical representation of statistical datas.	K4
CO5	Support the implementation of numerical methods and statistical datas.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	3	2
CO2	3	3	2	2	2	3	2	3	2	3
CO3	2	3	3	2	2	2	3	3	2	3
CO4	3	2	3	2	2	3	3	2	3	2
CO5	3	3	2	3	3	3	2	2	3	3

[&]quot;1" – Slight (Low) Correlation ¬

[&]quot;2" – Moderate (Medium) Correlation—

[&]quot;3" – Substantial (High) Correlation –

[&]quot;-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Solution of Algebraic & Transcendental Equations: Introduction – The Bisection Method – The Iteration Method – Newton-Raphson Method (Problems Only) Interpolation: Finite Differences: Forward Differences, Backward Differences – Newton's Formulae for Interpolation – Interpolation with unevenly spaced Points: Lagrange's Interpolation formula	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
II	Numerical Integration: Numerical Integration: Simpson's 1/3-Rule – Simpson's 3/8-Rule (proof not needed). Linear Systems of Equations: Solution of Linear Systems—Direct Methods: Gaussian Elimination Method – Solutions of Linear Systems – Iterative Methods (Problems Only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Numerical solution of Ordinary Differential Equations: Introduction – Euler's Method – Modified Euler's Method – Runge-Kutta Methods – Predictor - Corrector Methods : Adams-Moulton Method	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Measures of Central Tendency: Arithmetic Mean – Median – Mode – Geometric Mean – Harmonic Mean. Measures of Dispersion: Mean Deviation – Standard Deviation (Simple Problems Only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Correlation: Introduction – Meaning of Correlation – Scatter Diagram – Karl Pearson's co-efficient of Correlation – Rank Correlation: Spearman's Rank Correlation Coefficient (Derivation not needed and Simple Problems Only). Linear Regression: Introduction – Linear Regression (Derivation not needed and Simple Problems Only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self Study for Enrichment: (Not included for End Semester Examination) The method of False Position & Central Differences - Trapezoidal rule - Solution by Taylor's Series and Milne's Method - Range — Quartile Deviation - Rank Correlation (Repeated Ranks).	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Books

1. Sastry S. S. (1998). Introductory methods of Numerical Analysis, Third Edition.

Prentice Hallof India Private Limited.

2. Gupta. S.C & Kapoor, V.K (2007). Fundamentals of Mathematical Statistics. Sultan Chand& sons, New Delhi.

UNIT – I Chapter 2: Sections 2.1 - 2.3(Omit 2.3.1), 2.5(Omit 2.5.1) [1]

Chapter 3: Sections 3.3 (Omit 3.3.4), 3.6, 3.9(3.9.1only) [1]

UNIT – II Chapter 5: Sections 5.4(5.4.2 & 5.4.3 only) [1]

Chapter 6: Sections 6.3(6.3.2 only) & 6.4 [1]

UNIT – III Chapter 7: Sections 7.1, 7.4- 7.6 (Omit 7.4.1 & 7.6.2) [1]

UNIT – IV Chapter 2: Sections 2.5 - 2.9, 2.13 (Omit 2.13.1 & 2.13.2) [2]

UNIT – V Chapter 10: Sections 10.1 - 10.4, 10.7(10.7.1 Only) [2]

Chapter 11: Sections 11.1 & 11.2 [2]

Reference Books

- Jain M. K, Iyengar S. R.K. and Jain R.K. (1999). Numerical Analysis Numerical Methodsfor Scientific and Engineering Computations. New Age International Private Limited.
- 2. Froberg C.E. (1979). Introduction to Numerical Analysis. II Edition. Addison Wesley

Web Links

- 1. https://youtu.be/gCzUXav5Nk
- 2. https://youtu.be/r6MTvrI8SO4
- 3. https://voutu.be/s05dONL4xAs
- 4. https://voutu.be/XaHFNhHfXwO
- 5. https://voutu.be/zPG4NiIkCic

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designers

- 1. Dr.R.Buvaneswari
- 2. Ms.A.Gowri Shankari

SEMESTER - II

Semester II	Internal Marks: 25	25 External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
23UCA2CC2	Programming in C++	CORE	4	4			

Course Objectives

- To make the student learn a programming language.
- To learn problem solving techniques.
- To teach the student to write programs in C++ and to solve the problems.

Course Outcomes and Cognitive Level Mapping

CO Number	CO Statements On the successful completion of the course, students will be able to	Cognitive Level
CO1	Define the fundamental concepts of object-oriented program	K1
CO2	Illustrate the components of C++ program	K2
CO3	Build algorithms and data structures swiftly and faster computation using programs	К3
CO4	Apply programming knowledge to develop programs	K4
CO5	Solve real time problems using C++ concepts	K5

Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	2
CO2	3	3	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	3	3	2
CO4	3	3	3	2	3	3	3	2	3	2
CO5	3	3	2	2	2	3	2	2	3	2

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Principles of OOPS: Basic Concepts of Object - Oriented Programming - Benefits of OOP. Beginning with C++: Structure of C++ Program - Compiling and linking - Tokens - Control Structures - Keywords - Identifiers and Constants - Basic Data Types - User-Defined Data Types - Storage Classes - Derived Data Types - Symbolic Constants - Type Compatibility - Declaration of Variables - Dynamic Initialization of Variables - Reference Variable - Scope Resolution Operator - Member Dereferencing Operators - Manipulators - Type Cast Operator - Expressions and Their Types - Implicit Conversions - Control Structures	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
п	Function in C++: The Main Function – Function Prototyping – Call by Reference – Return by Reference – Inline Function – Default Arguments – Const Arguments – Recursion – Function Overloading – Friend and Virtual Function – Math Library Function. Classes and Objects: Specifying a Class – Defining Member Functions – Making an Outside Function Inline – Nesting of Member Functions – Private Member Functions – Arrays within a Class – Static Data Members – Static Member Functions – Arrays of Objects – Objects as Function Arguments – Friendly Functions – Returning Objects – Const Member Functions – Local Classes	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Constructors and Destructors: Constructors – Parameterized Constructors – Multiple Constructors in a Class – Constructors with Default Arguments – Dynamic Initialization of Objects – Copy Constructors – Dynamic Constructors – Constructing Two-Dimensional Array – Const Objects – Destructors. Operator Overloading and Type Conversion: Defining Operator Overloading – Overloading Unary Operator – Overloading Binary Operator - Overloading Binary Operator using Friends – Manipulation of Strings using Operators – Rule for Overloading Operators	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Inheritance: Defining Derived Classes – Single Inheritance – Making a Private Member Inheritable – Multilevel Inheritance – Multiple Inheritance – Hierarchical Inheritance – Hybrid Inheritance – Virtual Base Classes – Abstract Classes – Constructors in Derived Classes – Member Classes: Nesting of Classes	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Pointers, Virtual Functions and Polymorphism: Pointers – Pointers to Objects – this Pointer – Polymorphism – Pointers to Derived Classes – Virtual Functions – Pure Virtual Functions – Virtual Constructors and Destructors. Managing Console I/O Operations: Unformatted I/O Operations – Formatted Console I/O Operations	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

	Self Study for Enrichment (Not to be included for External		CO1,	K1,
	Examination)		CO2,	K2,
VI	Software Crisis – Software Evolution – Application of OOP –	-	CO3,	K3,
	Application of C++ - Operators in C++ - C Structures Revisited		CO4,	K4,
			CO5	K5

Textbook

1. Balagurusamy. E. (2022). Object Oriented Programming with C++, 8th Edition, Tata McGraw Hill Education Pvt.Ltd.

References

- 1. Robert Lafore (2018). Object-Oriented Programming in C++, 6th Edition, Pearson Education, New Delhi.
- 2. Bjarne Stroustrup (2012). The C++ Programming Language, 4th Edition, Pearson Education and Dorling Kindersley.
- 3. Herbert Schildt (2009). The Complete Reference C++, 4th Edition, Tata Mc-Graw Hill Edition, New Delhi.

Web References

- 1. https://cplusplus.com/doc/tutorial/
- 2. https://www.w3schools.com/cpp/
- 3. https://www.tutorialspoint.com/cplusplus/index.htm

Pedagogy

Chalk & Talk, PowerPoint Presentation, Discussion, Assignment, Demo, Quiz and Seminar.

Course Designer

Ms. V. Infine Sinduja, Assistant Professor, Department of Computer Applications.

	Internal Marks: 40 External Marks: 60					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS		
23UCA2CC2P	Programming in C++ (P)	CORE	3	3		

Course Objective

- To make the student learn a programming knowledge.
- To teach the student to write programs to solve the problems.

Course Outcomes and Cognitive Level Mapping

CO	CO Statements	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Identify the logic for a given problem	K1
CO2	Recognize the syntax and construction of C++ programming code	K2
CO3	Apply the steps involved in compiling, linking and debugging C++ code	K3
CO4	Analyze the concepts of overloading, friend function, inheritance, abstract class and polymorphism	K4
CO5	Create C++ programs using all the concepts that have been covered in the theory course	K5

Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	2	2	2	3	2	2	3	3

[&]quot;1" – Slight (Low) Correlation

List of Practical

- 1. Simple Program.
- 2. Condition Statements.
- 3. Looping Statements.
- 4. Friend Function.
- 5. Constructor and Destructor.
- 6. Operator Overloading.
- 7. Function Overloading.
- 8. Inheritance.
- 9. Abstract Class.
- 10. Polymorphism.

Web References

1. https://www.programiz.com/cpp-programming/examples

[&]quot;3" - Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

- 2. https://www.geeksforgeeks.org/cpp-programming-examples/
- 3. https://www.geeksforgeeks.org/cpp-programming-examples/
- 4. https://www.w3schools.com/cpp/cpp_examples.asp

Pedagogy

PowerPoint Presentation, Demonstration, Discussion and Practical Session.

Course Designer

Ms. V. Infine Sinduja, Assistant Professor, Department of Computer Applications.

Semester II	Internal Ma	External	Mark: 75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS
22UCA2CC3	DATA STRUCTURES	CORE	3	3

Course Objectives

- To understand the basic concepts of various data structures
- To demonstrate a familiarity with data structures
- To articulate the essential components and operations of the data structures

Course Outcomes and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, the students will be able to	Level
CO1	Define the basic concepts of Data Structure	K1
CO2	Demonstrate the operations of Linear and Non-Linear Structure	K2
CO3	Examine the Data Structure operations	К3
CO4	Analyse the various types of Data Structure	K4
CO5	Solve the problem using Different Structures	K5

Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	1	1	2	2	2	2	2
CO2	3	2	2	2	1	2	2	2	2	2
CO3	3	3	3	2	2	2	3	2	3	2
CO4	3	3	3	2	2	2	3	2	3	2
CO5	3	3	3	2	2	2	3	2	2	3

[&]quot;1" - Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" - Substantial (High) Correlation

[&]quot;-" indicates there is no Correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Basic Terminology: Introduction and Overview: Definition-Concept of Data Structures- Overview of Data Structures- Implementation of Data Structures. Arrays: Definition-Terminology-One-dimensional Array- Two-dimensional Arrays.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3
II	Stack & Queue : Overview of Stacks and Queues-Operations on Stack-ADD and DELETE Procedure-Operations on Queue- ADD and DELETE Procedure - Circular Queue – Evaluation of Expressions	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Linked Lists: Overview of Linked list – Representation of Linked List in Memory – Operations: Creating a Linked List-Insertion into a Linked List – Deletion from a Linked List-Polynomial addition – Linked Stacks and Queues.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Trees & Graphs : Trees Terminology – Binary tree representations – Tree Traversal –Graph Terminology – Memory Representations of Graphs – Traversals.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Sorting & Searching : Searching : Sequential Search – Binary Search. Sorting : Insertion Sort- Heap Sort-Quick Sort.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not to be included for End Semester Examination) Multiple Stacks and Queues - Threaded Binary Trees - Connected Components and Spanning Trees.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Textbook

- Debasis Samanta (2018). Classic Data Structures, Second Edition, PHI Learning Private Limited, New Delhi. (Unit I)
- 2. Ellis Horowitz, Sartaj Sahni (2008). Fundamentals of Data Structure, Golgotia Publications, New Delhi.(Unit II,III,IV, V)

References

- 1. Seymour Lipschutz (2011). Data Structures with C, McGraw Hill Education, New York.
- 2. Ashok N. Kamthane (2011).Introduction to Data Structure in C, Pearson Education, Singapore.

Web References

- 1. https://www.geeksforgeeks.org/data-structures/
- 2. https://www.tutorialspoint.com/data_structures_algorithms/index.htm

Pedagogy

Chalk and Talk, PowerPoint Presentation, Discussion, Assignment, Demo, Quiz and Seminar.

Course Designer

1. Dr. R. Brendha, Associate Professor, Department of Computer Applications.

FIRST ALLIED COURSE -III (AC)

OPERATIONS RESEARCH

(For B.Sc Computer Science, Computer Science with Cognitive Systems, BCA &B.Sc Information Technology)

(2022-2023 and Onwards)

Semester II	Internal Marks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS
22UCS2AC3/ 22UCG2AC3/ 22UCA2AC3/ 22UIT2AC3	OPERATIONS RESEARCH	ALLIED	4	3

Course Objective

- Understand the various features of Operations research.
- Analyze the optimum solutions using Operations research.
- **Explore** the concepts of Operations research in real life problems.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Define the various techniques of Operations research.	K1
CO2	Illustrate the various notions in the respective streams.	K2
CO3	Identify the different terminologies of Operations research	К3
CO4	Analyze the solutions of mathematical problem using specific techniques.	K4
CO5	Simplify the optimum solutions of a mathematical problem.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	2	3	3	3	2	3
CO2	3	2	3	3	2	3	3	3	3	2
CO3	3	2	3	3	2	3	2	3	2	2
CO4	3	2	2	2	2	3	3	2	3	2
CO5	3	2	3	2	2	3	3	3	2	2

[&]quot;1" – Slight (Low) Correlation ¬

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Operations Research Introduction-Origin and Development of O.R Nature and Features of O.R Scientific Method in O.R Modelling in Operations Research - Advantage and	12	CO1, CO2, CO3, CO4,	K1, K2, K3, K4

[&]quot;2" – Moderate (Medium) Correlation ¬

[&]quot;3" – Substantial (High) Correlation ¬

[&]quot;-" indicates there is no correlation.

	Limitation of Models- General Solution Methods for O.R. Models- Methodology of Operations Research- Operations Research and Decision Making Linear Programming Problem- Mathematical Formulation Introduction-Linear programming Problem- Mathematical Formulation of the problem -Illustrations on Mathematical Formulation of LPPs.(simple problems only) Linear programming problem-graphical Solution and Extension Introduction- Graphical Solution Method- General Linear Programming Problem- Canonical and Standard Forms of LPP.		CO5	
II	Linear Programming Problem-Simplex Method Introduction-Fundamental Properties of Solutions- The computational Procedure- The Simplex Algorithm-Use of Artificial Variables-Big M method.(simple problems only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Transportation problem Introduction-LP Formulation of the Transportation Problem- Existence of Solution in T.P- TheTransportation Table-Loops in Transportation Table-Solution o,f a Transportation Problem-Finding an Initial Basic Feasible Solution-Test for Optimality- Economic interpretation of u_j 's and v_j 's - Degeneracy in Transportation Problem-Transportation Algorithm (MODI method), (simple problems only). Assignment Problem Introduction-Mathematical Formulation of the Problem- Solution Methods of Assignment Problem- Special Cases in Assignment Problems(simple problems only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Sequencing problem Introduction-Problem of Sequencing-Basic Terms Used in Sequencing- Processing <i>n</i> Jobs through Two Machines- Processing <i>n</i> Jobs through <i>k</i> Machines(problems only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Network Scheduling by PERT/CPM Introduction- Network: Basic Components- Logical Sequencing- Rules of Network Construction- Concurrent Activities - Critical Path Analysis - Probability Considerations in PERT.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self-Study for Enrichment (Not included for End Semester Examination) Application of Operations Research. - Two-Phase method – The Travelling Salesman problem – Processing 2 Jobs through <i>k</i> Machines –. Inventory Models(without shortage)	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Books

1. Kanti Swarup, P.K. Gupta, Manmohan.(2019). Operations research, Sultan Chand Publications.

Chapters and Sections

```
UNIT-I Chapter 1: Sections 1:1 – 1:9

Chapter 2: Sections 2:1 – 2:4

Chapter 3: Sections 3:1 – 3:5

UNIT II Chapter 4: Sections 4:1 – 4:4

UNIT-III Chapter 10: Sections 10:1 – 10:3, 10:5, 10:6, 10:8 – 10:13

Chapter 11: Sections 11:1 – 11:4

UNIT-IV Chapter 12: Sections 12:1 – 12:5

UNIT-V Chapter 25: Sections 25:1 – 25:7
```

Reference Books

- 1. Hamdy A.Taha (2017), Operations Research An Introduction, Pearson India Education services PVT Ltd.
- 2. Premkumar Gupta, Hira D.S.(2004), Operations Research, S.Chand & Company Ltd, New Delhi.
- 3. Chandrasekhara Rao.K,Shanti Lata Mishra(2008), *Operations Research*, Narosa Publishing House PVT Ltd, New Delhi.

Web References

- 1. https://www.britannica.com/topic/operations-research
- 2. https://byjus.com/maths/linear-programming/
- 3. https://www.gatexplore.com/transportation-problem-study-notes/
- 4. https://youtu.be/rowWM-MijXU
- 5. https://youtu.be/TQvxWaQnrqI
- 6. https://youtu.be/RTX-ik_8i-k
- 7. https://youtu.be/s5KZw1EpBEo

Pedagogy

Power point presentation, Group discussion, Seminar, Assignment.

Course Designers

- 1. Dr. V. Geetha
- 2. Dr. S. Sasikala