CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED (IIICYCLE) WITH "A" GRADE BY NAAC ISO 9001:2015 Certified TIRUCHIRAPPALLI–18

PG & RESEARCH DEPARTMENT OF PHYSICS

M.Sc., PHYSICS SYLLABUS

(2024-2025 and Onwards)

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS), TRICHY-18. PG &RESEARCH DEPARTMENT OF PHYSICS

VISION

To establish a substratum for excellence and creation of knowledge by igniting the essence of learning physics and exploring its area of research with novel ideas.

MISSION

Our mission is two –fold.

- To provide an outstanding and distinctive education to our undergraduate and post graduate students.
- To expand our research enterprises via centers and institutes to achieve national and international prominence in strategic research areas.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	STATEMENTS
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture
	the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills
	In order to adapt to the changing global scenario and gain access to versatile career opportunities in multi-disciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc PHYSICS PROGRAMME

PO NO.	Programme Outcome On completion of M.Sc., Physics Programme, the students will be able to
PO1	Problem Analysis: Provide opportunities to develop innovative
	design skills, including the ability to formulate problems, to think
	creatively, to synthesize information, and to communicate
	effectively.
PO2	Scientific Skills: Create and apply advanced techniques and tools to
	Solve the societal environmental issues.
PO3	Environment and sustainability: Ascertain eco-friendly approach
	for sustainable development and inculcate scientific temper in the
	society.
PO 4	Ethics: Imbibe ethical and social values aiming towards holistic
	Development of learners.
PO5	Lifelong learning: Instil critical thinking, communication,
	initiative which potentially leads to higher rates of employment
	and educational fulfillment.

PROGRAMME SPECIFIC OUTCOME FOR M.Sc., PHYSICS

PROGRAMME

PSO NO.	Programme Specific Outcomes Students of M.Sc., Physics will be able to	Pos Addressed
PSO1	Demonstrate proficiency in the mathematical concepts needed for a proper understanding of Physics	PO1, PO2, PO5
PSO2	Understand the basic concepts of Physics particularly concepts in classical mechanics, quantum mechanics, electrodynamics and electronics to appreciate how diverse phenomena observed in nature follow from a small set of fundamental laws.	PO2, PO5
PSO3	Learn numerous numerical problem-solving approaches and the fundamentals of curve fittings.	PO1, PO2
PSO4	Learn about microprocessors and microcontrollers, as well as practical microprocessor programming abilities	PO1, PO2
PSO5	Provide with broad theoretical and practical knowledge in all specialization of Physics with required qualitative and quantitative techniques.	PO1, PO2' PO5

Cauvery College for Women (Autonomous) PG & Research Department of Physics M.Sc., Physics LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK (CBCS – LOCF) (For the Candidates admitted from the Academic year 2024-2025onwards)

				Ins.		Exam	Marks		
Sem	Course	Title	Course Code	Hr Week	Credit	Hrs	Int	Ext	Total
	Core Course - I (CC)	Mathematical Physics	23PPH1CC1	6	5	3	25	75	100
	Core Course -II (CC)	Classical Mechanics and Relativity	23PPH1CC2	6	5	3	25	75	100
Ι	Core Course III (CC)	Dre CourseLinear and Digital(CC)ICs andApplications		6	5	3	25	75	100
	Core Practical- I (CP)	ore ractical- I CP)General Physics and Electronics-I(P)23PPIDisciplinePhysics of Nano Science and23PPIElectiveTechnology23PPI		6	5	3	40	60	100
	Discipline Specific Elective						2.5		100
	Course-I (DSE)	Energy Physics	23PPH1DSE1B	6	3	3	25	75	100
		Digital Communication	23PPH1DSE1C	23PPH1DSE1C					
	Total			30	23	-	-	-	500
	I(CCC)	Nonlinear Dynamics	22PPH2CCC1B	6	4	3	25	75	100
	TOTAL		30	24	-	-	-	600	

Semester -I	Internal Marks	s: 25	External Ma	arks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
23PPH1CC1	MATHEMATICAL PHYSICS	CC-I	6	5

Course Objectives

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program
- To extend their manipulative skills to apply mathematical techniques in their field.
- To help students apply Mathematics in solving problems of Physics
- To enhance problem solving skills and to give the ability to formulate, interpret and draw

inferences from the mathematical solutions.

Pre-requisites

- Strong Foundation of vector Analysis.
- Understand and appreciate the properties of complex variable.
- Commendable knowledge of special functions to apply Physics Problems.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Remember and understand the various mathematical conceptsused in physics.	K1,K2
CO2	Apply mathematical tools like vector, matrix, complex integration, Fourier and Laplace series, special function will prepare the student to solve ODE; PDE's which model physical phenomena.	К3
CO3	Analyse the vector, linear, simultaneous and differential equations which will be necessary to pursue other areas in physics.	K4
CO4	Evaluate the Laplace transform and the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	K5
CO5	Solve the physical problems using mathematical techniques.	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	1	3	3	2	2	2
CO2	3	2	1	2	1	3	1	2	2	2
CO3	3	2	1	2	1	3	3	1	2	2
CO4	3	1	3	2	1	1	3	2	2	2
CO5	3	1	2	2	1	3	3	2	3	1

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation;

"3" - Substantial (High) Correlation

"-" - indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	LINEAR VECTOR SPACE	18	CO1.	K1.
	Basic concepts – Definitions- examples of vector space – Linear		CO2.	K2.
	independence - Scalar product- Orthogonality – Gram-Schmidt		CO3,	K3,
	orthogonalization procedure linear operators. Dualspace ket		CO4,	K4,
	and here notation _ orthogonal basis _ shange of basis		CO5	K5,
	Jacomembian of vector anone musication encreter. Eisen			K6
	- Isomorphism of vector space - projection operator -Eigen			
	values and Eigen functions – Direct sum and invariant subspace			
	- orthogonal transformations and rotation	10	001	771
11	COMPLEX ANALYSIS	18	COI,	KI, KO
	Review of Complex Numbers -de Moiré's theorem-Functions		CO2,	K2, K2
	of a Complex Variable- Differentiability -Analytic functions-		CO3,	КЗ, КЛ
	Harmonic Functions- Complex Integration- Contour		CO4, CO5	K4, K5
	Integration, Cauchy – Riemann conditions – Singular points –		005	K6
	Cauchy's Integral Theorem and integral Formula -Taylor's			
	Series - Laurent's Expansion- Zeros and poles - Residue			
	theorem and its Application: Potential theory - (1) Electrostatic			
	fields and complex potentials - Parallel plates - Heat problems			
	- Parallel plates and coaxial cylinders			
III	MATRICES	18	CO1,	K1,
	Types of Matrices and their properties, Rank of a Matrix -		CO2,	K2,
	Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix		CO3,	K3,
	- Hermitian and Unitary Matrices -Trace of a matrix-		CO4,	K4,
	Transformation of matrices - Characteristic equation - Eigen		CO5	K5,
	values and Eigen vectors - Cayley–Hamilton theorem –			K6
		10	GO 1	
IV	FOURIER TRANSFORMS & LAPLACE	18	COI,	KI, K2
			CO2,	K2, K2
	Definitions -Fourier transform and its inverse - Transform of		CO3,	КЗ, КЛ
	Gaussian function and Dirac delta function -Fourier transform		CO4, CO5	K4, K5
	of derivatives - Cosine and sine transforms - Convolution		005	K6
	theorem. Application: Diffusion equation: Flow of heat in an			_
	infinite and in a semi - infinite medium - Laplace transform and			
	its inverse - Transforms of derivatives and integrals -			
	Differentiation and integration of transforms - Dirac delta			
	functions - Application - Laplace equation: Potential problem			
	in a semi - infinite strip			
V	DIFFERENTIAL EQUATIONS	18	CO1,	K1,
	Second order differential equation- Sturm-Liouville's theory -		CO2,	K2,
	Series solution with simple examples - Hermite polynomials -		CO3,	K3,
	Generating function - Orthogonality properties - Recurrence		CO4,	K4,
	Relations – Legendre polynomials - Generating function -		CUS	KJ, K6
	function. One dimensional Green's function and Reciprocity			NU
	theorem -Sturm-Liouville's type equation in one dimension			
	&their Green's function.			

VI	SELF-STUDY FOR ENRICHMENT	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	CurlVector in spherical polar coordinates harmonic function		CO3,	КЗ,
	in complex Analysis - Sylvester's theorem- Laplace transforms		CO4,	K4,
	in RLC Circuit - Bessel and Hankel functions		CO5	K5,
				K6

- George Arfken and Hans J Weber, (2012), Mathematical Methods for Physicists A Comprehensive Guide (7th edition), Academic press.
- 2. Chattopadhyay P K, (2013), Mathematical Physics (2nd edition), New Age, New Delhi
- 3. Joshi. A.W., (2017). Matrices and Tensors in Physics. (4th Edition) New Age, New Delhi.
- 4. Gupta.B. D., (2015). *Mathematical Physics*. (2nd Edition) Vikas Publishing House, Mumbai.
- 5. DassH.K., &Rama Verma., (2018). *Mathematical Physics* (1st Edition) S. Chand& Co, New Delhi.
- 6. Satya Prakash (2014). Mathematical Physics (1st Edition) Sultan Chand & sons, New Delhi.
- 7. Balakrishnan (2018). *Mathematical Physics with Applications*. Indian Academy of Science, Bangalore.

Reference Books

- 1. Kreyszig E, (1983), Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
- 2. ZillD G and M. R. Cullen, (2006), Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi.
- 3. Lipschutz S, (1987), Linear Algebra, Schaum's Series, McGraw Hill, New York
 - E. Butkov, 1968, Mathematical Physics Addison Wesley, Reading, Massachusetts.
- 4. P. R. Halmos, (1965), Finite Dimensional Vector Spaces, Affiliated East West, New Delhi.2nd Edition.
- C. R. Wylie and L. C. Barrett (1995), *Advanced Engineering Mathematics*, International Edition, McGraw-Hill, New York, 6 th Edition.

Web References

- 1. https://www.khanacademy.org/
- 2. <u>https://www.youtube.com/watch?v=LZnRlOA1_2I</u>
- 3. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath</u>
- 4. <u>https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27vS_SIED56gNjVJGO2qaZ</u>
- 5. https://archive.nptel.ac.in/courses/115/106/115106086/

Pedagogy

Chalk and Talk, Seminar, Assignment, Power point Presentation, Group discussion and Quiz

Course Designer

Dr.R.Gayathri

Semester - I	Internal Marks: 25	Internal Marks: 25		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
23PPH1CC2	CLASSICAL MECHANICS AND RELATIVITY	CC-II	6	5

Course Objective

- To understand fundamentals of classical mechanics.
- To remember Lagrangian formulation of mechanics and apply it to solve equation of motion. •
- To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- To discuss the theory of small oscillations of a system. •
- To learn the relativistic formulation of mechanics of a system. •

Pre-requisites

- Fundamentals of mechanics, •
- Foundation in mathematical methods. •

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement					
	On the successful completion of the Course, the Student will be able to	Level				
CO 1	Understand the fundamentals of classical mechanics.	K1				
CO 2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K2				
CO 3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve	K3				
03	the equations of motion of physical systems.	K5				
CO 4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K4, K5				
CO 5	Understand and apply the principles of relativistic kinematics to the	K2, K3				
	mechanical systems.					

Mapping of CO with PO and PSO

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	2	3	3	3	2	2	2	3	2	2
CO 2	2	3	3	3	2	2	2	3	2	2
CO 3	2	3	3	3	2	2	2	3	2	2
CO 4	2	3	3	3	2	2	2	3	2	2
CO 5	2	3	3	3	2	2	2	3	2	2

"1" - Slight (Low) Correlation 2" - Moderate (Medium) Correlation;

"3" - Substantial (High) Correlation "-" - indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
	PRINCIPLES OF CLASSICAL MECHANICS	18	CO1,	K1,
	Mechanics of a single particle – mechanics of a system		CO2,	K2,
I	of particles – conservation laws for a system of particles		CO3,	K3,
	- constraints - holonomic& non-holonomic constraints		CO4,	K4,
	– generalized coordinates – configuration space –		CO5	K5,
	transformation equations – principle of virtual work.			
	LAGRANGIAN FORMULATION	18	CO1,	K1,
TT	D'Alembert's principle – Lagrangian equations of		CO2,	K2,
11	motion for conservative systems – applications: (i)		CO3,	K3,
	simple pendulum (ii) Atwood's machine (iii) projectile		CO4,	K4, <i>V5</i>
	motion.		COS	мэ,
	HAMILTONIANFORMULATION	18	CO1.	K1.
	Phase space - cyclic coordinates - conjugate	10	CO2.	K2.
	momentum Hamiltonian function Hamilton's		CO3.	K3.
III	momentum – manntoman function – mannton's		CO4,	K4,
	canonical equations of motion – applications: (1) simple		CO5	K5,
	pendulum (11) one dimensional simple narmonic			
	oscillator (111) motion of particle in a central force field.			
		18	CO1,	K1,
	SMALL OSCILLATIONS		CO2,	K2,
IV	Formulation of the problem – transformation to normal		CO3,	K3,
	coordinates - frequencies of normal modes - linear		CO4,	K4,
	triatomic molecule.		CO5	K5,
		10	001	17.1
		18	CO1,	K1, K2
	NELAIIVIII Inertial and non-inertial frames I orentz		CO_2 , CO_3	K2, K3
	transformation equations length contraction and time		CO3,	КЗ, КЛ
V	dilation – relativistic addition of velocities – Finstein's		CO 4 , CO5	K4, K5
	mass-energy relation – Minkowski's space – four		005	110,
	vectors – position, velocity, momentum, acceleration			
	and force in for vector notation and their			
	transformations.			
			CO1,	K1,
	SELF-STUDY FOR ENRICHMENT	-	CO2,	K2,
VI	(Not included for End Semester Examinations)		CO3,	K3, K4
	Canonical Transformations Powerd Small		CO4, CO5	N4, K5
	Canonical Hansionnauons – Deyona Sinan Oscillations, The Damped Driven Dendulum and the		COS	NJ,
	Josephson Junction – Hamiltonian Formulation.			

- 1. H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu.
- 2. J. C. Upadhyaya, *Classical Mechanics*, Himalaya Publshing. Co. New Delhi.
- 3. R. Resnick, 1968, Introduction to Special Theory of Relativity, Wiley Eastern, New Delhi.
- 4. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics Tata McGraw Hill,
- 5. New Delhi, 1980.
- 6. N. C. Rana and P.S. Joag, Classical Mechanics Tata McGraw Hill, 2001.

Reference Books

- 1. K. R. Symon, 1971, Mechanics, Addison Wesley, London.
- 2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata.
- 3. Gupta and Kumar, Classical Mechanics, KedarNath.
- 4. T.W.B. Kibble, *Classical Mechanics*, ELBS.
- 5. Greenwood, Classical Dynamics, PHI, New Delhi.

Web References

- 1. <u>http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldstein_Classical_Mechanics_optimized.pdf</u>
- 2. <u>https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-editionpdf-pdf-free.html</u>
- 3. <u>https://nptel.ac.in/courses/122/106/122106027/</u>
- 4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/lecture-notes/
- 5. https://www.britannica.com/science/relativistic-mechanics

Pedagogy

Chalk and Talk, Power point presentation, Assignment, Group discussion and quiz

Course Designer

Dr. M. Kavimani

SEMESTER-I	INTERNALMARKS:2	EXTERNALMAR	RKS:75	
COURSECODE	COURSE TITLE	CATEGORY	HRS/ WEEK	CREDITS
23PPH1CC3	LINEAR AND DIGITAL ICs AND APPLICATIONS	CC-III	6	5

Course Objective

- To understand the basic building blocks of linear integrated circuits.
- To teach the linear and non-linear applications of operational amplifiers.
- To remember the theory and applications of PLL.
- To introduce the concepts of waveform generation and introduce one special function ICs.
- To exposure to digital IC 's

Pre-requisites

- Knowledge of semiconductor devices
- Basic concepts of digital and analog electronics
- Grasping Power in the concepts OP-AMP

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
C01	Remember and understand the concepts of linear integrated circuits.	K1, K2
CO2	Analyze the linear and non-linear applications of operational amplifiers.	K3
CO3	Evaluate the basic concepts of operational amplifier, oscillator circuits and IC	K4
CO4	Apply the Principles and Concepts of waveform generation	K5
CO5	Recommend projects in electronics relevant to industrial and R &D needs	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO 3	PO4	PO5
CO 1	3	3	3	2	1	3	3	2	2	2
CO 2	3	3	2	2	2	3	1	2	2	2
CO 3	2	3	3	2	2	3	3	1	2	2
CO 4	3	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	1	3	3	2	3	1

"1"-Slight (Low) Correlation

"2" - Moderate (Medium) Correlation,

"3" - Substantial(High) Correlation

"-"indicates the reisnocorrelation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal Operational amplifier, Op-Amp internal circuit and Op-Amp. Characteristics.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K5
п	APPLICATIONS OF OP-AMP INEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K5
ш	ACTIVE FILTERS &TIMER AND PHASE LOCKED LOOPS ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage-controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K5
IV	 VOLTAGE REGULATOR: Introduction, Series Op- Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications. 	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K5

V	CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL 74XX ICs & SEQUENTIAL CIRCUITS USING TTL 74XX ICs CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-AND-INVERT gates, implementation of any function using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154). SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 7493).	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K5
VI	SELF- STUDY FOR ENRICHMENT: (Not to be included for External Examination) Applications of operational Amplifier: inverting, non- inverting amplifier–adder, subtractor, differentiator– integrator. Applications of Multiplexer and Demultiplexer.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K5

- 1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age
- 2. International Pvt. Ltd., New Delhi, India
- 3. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice
- 4. Hall, Pearson Education, New Delhi.
- 5. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co.
- 6. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition.
- 7. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog), S. Viswanathan
- 8. Printers & Publishers Private Ltd, Reprint. V.

Reference Books

- 1. Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits,
- 2. Mc Graw Hill, New Delhi.
- 3. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International,
- 4. New Delhi.
- 5. Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw
- 6. Hill, New Delhi
- 7. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi.
- 8. Millman & Halkias (2000) Integrated Electronics, Tata McGraw Hill, 17th Reprint.

Web References

- 1. https://nptel.ac.in/course.html/digital circuits/
- 2. <u>https://nptel.ac.in/course.html/electronics/operational amplifier/</u>
- 3. <u>https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/field-effect-controlled-thyristors/</u>
- 4. https://www.electrical4u.com/applications-of-op-amp/
- 5. https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

Pedagogy

Chalk and Talk, Seminar, Assignment, Power point Presentation, Group discussion and Quiz

Course Designer

Dr.K.Kannagi

Semester I	Internal Marks: 40 External Marks: 60							
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS				
23PPH1CC1P	GENERAL PHYSICS AND ELECTRONICS - L(P)	CP-I	6	5				

Course Objectives

- To acquire knowledge of spectrometry and to find optical constants
- To understand the concept of thermal behavior of the materials.
- Explain the operation about arithmetic and combinational logic circuits using IC's
- To acquire knowledge about combinational Logic circuits and sequential logic circuits
- To analyze the various parameters related to operational amplifiers.

Pre-requisites

Fundamental knowledge and hands on experience of general and electronics experiments of Physics

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement						
	On the successful completion of the Course, the Student will be able to	Level					
CO 1	Explain the basic concepts of experimental physics.	K2					
CO 2	Understand knowledge the principles of magnetism through the experiments	K2					
CO 3	Explore the concepts of spectrometry involved in the optic processes.	K3					
CO 4	Verify experimentally the concepts about combinational Logic circuits	K4					
CO 5	Develop the skill in handling instruments in the construction of circuits	K6					

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	2	1	2	2	2	2	1	2	1
CO 2	1	2	2	2	2	2	2	2	2	1
CO 3	1	2	2	2	2	2	2	2	1	1
CO 4	2	2	2	2	3	2	2	2	1	1
CO 5	2	2	2	2	3	2	2	2	1	1

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" - indicates there is no correlation

LIST OF EXPERIMENTS (ANY TEN)

- 1. Determination of Rydberg's constant Hydrogen Spectrum
- 2. Measurement of Band gap energy- Thermistor
- 3. Determination of Compressibility of a liquid using Ultrasonics
- 4. Determination of wavelength, separation of wavelengths Michelson Interferometer
- 5. Measurement of Conductivity Four probe method.
- 6. Construction of relaxation oscillator using UJT
- 7. FET CS amplifier- Frequency response, input impedance, output impedance
- 8. Study of important electrical characteristics of IC741
- 8. Study of attenuation characteristics of Wien's bridge network and design of Wein's bridge oscillator using Op- Amp
- 9. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator Using Op- Amp
- 11. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 12. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 13. Study of J-K, D and T flip flops using IC 7476/7473
- 14. Study of Arithmetic logic unit using IC 74181
- 15. Construction of Encoder and Decoder circuits using ICs.
- 16. Arc spectrum Iron.

Text Book

- 1. Ouseph C.C., Rao, U.J., & Vijayendran, V. (2009), *Practical Physics and Electronics*, S. Viswanathan, Printers & Publishers Pvt Ltd
- 2. Dr. Somasundaram S, (2012), Practical Physics, Apsara Publications
- 3.S. Poornachandra *Electronic Laboratory Primer a design approach*, B. Sasikala, Wheeler Publishing, New Delhi.
- 4. Electronic lab manual Vol I, K A Navas, Rajath Publishing

Reference Book

- 1. Jones, B.K., (1986). Electronics for Experimentation and Research. Prentice-Hall.
- 2. Zbar, P.B., Malvino, A.P., & Miller, M.A., (1994). *Basic Electronics: A Text-Lab Manual. Tata Mc-Graw Hill*, New Delhi.
- 3. Advanced Practical Physics, S.P Singh, Pragati Prakasan.
- 4. An advanced course in Practical Physics, D. Chattopadhaya, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 5. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.

Web References

- 1. https://www.msuniv.ac.in/Download/Pdf/b2efcbdbc4be452
- 2. <u>https://www.studocu.com/in/document/reva-institute-of-technology-and-management/bachelors/MSc electronics-lab-student-copy/17586392</u>
- 3. https://www.vlab.co.in/broad-area-physical-sciences

Pedagogy

Demonstration, Practical Sessions and Viva Voce Course Designer

Dr. S. Gowri

SEMESTER- I	INTERNAL MARKS: 25 EXTERNAL MA					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS		
23PPH1DSE1A	PHYSICS OF NANOSCIENCE AND TECHNOLOGY	DSE-I	6	3		

Course Objectives

- To understand the material physics on the nano scale and the application aspects of nanoscience and technology
- To provide the basic knowledge about nanoscience and technology.
- To learn the structures and properties of nanomaterials.
- To acquire the knowledge about synthesis methods and characterization techniques and its applications.
- To understand the Technology with the characterization studyand applications at nanometer scale.

Pre-Requisites

- Basic knowledge in Solid State Physics.
- Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- Understand the material physics on the nano scale.
- Understand the application aspects of nanoscience and technology.

Course Outcome

СО	CO Statement						
Number	On the successful completion of the Course, the Student will be able to,	Level					
CO 1	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	K1, K2					
CO 2	To learn the structures and properties of nanomaterials.	K2					
CO 3	Apply the process and mechanism of synthesis and fabrication of nanomaterials.	К3					
CO 4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	K4					
CO 5	Evaluate and apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	K5, K6					

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	3	3	3	3	2	2	3
CO 2	2	3	3	3	3	3	3	2	2	3
CO 3	2	3	3	3	3	3	3	2	3	3
CO 4	2	3	3	2	3	3	2	2	2	3
CO 5	2	3	3	2	3	3	2	2	2	3

1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
T		10	001	
1	FUNDAMENTALS OF NANOSCIENCE AND	18	CO1,	KI, K2
	TECHNOLOGY		CO2,	K2, K2
	Fundamentals of NANO–Historical Perspective on		CO3,	K3, K4
	Nanomaterial and Nanolecnnology-Classification of		CO4, CO5	Κ4, <i>V5</i>
	Nanomaterials-Metal and Semiconductor Nanomaterials-		05	K5,
	2D, 1D, 0D nanostructured materials- Quantum dots-			Ко
	Quantum wires –Quantum wells-Surface effects of			
TT	nanomaterials.	10	<u>CO1</u>	17.1
11	PROPERTIES OF NANOMATERIALS	18	COI,	KI, K2
	Physical properties of Nanomaterials: Melting points,		CO2,	K2, K2
	specific near capacity, and lattice constant - Mechanical		CO3,	K3,
	benavior: Elastic properties – strength - ductility -		CO4,	K4,
	superplastic benavior - Optical properties: - Surface Plasmon		005	K5,
	Resonance – Quantum size effects - Electrical properties -			Ко
	Conductivity, Ferroelectrics and dielectrics - Magnetic			
	properties – super para magnetism – Diluted magnetic			
	semiconductor (DMS).	10		77.4
111	SYNTHESIS AND FABRICATION	18	COI,	KI,
	Physical vapour deposition - Chemical vapour deposition -		CO2,	K2,
	sol-gel-Wet deposition techniques - electrochemical		CO3,	K3,
	deposition method – Plasma arching - Electrospinning		CO4,	K4,
	method - ball milling technique - pulsed laser deposition -		CO5	K5,
	Nanolithography: photolithography – Nanomanipulator.	1.0		K6
IV	CHARACTERIZATION TECHNIQUES	18	CO1,	K1,
	Powder X-ray diffraction - X-ray photoelectron spectroscopy		CO2,	K2,
	(XPS) - UV-visible spectroscopy – Photoluminescence -		CO3,	K3,
	Scanning electron microscopy (SEM) - Transmission		CO4,	K4,
	electron microscopy (TEM) - Scanning probe microscopy		CO5	K5,
	(SPM) - Scanning tunneling microscopy (STM) – Vibrating			K6
	sample Magnetometer.	10		77.4
V	APPLICATIONS OF NANOMATERIALS	18	COI,	KI,
	Sensors: Nano sensors based on optical and physical		CO2,	K2,
	properties - Electrochemical sensors – Nano-biosensors. Nano		CO3,	K3,
	Electronics: Nanobots - display screens - GMR read/write		CO4,	K4,
	heads - Carbon Nanotube Emitters –Photocatalytic		CO5	K5,
	application: Air purification, water purification -Medicine:			K6
	Imaging of cancer cells – biological tags - drug delivery -			
	photodynamic therapy - Energy: fuel cells - rechargeable			
X 7 X	batteries -supercapacitors-photovoltaics.		GO1	77.1
VI	SELF STUDY FOR ENRICHMENT	-	COI,	K1,
	(Not to be included for External Examination)		CO2,	K2,
	Nanomachines andDevices-Nanocomposites-Catalytic		CO3,	K3,
	properties-Cytochemical synthesis along with suitable		CO4,	K4,
	examples-Cyclic Voltammetry (CV)-Miscellaneous		005	K5,
	applications of nanotechnology-Dental implants consumer			Кб
	approactions of nanotechnology Dental implants, consumer			
	products, diominetic nanomaterials for tissue engineering,			
	biopolymer tagging, semiconductor quantum dots.			

- 1. Pradeep T, (2012), A textbook of Nanoscience and Nanotechnology, Tata McGraw-Hill Publishing.
- 2. Shah M A, Tokeer Ahmad (2010), *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House Pvt Ltd.,
- 3. Chattopadhyay K K and Banerjee A N, (2012), *Introduction to Nanoscience and Nanotechnology*, PHI Learning Pvt. Ltd., New Delhi.
- 4. Hari Singh Nalwa, (2002), Nanostructured Materials and Nanotechnology, Academic Press.
- 5. Kothari D P, Velmurugan V and Rajit Ram Singh, (2018), *Nanotechnology and Nanoelectronics*, Narosa Publishing House Pvt. Ltd, New Delhi.
- 6. Poole C P and Ownes F J, (2003), Introduction to Nanotechnology, Wiley Reprint (2014).

Reference Books

- 1. Huozhong Gao, (2004), Nanostructures and Nanomaterials, Imperial College Press.
- 2. Richard Booker and Earl Boysen, (2005), Nanotechnology, Wiley Publishing Inc. USA
- 3. Fendler John Wiley and Sons. J H, (2007), *Nano particles and Nano structured films*; Preparation, Characterization and Applications.
- 4. Murty B S, et al., (2012), Textbook of Nanoscience and Nanotechnology, Universities Press.
- 5. Dr. Parag Diwan and Ashish Bharadwaj, (2005), *The Nanoscope*, Vol. IV-Nanoelectronics Pentagon Press, New Delhi.

Web References

- 1. www.its.caltec.edu/feyman/plenty.html
- 2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
- 3. <u>http://www.understandingnano.com</u>
- 4. <u>http://www.nano.gov</u>
- 5. <u>http://www.nanotechnology.com</u>

Pedagogy

Chalk and Talk, Seminars on Industrial Interactions, Power Point Presentation, Quiz, Assignment and Group discussion.

Course Designer

Dr. R. Mekala

SEMESTER- I	INTERNAL MARKS: 25		EXTERNAL MARKS: 75			
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS		
23PPH1DSE1B	ENERGY PHYSICS	DSE-1B	6	3		

Course Objectives

- To learn about various renewable energy sources.
- To know the ways of effectively utilizing the oceanic energy.
- To study the method of harnessing wind energy and its advantages.
- To learn the techniques useful for the conversion of biomass into useful energy.
- To know about utilization of solar energy.

Pre-requisites

- Knowledge of conventional energy resources.
- Basics of Tidal Energy and Bio gas Energy.
- Understandings of Wind Energy.
- Basic Idea on Solar Energy.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	To identify various forms of renewable and non-renewable energy sources	K1
CO 2	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	K2
CO 3	Discuss the working of a windmill and analyze the advantages of wind energy.	К3
CO 4	Distinguish aerobic digestion process from anaerobic digestion.	K3,K4
CO 5	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	K2,K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	2	2	1	2	2	3	3	2	2
CO 2	2	2	2	1	2	3	3	3	2	2
CO 3	2	2	2	1	2	3	3	3	2	2
CO 4	2	2	2	1	2	3	3	3	2	2
CO 5	2	2	2	1	2	3	3	3	2	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	INTRODUCTION TO ENERGY SOURCES Conventional and non-conventional energy sources and their availability–prospects of Renewable energy sources– Energy from other sources– chemical energy–Nuclear energy– Energy storage and distribution.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5.
II	ENERGY FROM THE OCEANS Energy utilization–Energy from tides–Basic principle of tidal power–utilization of tidal energy – Principle of ocean thermal energy conversion systems.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5.
III	WIND ENERGY SOURCES Basic principles of wind energy conversion-power in the wind-forces in the Blades- Wind energy conversion-Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage-Applications of wind energy.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5.
IV	ENERGY FROM BIOMASS Biomass conversion Technologies– wet and dry process– Photosynthesis -Biogas Generation: Introduction–basic process: Aerobic and an aerobic digestion – Advantages of anaerobic digestion– factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas-utilization of biogas.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5.
V	SOLAR ENERGY SOURCES Solar radiation and its measurements–solar cells: Solar cells for direct conversion of solar energy to electric powers–solar cell parameter–solar cell electrical characteristics– Efficiency–solar water Heater –solar distillation– solar cooking–solar greenhouse – Solar Pond and its applications.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5.
VI	SELF STUDY FOR ENRICHMENT (Not to be included for External Examination) Thermo electric power – Small scale Hydro electrics – Inter connected systems-Alternative liquid fuels (Alcohol fuels)-Sun shine Recorder.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

- 1. G.D. Rai, 1996, Non Conventional Energy sources, 4th edition, Khanna publishers, New Delhi.
- 2. S. Rao and Dr. ParuLekar, Energy technology.
- 3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).
- S. P. Sukhatme, Solar energy, principles of thermal collection and storage,2nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).
- 5. S. Rao and Dr. Parulekar, Energy Technology

Reference Books

- 1. *Renewable energy resources*, John Twidell and Tonyweir, Taylor and Francis group, London and New York.
- 2. Applied solar energy, A. B. Meinel and A. P. Meinal
- 3. John Twidell and Tony Weir, *Renewable energy resources*, Taylor and Francis group, London and New York.
- 4. Renewal Energy Technologies: A Practical Guide for Beginners C.S. Solanki-PHI Learning
- 5. Introduction to Non-Conventional Energy Resources Raja et. al., Sci. Tech Publications

Web References

- 1. <u>https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1</u>
- 2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
- 3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
- 4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
- 5. https://www.acciona.com/renewable-energy/solar-energy/

Pedagogy

Chalk and Talk, Power Point Presentation, Seminar, Quiz, Assignment and Group discussion.

Course Designer

Dr. T.Noorunnisha

Semester- I	Internal Marks: 25	External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS		
23PPH1DSE1C	DIGITAL COMMUNICATION	DSE-1C	6	3		

Course Objectives

- To understand the use of Fourier, transform in analyzing the signals
- To learn about the quanta of transmission of information
- To make students familiar with different types of pulse modulation
- To have an in-depth knowledge about the various methods of error controlling codes
- To acquire knowledge about spread spectrum techniques in getting secured communication

Pre-requisites

- Exposure to Fourier transform, multiplexing.
- Basics knowledge on Pulse Modulation.
- Understanding of coding.
- Knowledge on noises in communication signals.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	Apply the techniques of Fourier transform, convolution and sampling theorems in signal processing	K1, K3
CO 2	Apply different information theories in the process of study of coding of information, storage and communication	К3
CO 3	Explain and compare the various methods of pulse modulation Techniques	K4
CO 4	Apply the error control coding techniques in detecting and correcting errors- able to discuss, analyze and compare the different error control coding	K3, K4
CO 5	Apply, discuss and compare the spread spectrum techniques for secure communications	K3, k5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	2	3	1	2	3	3	2	1	3
CO 2	2	2	2	1	2	3	3	2	2	3
CO 3	3	3	2	1	2	2	2	2	1	2
CO 4	3	2	2	1	3	3	2	2	1	3
CO 5	2	2	2	1	3	3	2	2	1	3

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	SIGNAL ANALYSIS	18	CO1,	K1,
	Fourier transforms of gate functions, delta functions at the		CO2,	K2,
	origin – Two delta function and periodic delta function –		CO3,	K3,
	Properties of Fourier transform – Frequency shifting –		CO4,	K4,
	Time shifting - Convolution –Graphical representation –		CO5	K5.
	Convolution theorem – Time Convolution theorem –			
	Frequency Convolution theorem –Sampling theorem.			
II	INFORMATION THEORY	18	CO1,	K1,
	Communication system – Measurement of information -		CO2,	K2,
	Coding – Bandot Code CCITT Code –Hartley Law –		CO3,	K3,
	Noise in an information Carrying Channel- Effects of		CO4,	K4,
	noise- Capacity of noise in a channel – Shannon Hartley		CO5	K5.
	theorem – Redundancy			
III	PULSE MODULATION	18	CO1	K1
	Pulse amplitude modulation - natural sampling –	10	CO1,	K1, K2
	Instantaneous sampling - Transmission of PAM Signals -		CO3	K3
	Dulas width modulation Time division multiplaying		CO4.	K4.
	Pulse width modulation – Time division multiplexing –		CO5	K5.
	Band width requirements for PAM Signals. Pulse Code			
	Modulation – Principles of PCM – Quantizing noise –			
	Generation and demodulation of PCM -Effects of noise –			
	Companding – Advantages and application.			
IV	ERROR CONTROL CODING	18	CO1,	K1,
	Introduction to Linear Block Codes, Hamming Codes,		CO2,	K2,
	BCH Coding, RS Coding, Convolutional Coding, Coding		CO3,	КЗ,
	Grain Viterbi Coding		CO4,	K4,
		10	CO5	<u>K5.</u>
V	SPREAD SPECTRUM SYSTEMS	18	CO1,	KI,
	Pseudo Noise sequences, generation and Correlation		CO2,	K_{2}, K_{2}
	frequency HOP Systems, processing gain onti iom and		CO3,	KS, KA
	multipath performance		CO4, CO5	K4, K5
VI	SELESTUDY FOR ENRICHMENT		C01	KJ. K1
V I	(Not to be included for External Examination)	-	CO1,	K1, K2
	Dual Tana Multi fraguency Circal Detection Disital		CO2,	K3.
	Dual-Tone Multi frequency Signal Detection, Digital		CO4.	K4.
	Filters, Multirate DSP, Linear Prediction & Optimum		CO5	K5.
	Linear Filters, Power spectrum estimation Bartlett and			· ·
	Welch methods			

- 1. B.P. Lathi, Communication system, Wiley Eastern.
- 2. George Kennedy, *Electronic Communication Systems*, 3rdEdition, McGraw Hill.
- 3. Simon Haykin, *Communication System*, 3rd Edition, John Wiley & Sons.
- 4. George Kennedy and Davis, 1988, Electronic Communication System, Tata McGraw Hill.
- 5. Taub and Schilling, 1991, "Principles of Communication System", Tata McGraw Hill.

Reference Books

- 1. John Proakis, 1995, Digital Communication, 3rd Edition, McGraw Hill, Malaysia.
- 2. M. K. Simen, 1999, *Digital Communication Techniques, Signal Design and Detection*, Prentice Hall of India.
- 3. Dennis Roddy and Coolen, 1995, Electronics communications, Prentice Hall of India IV Edition.
- 4. Wave Tomasi, 1998, "Advanced Electronics communication System" Prentice Hall, Inc.
- 5. M.Kulkarni, 1988, "Microwave and Radar Engineering", Umesh Publications.

Web References

- 1. <u>http://nptel.iitm.ac.in/</u>
- 2. <u>http://web.ewu.edu/</u>
- 3. http://www.ece.umd.edu/class/enee630.F2012.html
- 4. http://www.aticourses.com/Advanced%20Topics%20in%20Digital%20Signals
- 5. http://nptel.iitm.ac.in/courses/117101051.html

Pedagogy

Chalk and Talk, Power Point Presentation, Seminar, Quiz, Assignment and Group discussion.

Course Designer

Dr. T. Noorunnisha