CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC ISO 9001:2015 Certified

TIRUCHIRAPPALLI

PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

M. SC COMPUTER SCIENCE SYLLABUS 2022-2023 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

VISION

To create an ambience for a quality academic erudition which drives technologically adept, innovative and globally competent graduates with ethical values

MISSION

- To have a breath of knowledge across the subject areas of Computer Science
- To professionally enrich the students for successful career in Academic, Industry and Research
- To promote and inculcate ethics and code of professional practice among students

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
	LEARNING ENVIRONMENT
PEO1	To facilitate value-based holistic and comprehensive learning by integrating innovative
	learning practices to match the highest quality standards and train the students to be
	effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the
	spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario
	and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform
	students into committed professionals with a strong attitude towards the development of
	the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts
	and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc COMPUTER SCIENCE PROGRAMME

	Programme Outcome
PO NO.	On completion of M.Sc. Computer Science
	The students will be able to
	DOMAIN KNOWLEDGE
PO 1	Acquire the in-depth computing knowledge both conceptual and applied pertaining to
	the core discipline
	PROBLEM SOLVING
PO 2	Procure knowledge-based skills to satisfy the needs of society and the industry by
	providing hands on experience of various technologies in Computer Science
	INNOVATION AND CRITICAL THINKING
PO 3	Critically evaluate global issues, recognize the need and identify sustainable solutions
	through research capabilities towards Nation building initiatives
	LIFE LONG LEARNING
PO 4	Capable of upgrading and advancing knowledge through innovation and technology as
	evidenced by current developments
	LEADERSHIP AND TEAMWORK
PO 5	Work in collaborative environment through applications of scientific reasoning and
	communicate effectively to the stakeholders

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc COMPUTER SCIENCE PROGRAMME

PSO NO.	Programme Specific Outcomes Students of M.Sc Computer Science will be able to	PO s Addressed
PSO 1	Identify, formulate and develop solutions for computational challenges	PO 1 PO 2
PSO 2	Inculcate broad knowledge in core areas of Computer Science and emerging technologies in related domains	PO 1 PO 2
PSO 3	Integrate computing knowledge on crafting innovative solutions and to provide a gateway for research.	PO 2 PO 3 PO 4
PSO 4	Develop analytical and technical skills to enhance employment potential and entrepreneurship	PO 3 PO 4 PO 5
PSO 5	Imbibe professional and ethical skills to become a competent citizen for the betterment of society	PO 3 PO 4 PO 5

Cauvery College for Women (Autonomous), Trichy-18

PG & Research Department of Computer Science
M.Sc Computer Science

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS- LOCF) (For the Candidates admitted from the Academic year 2022-2023 onwards)

ter	Course Code		rs.	7.0		Exar			
Semester	Course	Course Title		Inst. Hrs. / week	Credits	-à	Mar	ks	al
Sei				Inst / we	Cre	Hrs.	Int.	Ext.	Total
	Core Course– I (CC)	Mathematical Foundation for	22PCS1CC1	6	5	3	25	75	100
		Computer Science							
	Core Course – II (CC)	Web Technologies	22PCS1CC2	6	5	3	25	75	100
I	Core Course –III (CC)	Machine Learning Techniques	22PCS1CC3	6	5	3	25	75	100
	Core Practical - I (CP)	Web Technologies (P)	22PCS1CC1P	6	5	3	40	60	100
	Discipline Specific	e Specific A. Advanced Computer 22PCS1DSE1A							
	Elective Course-I (DSE)	Architecture	221 COTDOLITA						
		B. Advanced Database	22PCS1DSE1B	6	3	3	25	75	100
		System	221 051150115						
		C. Software Testing	22PCS1DSE1C						
	Total			30	23	-	-	-	500
		15 Days INTERNSHIP of	luring Semester H	Iolida	ys	•			
	Core Course– IV (CC)	Data Mining and	22PCS2CC4	6	5	3	25	75	100
		Warehousing							
	Core Course – V (CC)	Design and Analysis of	22PCS2CC5	6	5	3	25	75	100
		Algorithms							
	Core Choice Course– I	A. Mobile Computing	22PCS2CCC1A						
	(CCC)	B. Wireless Sensor Networks	22PCS2CCC1B	6	4	3	25	75	100
		C.MANET	22PCS2CCC1C						
II	Core Practical - II (CP)	Data Mining (P)	22PCS2CC2P	6	5	3	40	60	100
11	Discipline Specific Elective	e A. Cryptography and	22PCS2DSE2A						
	Course-II (DSE)	Network Security	221 C52D5L211						
		B. Blockchain and	22PCS2DSE2B	6	3	3	25	75	100
		Cryptocurrencies	221 C52D5C2D						
		C. Ethical Hacking	22PCS2DSE2C						
	Internship	Internship	22PCS2INT	-	2	-	25	75	100
	Extra Credit Course	SWAYAM	As pe	r UGC	Reco	mme	ndatio	1	
	Total			30	24	-	_	_	600

	Core Course– VI (CC)	WAP & XML	22PCS3CC6	6	5	3	-	100	100
	Core Course – VII (CC)	Cloud Computing	22PCS3CC7	6	5	3	25	75	100
	Core Choice Course– II	A. Cyber Security	22PGCS3CCC2A						100
	(CCC)	B. IoT	22PCS3CCC2B	5	4	3	25	75	
		C. Compiler Design	22PCS3CCC2C						
	Core Practical - III (CP)	Cloud Computing (P)	22PCS3CC3P	5	5	3	40	60	100
III	Discipline Specific Elective Course-III (DSE)	A. Computer Science for Competitive Examinations	22PCS3DSE3A			2	-	100	
1111		B. IoT (P)	22PCS3DSE3BP	5	3				100
		C. Smart Devices Programming (P)	22PCS3DSE3CP	-			40	60	
	Generic Elective Course -I (GEC)	Data Analysis (P)	22PCS3GEC1P	3	2	3	40	60	100
	Extra Credit Course	UGC Recommendation							
	Total		1	30	24	-	-	-	600
	Core Course–VIII (CC)	Big Data Analytics	22PCS4CC8	6	5	3	25	75	100
	Core Choice Course– III (CCC)	A. Robotic Process Automation	22PCS4CCC3A				25	75	
		B. Virtual and Augmented Reality	22PCS4CCC3B	6	4	3			100
IV		C. Digital Image Processing	22PCS4CCC3C	1					
	Core Practical - IV (CP)	FOSS (P)	22PCS4CC4P	6	5	3	40	60	100
	Generic Elective Course-II (GEC)	` '		3	2	3	40	60	100
	Project	Project Work	22PCS4PW	9	5	-	-	100	100
	Total	I.	1	30	21				500
	Total			50	41				200

Courses & Credits for M.Sc Computer Science Programme

S. No	Courses	No of	No of Credits	Marks
		Courses		
1.	Core Course– (CC)	8	40	800
2.	Core Choice Course– (CCC)	3	12	300
3.	Core Practical - (CP)	4	20	400
4.	Discipline Specific Elective- (DSE)	3	9	300
5.	Generic Elective Course - (GEC)	2	4	200
6.	Project	1	5	100
7.	Internship	1	2	100
	Total	22	92	2200

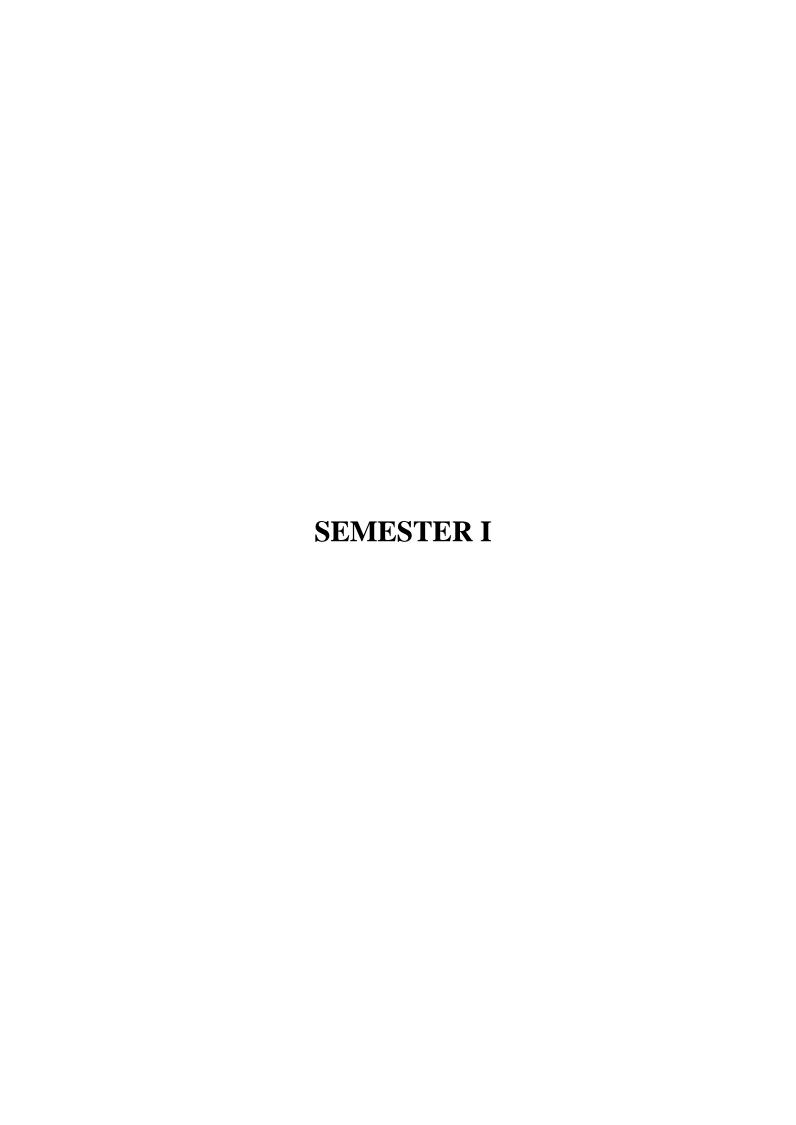
The Internal and External marks for theory and practical courses are as follows:

Course	Internal Marks	External Marks
Theory	25	75
Practical	40	60
Project	-	100
Internship	25	75

For Theory courses:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e. 30 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Practical courses:


- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. 24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project Work:

a) The passing minimum not less than 50% out of 100 marks

For Internship:

a) The passing minimum not less than 50% in the aggregate.

Semester: I	Internal Marks: 25		External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
CODE					
22PCS1CC1	MATHEMATICAL	CORE	6	5	
	FOUNDATION				
	FOR COMPUTER				
	SCIENCE				

- Explore the basic concepts of Discrete Mathematics, Graph Theory,
- **Acquire** the knowledge of Fundamentals in Fuzzy set Theory and combinatorics.
- **Analyze** the method of logical reasoning to solve variety of problems.

Prerequisites

Basic Knowledge in Essential Mathematics, Numerical and Statistics.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Define the various concepts in Discrete Mathematics and Fuzzy Set Theory.	K1
CO 2	Understand the different terminologies of Discrete Mathematics and Fuzzy set theory.	K2
CO 3	Analyze the problems in different aspects and give solutions in their respective streams.	К3
CO 4	Examine some methodologies for the related area in an effective manner.	K4
CO 5	Apply the notions to distinct problems and get solutions in a easy way.	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	2	3	2	2	3	2	2	2	3
CO 2	2	2	3	2	2	2	2	2	2	3
CO 3	3	2	3	2	2	3	2	2	3	3
CO 4	3	2	2	2	2	2	2	2	2	2
CO 5	2	2	2	3	3	2	3	3	2	2

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Mathematical Logic: Statements and notation— Connectives — Negation— Conjunction— Disjunction-Statement Formulas and Truth Tables — Conditional and Biconditional — Well-formed Formulas — Tautologies — Duality law — Tautological Implications — Theory of inference for the statement calculus—Validity using Truth Tables — Rules of inference — Consistency of Premises and indirect Method of Proof	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Ordering: Partial ordering — Partially Ordered Set: Representation and Associated Terminology. Lattices and Boolean Algebra: Lattices as Partially ordered sets — Definition and Example — Some Properties of Lattices — Boolean Algebra — Definition and examples — Subalgebra, Direct Product and Homomorphism — Fundamental principles of counting: Permutations — Combinations: The Binomial theorem — Combinations with Repetition—The Principle of Inclusion and Exclusion: The Principle of Inclusion and Exclusion	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Algebraic Structures: Introduction – Algebraic Systems: Examples and General Properties: Definition and Examples – Some Simple Algebraic Systems and General Properties – Semigroups and Monoids: Definitions and Examples – Homomorphism of Semigroups and Monoids – Subsemigroups and Submonoids – Groups: Definitions and Examples – Subgroups and Homomorphisms – Cosets and Lagrange's Theorem. Group Codes: The Communication Model and Basic Notions of Error Correction – Generation of Codes by Using Parity Checks – Error Recovery in Group Codes.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Graph Theory: Definition of a Graph – Application of Graphs – Finite & Infinite graphs – Incidence and Degree – Isolated Vertex, Pendent Vertex and Null Graph. Paths and Circuits: Subgraphs—Walks, Paths and circuits—Connected Graphs, Disconnected Graphs and Components – Euler graphs – More on Euler graphs – Hamiltonian paths and Circuits. Trees and Fundamental Circuits: Trees – Some Properties of Trees – Pendant Vertices in a Tree	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

	From Classical (Crisp) Sets to Fuzzy Sets:	18	CO1,	K1,
	Fuzzy sets: Basic types – Fuzzy sets: Basic		CO2,	K2,
	Concepts.		CO3,	K3,
V	Fuzzy Sets Versus Crisp Sets:		CO4,	K4,
v	Additional Properties of α - cuts		CO5	K5
	Operations on Fuzzy Sets:			
	Types of Operations– Fuzzy Intersections: t-			
	Norms – Fuzzy Unions: t-Conorms (Proof not needed).			
	Self Study for Enrichment:	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Equivalence of Formulas – Recurrence relations:		CO3,	K3,
VI	First order linear Recurrence Relation – The Application of		CO4,	K4,
	Residue Arithmetic to Computers: Introduction to Number		CO5	K5
	Systems – Residue Arithmetic – Operations on Graphs,			
	Spanning trees – Fuzzy Complements.			

Text Books

- 1. Tremblay, J.P. & Manohar, R. (1997). *Discrete Mathematical Structures with Applications to Computer Science*, Tata McGraw-Hill Publishing Company Limited, New Delhi.
 - 2. Ralph,P. Grimaldi.(2002). Discrete and Combinatorial Mathematics, Pearson Asia Education.
- 3. Narsingh Deo.(1997). Graph Theory With Applications To Engineering & Computer Science. Prentice Hall of India, New Delhi.
- 4. Klir, G. J. and Yuan . R , (2001) Fuzzy Sets And Fuzzy Logic, Prentice Hall of India, New Delhi.

```
UNIT-I
               Chapter 1: Sections 1-1, 1-2(1-2.1 to 1-2.4,1-2.6 to 1-2.8, 1-2.10, 1-2.11)[1],
                             1-4(1-4.1 to 1-4.3) [1]
               Chapter 2: Sections 2-3(2-3.8, 2-3.9) [1]
UNIT-II
               Chapter 4: Sections 4-1(4-1.1, 4-1.2), 4-2(4-2.1, 4-2.2) [1]
               Chapter 1: Sections 1.2 to 1.4 [2]
               Chapter 8: Sections 8.1 [2]
               Chapter 3: Sections 3-1, 3-2, 3-5 ( 3-5.1, 3-5.2 & 3-5.3 Only), 3-7 [1]
UNIT-III
UNIT- IV
               Chapter 1: Sections 1.1 to 1.5 [3]
               Chapter 2: Sections 2.2, 2.4 to 2.6, 2.8, 2.9 [3]
               Chapter 3: 3.1 to 3.3 [3]
               Chapter 1: Sections 1.3, 1.4 [4]
UNIT- V
               Chapter 2: Sections 2.1 [4]
               Chapter 3: Sections 3.1, 3.3, 3.4 [4]
```

Reference Books

- 1. Ganesh, G.J.M. (2006). *Introduction To Fuzzy Sets And Logic*, Prentice-Hall of India, New Delhi.
- 2. Arumugam, S. & Ramachandran, S. (2001). *Invitation To Graph Theory*, Scitech Publications India Pvt Limited, Chennai.
- 3. Seymour Lipschutz, Marc Laris Lipson.(1999) *Schuam's Outlines Discrete Mathematics*, Tata McGraw-Hill Publishing Co., Ltd., New Delhi

Web References

- 1. https://www.youtube.com/results?search_query=negation+of+the+statement
- 2. https://www.youtube.com/results?search_query=permutation
- 3. https://www.youtube.com/results?search_query=graph+theory+definitions+and+examples
- 4. https://www.youtube.com/results?search_query=trees+in+graph+theory
- 5. https://www.youtube.com/results?search_query=fuzzi+sets+

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Dr.S.Saritha

Semester: I	Internal Marks: 25		External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22PCS1CC2	WEB TECHNOLOGIES	CORE	6	5	

- To create own web page and how to host own web site on internet
- To familiarize Server Side Programming with Java Servlets, JSP and to commence Client Side Scripting with Java Script
- To analyze the basics involved in publishing content on the World Wide Web

Prerequisites

Java, HTML and Scripting

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Recall, Understand and Analyze the fundamentals of web application and web services	K1, K2,K3
CO 2	Determine the essential elements and the attributes to design a web page	K3, K5,K6
CO 3	Identify and Apply appropriate Client Side and Server Side programming for creating interactive web design	K3,K5
CO 4	Examine and recommend a solution to complex problems using appropriate method, technologies and web services	K4, K5
CO 5	Create and deploy real time web applications in web servers	K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	2	3	2	3	3	2	3	2
CO 2	3	3	2	3	2	3	3	2	3	2
CO 3	3	3	2	3	3	3	3	2	3	3
CO 4	3	3	2	3	3	3	3	2	3	3
CO 5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Web Essentials: Clients, Servers, and Communication: The Internet-Basic Internet Protocols –TCP/IP- UDP-DNS-Domain Names—The World Wide Web-HTTP Request Message-Response Message-Web Clients-Web Servers-Markup Languages: XHTML 1.0: An Introduction to HTML- History and Versions-Basic XHTML Syntax and Semantics- Some fundamental HTML Elements-Relative URLs-Lists-Tables-Frames-Forms.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	Style Sheets: CSS -Introduction to Cascading Style Sheets-Features-Core Syntax-Style Sheets and HTML-Style Rule Cascading and Inheritance-Text Properties-CSS Box Model- Normal Flow Box Layout- Beyond the Normal Flow: properties for positioning, relative, float, absolute positioning.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
III	Client- Side Programming: The JavaScript Language: History and Versions - Introduction - JavaScript in Perspective-Syntax -Variables and DataTypes-Statements-Operators-Literals-Functions-Objects-Arrays-Built-in Objects.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
IV	Server-Side Programming: Java Servlets: Architecture Overview-A Servlet-Generating Dynamic Content-Life Cycle-Parameter Data-Sessions-Cookies- URL Rewriting - Servlets and Concurrency. RMI Architecture - Working With RMI- Application Development With RMI.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Separating Programming and Presentation: JSP Technology- Introduction to JSP- Running JSP Applications: Web Applications and Parameters- Basic JSP – Support for the Model-View-Controller Paradigm – Web Services: Web Services Concepts- Writing a Java Web Service Client-Describing Web Services: WSDL-Representing Data Types: XML Schema.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment (Not included for End Semester Examinations) Search Engine features: Real time applications for client and server side programming (JavaScript, RMI) – Platform supporting for web services.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

Text Book

1. Jeffrey C.Jackson.(2009). Web Technologies-A Computer Science Perspective. 1st Edition, Pearson Education.

Reference Books

- 1. Robert W.Sebesta.(2007). Programming the World Wide Web. 4th Edition, Pearson Education.
- **2.** Harvey M.Deitel, Paul J.Deitel, Andrew B.Goldberg.(2006). *Internet & World Wide Web How To Program* . 3rd Edition, Pearson Education.
- **3.** Marty Hall, Larry, Brown.(2001) .*Core Web Programming*. 2nd Edition, Volume I& II, Pearson Education.
- **4.** Moseley(2007). *Developing Web Applications*. 1st Edition, Wiley.
- 5. Herbert Schildt. (2012). The Complete Reference–JAVA. 7thEdition, TMH.

Web References

- 1. www.w3schools.com
- 2. www.geeksforgeets.org/web-technology/
- 3. www.guide.freecodecamp.org
- 4. www.alphadevx.com

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment.

Course Designer

Dr.K.Reka

Semester: I	Internal Marks: 25		External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK CREDITS		
22PCS1CC3	MACHINE LEARNING TECHNIQUES	CORE	6	5	

- To understand the need of machine learning to solve problems in real time applications
- To study the various learning algorithms in machine learning
- To be able to formulate new approaches in machine learning

Prerequisites

Basic Knowledge in Programming Languages (Python, R), Statistics, Linear Algebra and Calculus

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive Level
Number		
CO 1	Recognize and Understand the rudiments of Machine Learning	K1, K2
CO 2	Examine and Infer the hypothesis, limitations of Machine Learning methods	K2, K4
CO 3	Identify, Analyze and Interpret various Learning algorithms	K3, K4, K5
CO 4	Apply and Evaluate the solutions of various Machine Learning techniques	K4, K5
CO 5	Assess, Distinguish and Determine the Machine Learning techniques for Real-world applications	K3, K4, K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	2	3	3	3	3	2
CO 2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Let's Integrate with Machine Learning: General Introduction to Machine Learning – The Details of Machine Learning – The Practical Concepts of Machine Learning: Machine Learning, AI, the Brain and the Business of Intelligence – General Architecture	12	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
II	of Machine Learning — Types of Machine Learning Concept Learning and the General-to-Specific Ordering: A Concept Learning Task—Concept Learning as Search — Version Spaces and Candidate- Elimination Algorithm - Inductive Bias — Decision Tree learning: Decision Tree Representation — The Basic Decision Tree Learning Algorithm — Issues in Decision Tree Learning	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Artificial Neural Networks: Neural Network Representation – Appropriate Problems for Neural Network Learning – Perceptrons – Multilayer Networks and the Back Propagation Algorithm – Genetic Algorithms: Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evolution and Learning	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Bayesian Learning: Bayes Theorem — Bayes Theorem and Concept Learning —Bayes Optimal Classifier — Gibbs Algorithm — Naïve Bayes Classifier — Bayesian Belief Networks — The EM Algorithm — Computational Learning Theory: Sample Complexity for Finite Hypothesis Spaces — Sample Complexity for Infinite Hypothesis Spaces	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Instance-Based Learning: K- Nearest Neighbor Learning – Locally Weighted Regression – Radial Basis Functions—Case-Based Reasoning -Combining Inductive and Analytical Learning: The EBNN Algorithm – The FOCL Algorithm – Reinforcement Learning: Q Learning	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Machine Learning Models- Find-S: Finding a Maximally Specific Hypothesis- Advanced Topics in Artificial Neural Networks- The Mistake Bound Model of Learning- Industrial Applications of Machine Learning: Manufacturing Analytics – Healthcare Analytics.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Patanjali Kashyap(2017). Machine Learning for Decision Makers. 1st Edition. Apress. (Unit I)
- 2. Tom M. Mitchell(2018). *Machine Learning*. 1st Edition, McGraw-Hill Education (India) Private Limited (Units II-V)

Reference Books

- 1. Ethem Alpaydin (2010). Introduction to Machine Learning. Second Edition. The MIT Press.
- 2. Stephen Marsland (2014). *Machine Learning: An Algorithmic Perspective*. Second Edition. CRC Press.

Web References

- 1. https://www.simplilearn.com/tutorials/machine-learning-tutorial
- 2. https://machinelearningmastery.com/start-here/
- 3. https://www.mygreatlearning.com/blog/machine-learning-tutorial/

Pedagogy

Chalk and talk, Discussion, Quiz, Assignment & PPT

Course Designer

Ms S.Udhaya Priya

Semester: I	Internal Marks: 40		External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22PCS1CC1P	WEB TECHNOLOGIES (P)	CORE	6	5	

- To provide fundamental concept of Internet, JavaScript, Servlet with a view to developing professional software development skills
- To implement JSP and Servlet concepts to create an interactive application
- To inculcate knowledge in developing application using RMI

Prerequisites

Java, HTML and Scripting

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	List and Illustrate the usage of HTML Tags	K1,K2
CO2	Demonstrate and make use of Java Script in web applications	K2, K3
CO3	Apply and compare JSP tags to create a web page	K3, K4
CO4	Examine and Evaluate the client/server application using RMI	K4, K5
CO5	Interpret and Develop web application using Servlet	K5,K6

Mapping of CO with PO and PSO

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	2	3	2	3	3	3	3	2
CO 2	3	3	2	3	2	3	2	2	3	2
CO 3	3	3	2	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	3	3	3	3	2
CO 5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

Exercises

- 1. Develop your college web portal using HTML.
- 2. To develop a Style Sheet using Link, Table, Box, List and Positioning.
- 3. Write a Java Script code block, which checks the contents entered in a form's text element. If the text entered is in the lower case, convert to uppercase.

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

- 4. Write a Java Script code block, which validates a username and password.
 - a) If either the name or password field is not entered, display an error message.
 - b) If the fields are entered do not match with default values display an error message.
 - c) If the fields entered match, display the welcome message.
- 5. Write a program in Java to implement a Client/Server application using RMI.
- 6. Write a program in Java to create a Cookie and set the expiry time of the same.
- 7. Write a program in Java to create Servlet to count the number of visitors to a web page.
- 8. Write a program in Java to create a form and validate a password using Servlet.
- 9. Create an application using basic JSP tag

Web References

- 1. https://www.w3.org/TR/html401/present/styles.html
- 2. www.studytonight.com/java/rmi-in-java.php
- 3. https://www.tutorialspoint.com/servlets/servlets-session-tracking.htm
- 4. https://www.edureka.co/blog/servlet-and-jsp-tutorial/

Pedagogy

Demonstration

Course Designer

Ms.S.Udhaya Priya

Semester: I	Internal Marks: 25		External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
CODE					
22PCS1DSE1A	ADVANCED	DISCIPLINE	6	3	
	COMPUTER	SPECIFIC			
	ARCHITECTURE	ELECTIVE			

- To understand the micro-architectural design of processors
- To learn about the various techniques used to obtain performance improvement and power savings in current processors
- To gain knowledge in distributed and Parallel Computing Architecture

Prerequisites

Microprocessor

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Remember and Understand the computer architecture	K1, K2
CO 2	Interpret and Experiment with different pipelined processor	K2, K3, K5
CO 3	Organize and Analyze the architectural features of advanced processors	K3, K4
CO 4	Examine and Evaluate the cache and memory related issues in multiprocessors	K4, K5
CO 5	Assess the historical and current developments in computer architecture and adopt to the needs	K5, K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	2	3	2	3	2	2	3
CO 3	2	3	2	3	2	3	3	3	3	3
CO 4	3	3	3	2	3	3	3	3	2	2
CO 5	2	3	3	3	2	2	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Fundamentals of Quantitative Design and Analysis: Introduction-classes of computers- defining computer architecture-Trends in Technology, Power, Energy and Cost, Dependability	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
II	ILP Concepts and challenges: Compiler Techniques for Exposing ILP – Dynamic Branch Prediction-Dynamic Scheduling-Multiple Instruction Issue-Hardware based Speculation-Static Scheduling-Multi threading	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
III	Vector Architecture: SIMD Extensions-Graphics Processing Units-Loop Level Parallelism	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
IV	TLP: Introduction-Centralized Shared Memory-Architectures-Performance of Symmetric shared memory multiprocessor-Synchronization-Models of Memory Consistency	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Programming Models and Workloads for Warehouse: Scale Computers - Computer Architecture of Warehouse Scale Computers - Physical Infrastructure and Costs of Warehouse Scale Computers - Cloud Computing: The Return of Utility Computing	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
VI	Self Study for Enrichment (Not included for End Semester Examinations) Historical Perspectives Quantitative Design and Analysis: Limitations of Instruction-Level Parallelism and Its Exploitation-Fallacies and pitfalls of Data-Level Parallelism in Vector-Cross Cutting Issues in Thread-Level Parallelism-Using Energy Efficiency inside the server.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Book:

1. John L Hennessey, David A Patterson (2012). *Computer Architecture A Quantitative Approach*. Fifth Edition, Morgan Kaufmann Elsevier.

Reference Books

- 1. Kai Hwang, Faye Brigg(2000). *Computer Architecture And Parallel Processing*. International Edition, McGraw-Hill.
- 2. Sima D, Fountain T, Kacsuk P(2000). *Advanced Computer Architectures: A Design Space Approach*. Addison Wesley.

Web References

- 1. www.cs.iiie.edu.in/
- 2. https://passlab.githlub.io/CSE565/note

Pedagogy

Chalk and talk & Seminar

Course Designer

Ms.R.Rita Jenifer

Semester: I	Internal Marks: 25		External Marks	: 75
COURSE	COURSE TITLE	CATEGORY	HRS./WEEK	CREDITS
CODE				
22PCS1DSE1B	ADVANCED	DISCIPLINE	6	3
	DATABASE	SPECIFIC		
	SYSTEM	ELECTIVE		

- To inculcate knowledge in Transaction Management with ACID properties
- To learn about advanced concepts of Database Management System
- To gain Knowledge in Information retrieval using XML and Internet Databases

Prerequisites

RDBMS

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive Level
Number		
CO 1	Remember and Understand the concepts of databases	K1, K2
CO 2	Demonstrate and make use of different kinds of databases	K2, K3
CO 3	Identify and analyze databases for real life applications	K3, K4
CO 4	Compare and evaluate the performance of databases based on its transaction and concurrency control feature	K4, K5
CO 5	Interpret and develop parallel, distributed, object oriented and advanced databases for handling real time data	K5, K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	2	3	3	3	2	2	3
CO 3	2	3	2	3	2	3	3	3	3	3
CO 4	3	3	3	2	3	2	3	3	2	2
CO 5	2	3	3	3	2	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Parallel Databases: I/O Parallelism-Inter Query Parallelism –Intra Query Parallelism - Interoperation Parallelism -Query Optimization-Design of Parallel Systems-Parallelism on Multicore Processors	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
П	DistributedDatabases:HomogeneousandHeterogeneousDatabases-DistributedDataStorage-Distributed Transactions-Commit Protocol-ConcurrencyControl in Distributed Databases-DistributesQueryProcessing- HeterogeneousDistributed Databases-Cloud Based Databases-Directory Systems	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
III	Object Based Databases: Complex Data Types-Structured types and Inheritance in SQL—Table Inheritance-Object Identity and Reference Types in SQL—Implementing O-R features—Object Relational Mapping-Object—Oriented versus Object-Relational.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5,
IV	Transactions Management: Transaction Concepts—A Simple Transaction Model-Transaction Atomicity and Durability—Transaction Isolation- Transaction Isolation and Atomicity— Concurrency Control:Lock based Protocols-Deadlock Handling-Multiple Granularity—Timestamp-Based Protocols-Validation—Based Protocols.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	XML: Extensible Markup Language-Structured Semi Structured and Unstructured Data-XML Hierarchical (Tree) Data Model-XML Documents, DTD, XML Schema-Storing and Extracting XML documents from Databases-XML Languages.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
VI	Self Study for Enrichment (Not included for End Semester Examinations) Query Optimization techniques supporting platforms (SQL, MYSQL, Oracle)-Most popular Cloud Databases and their Features (DynamoDB, NO SQL)- Popular Object Databases and their Features(Mongo DB)- Transaction and Concurrency control used in Real time Systems- Advanced Technologies in Database Systems: Data mining, Information Retrieval(Text Data Base).	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Books

- 1. Abraham Silberschatz., Henry F. Korth. S. Sudharshan (2013). *Database System Concepts*. 6th Edition, Tata McGraw Hill. (**Unit I-IV**)
- 2. Ramez Elmasri, Shamkant. B.Navathe (2015). *Fundamentals of Database Systems*. 6th Edition, Pearson Education. (Unit V)

Reference Books

- 1. Thomas Connolly, Carolyn Begg (2015). *Database Systems, A Practical Approach to Design, Implementation and Management*. 6th Edition, Pearson Education.
- 2.Raghu Ramakrishnan, Johannes Gehrke (2007). *Database Management System*. 3rd Edition, McGraw Hill Higher Education.

Web References

- 1. https://www.db-book.com/db6/
- 2. https://www.worldcat.org

Pedagogy

Chalk and talk, Lecture, Discussion, Quiz, Demonstration and PPT

Course Designer

Ms.G.Sujatha

Semester: I	Internal Marks: 25	External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
CODE				
22PCS1DSE1C	SOFTWARE TESTING	DISCIPLINE	6	3
		SPECIFIC		
		ELECTIVE		

- To understand the quality aspects of a software
- Able to identify and prevent the defects of the software
- Provides exposure on principles in testing

Prerequisites

Software Engineering

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Remember and Understand testing approaches for the	K1, K2
	software	
CO 2	Compare and Identify the testing strategies to be used for	K2, K3, K4
	efficient software construction	
CO 3	Identify and Inspect the quality factors and best practices	K3, K4
	in various testing	
CO 4	Examine and explain the different phases of testing for the	K4, K5
	software development	
CO 5	Analyze and Interpret the tools for software testing	K4, K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	2	2	2	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	2	3	3

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Software Development Life Cycle Models: Phases of Software Project- Quality, Quality Assurance and Quality control – Testing, Verification & Validation – Process Model – Life Cycle Models - White Box Testing – Static Testing – Structural Testing – Black Box Testing	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Integration Testing: Integration Testing as a Type of Testing – Integration Testing as a Phase of Testing – Scenario testing – Defect Bash - System and Acceptance Testing: Overview –System Testing – Functional Vs Non Functional Testing — Acceptance Testing –Summary of Testing Phases	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Factors governing Performance Testing: Methodology for Performance Testing –Performance Testing – Process for Performance Testing - Regression Testing - Best Practices in Regression Testing	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Test Phases: Enabling Testing – Locale Testing – Validation – Language Testing – Localization Testing – Tools– Ad hoc Testing: Overview – Buddy Testing – Pair Testing – Exploratory Testing – Iterative Testing – Usability and Accessibility Testing: - Usability Testing – Quality Factors – Aesthetics Testing	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Test Planning, Management, Execution and Reporting: Test Planning -Test Management – Test Process – Test Reporting – Best Practices - Software Test Automation: Terms used in Automation – Skills Needed for Automation – Automate, Scope of Automation – Process model for Automation – Selecting a Test tool – Automation for Extreme Programming Model – Challenges in Automation	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Tools for White Box and Black Box Testing- Specialized Testing types in Functional and Non- Functional Testing-Tools for Regression and performance Testing- Agile and Extreme testing in Real time with example-Different types of Automated tools for Software testing	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

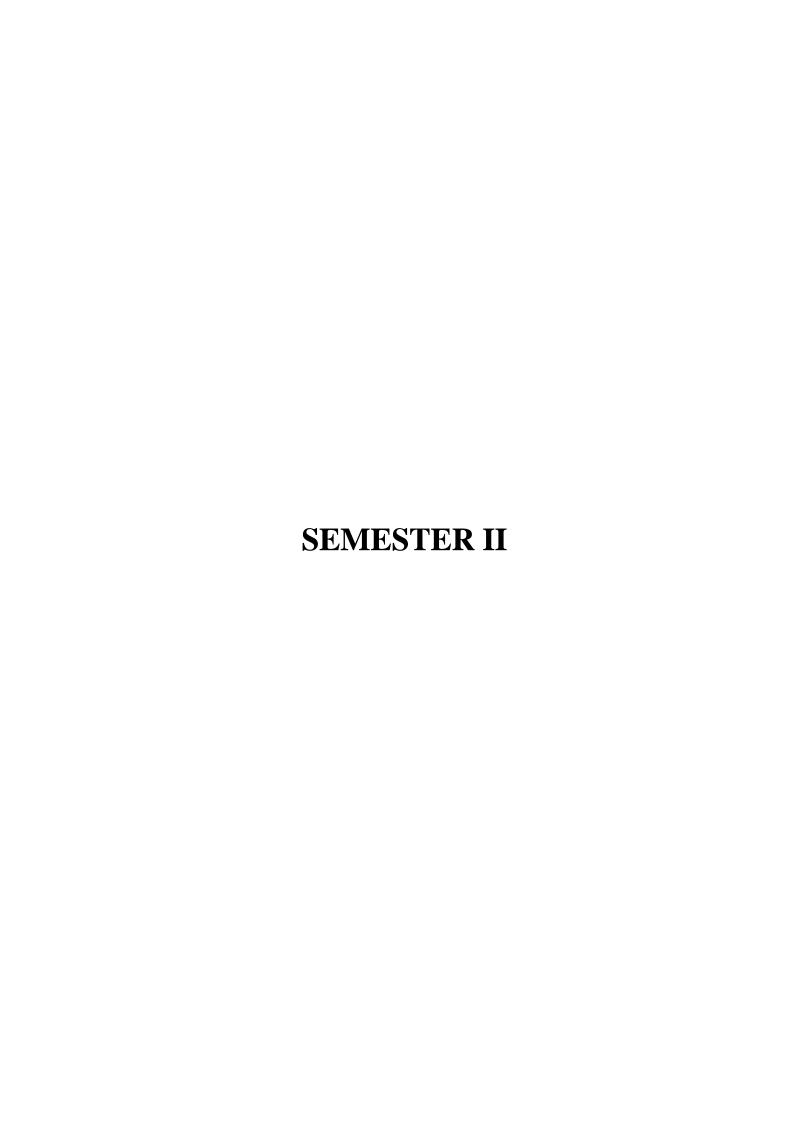
Text Book

1.Srinivasan Desikan, Gopalaswamy Ramesh (2011). *Software Testing – Principles & Practices*. 1st Edition, Pearson Education.

Reference Books

- 1.Ron Patton (2006). Software Testing. 2nd Edition, Pearson Education.
- 2. William E. Perry (2006). Effective Methods for Software Testing.3rd Edition, Wiley India.
- 3. Renu Rajani, Pradeep Oak (2004). Software Testing Effective Methods, Tools and Techniques. 2^{nd} Edition. TMH Publishing Company Limited.

Web References


- 1. https://www.gcreddy.com/2021/05/software-testing-syllabus.html
- 2. https://onlinecourses.nptel.ac.in/noc19_cs71/preview
- 3. https://www.softwaretestinghelp.com/online-software-testing-course-syllabus/

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz and Seminar

Course Designer

Dr.D.Radhika

Semester II	Internal Ma	rks: 25	External M	arks:75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22PCS2CC4	DATA MINING AND WAREHOUSING	CORE	6	5

- Able to understand the data sets and data preprocessing
- Demonstrate the working of algorithms for data mining tasks such as association rule mining, classification, clustering and regression
- Exercise the data mining techniques with varied input values for different parameters
- Ability to apply mining techniques for realistic data
- To prepare the students for building career in data warehousing and data mining areas

Prerequisites

Basic knowledge in Probability, Programming Languages and Database concepts

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Recognize the basic concepts and functionality of data mining and warehousing.	K1, K2
CO 2	Identify and Choose appropriate data mining techniques	K2, K3
CO 3	Apply and Analyse the suitable solution to the problem	K3, K4
CO 4	Build and Justify the results produced by data mining	K3, K5
CO 5	Categorize and evaluate skills in selecting the appropriate data mining algorithm for solving practical problems	K4, K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	2	2	3	3	3	2	2
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"-indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: Data mining — Kinds of data to be mined— Kinds of patterns to be mined— Kinds of Applications to be targeted-Major Issues in Data mining —Data mining Trends and Research Frontiers: Other Methodologies — Data mining Applications —Data mining Trends.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
II	Data Pre-Processing: Data Cleaning—Data Integration—Data Reduction: Overview of Data Reduction Strategies - Wavelet Transforms - Principle Component Analysis - Attribute Subset Selection —Data Transformation and Data Discretization: Data Transformation Strategies Overview - Data Transformation by Normalization. Mining Frequent Patterns, Associations and Correlations: Basic concepts - Frequent Itemset Mining Methods- Pattern Evaluation Methods.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
III	Advanced Pattern Mining: Pattern Mining: A Road Map – Pattern Mining in Multilevel, Multidimensional Space-Constraint-Based Frequent Pattern Mining. Data Warehousing: Basic Concepts – Data Warehouse Modeling: Data cube and OLAP – Data Warehouse Design and usage.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Classification: Basic concepts- Decision Tree Induction - Bayes Classification Methods - Rule Based Classification - Model Evaluation and Selection-Techniques to improve Classification Accuracy - Classification using Frequent Patterns.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Cluster analysis: Basic concepts and methods – Cluster analysis – Partitioning methods - Hierarchical Methods – Density Based Methods-Grid Based Methods-Evaluation of Clustering.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment (Not included for End Semester Examinations) Classification: Advanced Methods: Classification by Back Propagation – Support Vector Machines –K - Nearest-Neighbor Classifiers – Genetic algorithms. Advanced Cluster Analysis: Clustering High Dimensional data. Outlier Detection: Outlier and Outlier Analysis.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

Text Book

1. Jiawei Han, Micheline Kamber, JianPei. (2019). *Data Mining: Concepts and Techniques*. Third Edition, Morgan Kaufman Publishers.

Reference Books

- 1. Margaret H. Dunham. (2006). Data Mining Introductory and Advanced Topics. Pearson Education.
- 2. C. S. R. Prabhu (2010). *Data Warehousing: Concepts, Techniques, Products and Applications*. Second Edition, PHI Learning Private Ltd.
- 3. K.P.Soman, Shyam Diwakar, V.Ajay. (2010). *Insight into Data Mining Theory and Practice*. First Edition, PHI Learning Private Ltd.

Web References

- 1. www.tutorialride.com/data-mining/data-mining-tutorial.htm
- 2. https://hanj.cs.illinois.edu/bk3/bk3_slidesindex.htm
- 3. www.guru99.com/datawarehouse-architecture.htm
- 4. www.tutorialpoint.com/dwh/dwh_data_warehousing.htm

Pedagogy

Chalk and Talk, Group discussion, Seminar& Assignment.

Course Designer

Ms. S. Udhaya Priya

Semester II	Internal Ma	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22PCS2CC5	DESIGN AND ANALYSIS OF ALGORITHMS	CORE	6	5

- To learn the techniques for effective problem solving in computing
- Apply important algorithmic design paradigms and methods of analysis
- Analyze the asymptotic performance of algorithms to show the efficiency of the algorithm
- Write rigorous correctness proofs for algorithms
- Demonstrate a familiarity with major algorithms and data structures

Prerequisites

Basic Knowledge in Programming and Data Structures

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand & Identify the suitable data structures and Design algorithms for various computing problems.	K1, K2, K3
CO2	Explain the algorithm design technique & demonstrate the complexity of algorithms.	K2, K3, K4
CO3	Analyze the different algorithm design techniques for a given problem and time & space complexity of the algorithm	K3, K4, K5
CO4	Assess and Compare the efficiency of the algorithm	K4, K5
CO5	Determine and Recommend the suitable algorithmic design techniques for a given problem	K3, K4, K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	2	3	3	3	3	2
CO2	3	3	3	3	2	3	3	3	3	2
CO3	3	3	3	2	2	3	3	3	3	2
CO4	3	3	2	2	2	2	2	2	2	2
CO5	3	3	2	2	2	2	2	2	2	2

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-" Indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: Notion of an Algorithm –Properties of an algorithm-Techniques to write an algorithm-Fundamentals of the analysis of algorithmic efficiency-Problem types-Analysis framework-Space & time complexity- measuring input size and running time-Asymptotic notation and its properties-Big Oh notation, Omega notation and Theta notation –Recurrence equation-solving best case-worst case and average case - Empirical Analysis-Mathematical Analysis for Recursive and non Recursive algorithms.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
п	Elementary Data Structures: Stacks and Queues – Trees – Priority Queues – Heap sort- Graphs-Analysis. Divide and Conquer: The General Method –Linear search- Binary search-Merge Sort – Quick Sortperformance measurement–Analysis.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	The Greedy Method: General Method - Knapsack Problem - Job Sequencing With Deadlines - Minimum Cost Spanning Trees - Optimal Storage On Tapes - Single Source Shortest Paths-Analysis. Dynamic Programming: The General Method - Multistage Graphs - All-Pairs Shortest Paths - Single-Source Shortest Paths - Reliability Design-The Traveling Sales Person Problem- Analysis.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Basic Traversal and Search Techniques: Techniques for Binary Trees – Techniques for Graphs –Connected Components and Spanning Trees– DFS-Analysis. Backtracking: The General Method – The 8-Queens Problem – Sum of Subsets – Graph Coloring – Knapsack Problem.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Branch and Bound: The Method –Least cost search-Control abstraction for least cost search-Bounding-Least cost branch and bound- NP-HARD and NP-COMPLETE PROBLEMS: Basic concepts-NP-HARD Graph Problems	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Dictionaries — Sets and Disjoint Set, Union— Graphs-Container Loading -Tree Vertex Splitting—Optimal merge pattern-Optimal Binary Search Trees -String Editing - 0/1 Knapsack—Flow Shop Scheduling—Bi-Connected Components—Hamiltonian Cycles — 0/1 Knapsack Problem—TSP	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Mrs.Anuradha, A.Putnam Baker.(2019). *Design & Analysis of algorithms*. First Edition, Technical publications.
- 2. Ellis Horowitz, Sartaj Sahni and Sanguthevar, Rajasekaran. (2015). *Fundamentals of Computer Algorithms*. Second Edition, Universities Press.

Reference Books

- 1. V.Aho, Hopcropft, Ullman, (2009). *Data Structures and Algorithms*. 4th Edition, Pearson Education.
- 2. Anany Levitin(2012). *Introduction to the Design and Analysis of Algorithms*. Third Edition, Pearson Education
- 3. Gajendra Sharmah (2015). Design & Analysis of Algorithms. 4th edition, Khanna Publishers.

Web References

- 1. http://nptel.ac.in/courses/106101059/
- 2. http://nptel.ac.in/courses/106101060/
- 3. http://www.personal.kent.edu/~rmuhamma/Algorithms/algorithm.html
- 4. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-toalgorithms-fall-2011/lecture-videos/
- 5. http://cs.uef.fi/pages/franti/asa/notes.html

Pedagogy

Chalk and Talk, Seminar, e-Content

Course Designer

Ms.K.Sangeetha

Semester II	Internal M	Iarks: 25	External Ma	arks:75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22PCS2CCC1A	MOBILE COMPUTING	CORE CHOICE	6	4

- To understand Wireless networks GSM, UMTS and WAP Architecture
- To gain basic knowledge about Android Application Development
- To create real time application using Content Providers

Prerequisites

Java, Computer Fundamentals and Networking

Course Outcome and Cognitive Level Mapping

CO Number					
		Level			
CO 1	Define and Outline the Mobile Computing frameworks	K1, K2			
CO 2	Demonstrate the network concepts and Identify Routing protocols	K2, K3			
CO 3	Identify and Analyze the basics of Android Programming	K3, K4			
CO 4	Examine and Assess the Interfaces for the Android platform	K4, K5			
CO 5	Explain and Build the key Android programming concepts	K5, K6			

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	2	3	3	3	2	3
CO 2	3	3	3	3	3	3	3	2	3	3
CO 3	3	3	3	3	3	3	3	3	2	3
CO 4	3	3	3	2	3	3	2	3	3	3
CO 5	3	3	2	2	3	3	3	2	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: Applications- Simplified Reference Model – Wireless Transmission: Signal Propagation-Path Loss of Radio Signals-Multipath Propagation-Multiplexing – Modulation- Cellular Systems-Telecommunication Systems: GSM – System Architecture- Handover – Security. Satellite Systems: Applications– Basics.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Wireless LAN: Advantages- Disadvantages- Design Goals- IEEE 802.11 — System Architecture-MAC Frames — MAC Management —Synchronization - Power Management — Roaming -Bluetooth - Architecture. Mobile Network Layer: Mobile IP-Goals —Entities and Terminology—IP Packet Delivery —Agent Advertisement and Discovery-Registration — Adhoc Networks — Routing - Routing Strategies-Destination Sequence Distance Vector — Dynamic Source Routing- Hierarchical Algorithms - Alternative Metrics.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Getting started with Android Programming: Introduction to Android – Obtaining the Required Tools-Creating an Android Application-Anatomy of an Android Application. Activities, Fragments, and Intents: Understanding Activities-Applying styles and Themes to an activity-Hiding the activity title- Displaying a dialog window-Displaying a progress dialog-Linking Activities Using Intents –Resolving Intent Filter collision-Returning Intents from an Intent-Fragments.	21	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Getting to know the Android User Interface: Understanding the Components of a Screen-Adapting to Display Orientation - Managing Changes to Screen Orientation -Designing user interface with views: Using Basic Views - Using Picker Views-Using List Views to Display Long Lists.	21	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Displaying Pictures and Menus with Views: Using Image views to display Pictures-Some additional views. Content Providers: Sharing Data in Android-Messaging: SMS Messaging-Sending SMS messages programmatically- Getting feedback after sending a message-Receiving SMS message- Sending E-mail-Location Based Services: Displaying Maps	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Data Persistence: Creating and using databases. Content Providers: Sharing data in Android-Using Content Provider. Developing Android services: Creating own services-Establishing communication between a service and an activity-Binding activity to services.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Jochen H.Schiller.(2014). *Mobile Communications*. 2nd Edition, Addison Wesley Pearson Education.
- 2. Wei Meng Lee.(2012). *Beginning Android 4 Application Development*. 1st Edition, Wiley India Pvt Ltd.

Reference Books

- 1. RajKamal.(2012), *Mobile Computing*, 2nd Edition, Oxford University Press.
- 2. Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal(2010). *Mobile Computing*. 2nd Edition, Tata McgrawHill Publishing Company Limited.

Web References

- 1. https://www.tutorialspoint.com/gsm/gsm_architecture.html
- 2. https://www.geeksforgeeks.org/advantages-and-disadvantages-of-wlan
- 3. http://developer.android.com/guide/
- 4. http://developer.android.com/reference/packages.html

Pedagogy

Chalk and Talk, Lecture, Group Discussion, e-Contents-Power point, Demonstration

Course Designer

Ms.K.Pradeepa

Semester II	Internal M	Iarks: 25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS	
22PCS2CCC1B	WIRELESS SENSOR NETWORKS	CORE CHOICE	6	4	

- To get a thorough knowledge about sensors and its architecture
- To learn the characteristics of wireless transmission
- To understand the working of MAC and Routing Protocols for sensor networks
- To gain knowledge in Transport layer, QoS and Security for sensor networks

Prerequisites

Basic knowledge in Data Communication Networks

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number		Level
CO 1	List and Summarize the applications, challenges of wireless sensor	K1, K2
	networks	
CO 2	Interpret and Make use of the architecture for the wireless networks	K2, K3
CO 3	Apply and Correlate the concepts in sensor networking	K3, K4
CO 4	Categorize and compare the different routing protocols	K4, K5
CO 5	Evaluate and Conclude the QoS in wireless networks	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	2	3	3	3	2	3
CO2	3	3	3	3	3	3	3	2	3	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	3	2	3	3	2	3	3	3
CO5	3	3	2	2	3	3	3	2	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Introduction: Application Examples-Types of	18	CO1,	K1,
	Applications -Challenges for Wireless Sensor		CO2,	K2,
I	Networks-Why are sensor networks different-		CO3,	K3,
	Single-node architecture: Hardware components		CO4,	K4,
	Sangto mout of components		CO5	K5
	Single-Node Architecture: Energy Consumption	18	CO1,	K1,
	of Sensor Nodes - Operating Systems and		CO2,	K2,
II	Execution Environments- Network Architecture:		CO3,	K3,
	Sensor Network Scenarios-Design principles of		CO4,	K4,
	WSNs.		CO5	K5
	MAC Protocols: Fundamentals of MAC Protocol	18	CO1,	K1,
	- Low Duty Cycle Protocols and Wakeup		CO2,	K2,
III	Concepts-Contention-based protocols -The IEEE		CO3,	K3,
	802.15.4 MAC protocol		CO4,	K4,
			CO5	K5
	Routing protocols: Energy efficient unicast-	18	CO1,	K1,
	Broadcast and multicast-Geographic routing.		CO2,	K2,
IV	Data-centric and content based Networking:		CO3,	K3,
	Data centric routing		CO4,	K4,
		10	CO5	K5
	Transport Layer and Quality of Service: QoS-	18	CO1,	K1,
	Transport protocols-Sensing models-Coverage		CO2,	K2,
	measures-Reliable data transport-Single packet		CO3,	K3,
V	delivery-Congestion situations in sensor networks.		CO4, CO5	K4, K5
	Advanced application support: Security		COS	KJ
	Fundamentals-Security considerations in wireless			
	sensor networks -DoS Attacks			
	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Link Layer Protocols: Fundamentals-Tasks and		CO3,	K3,
	requirements-Error control-Framing-Link		CO4,	K4,
	Management		CO5	K5

Text Book

1. Holger Karl, Andreas Willig (2015). *Protocols and Architectures for Wireless Sensor Networks*. Student Edition, John Wiley & Sons.

Reference Books

- 1. Waltenegus Dargie, Christian Poellabauer (2010). *Fundamentals of Wireless Sensor Networks Theory and Practice*. 1st Edition, John Wiley and Sons.
- 2. Xiang-Yang Li (2008). Wireless Ad Hoc and Sensor Networks: Theory and Applications. Illustrated Edition, Cambridge University Press.
- 3. Feng Zhao, Leonidas J.Guibas (2007). Wireless Sensor Networks-An Information Processing. 1st Edition, Elsevier.
- 4. Kazem Sohraby, Daniel Minoli, Taieb Znati (2007). Wireless Sensor Networks Technology, Protocols, and Applications. Student Edition, John Wiley and sons.
- 5. Anna Hac (2003). Wireless Sensor Network Designs. 1st Edition, John Wiley and sons.

Web References

- 1. https://www.intechopen.com/chapters/38793
- 2. https://www.geeksforgeeks.org/wireless-sensor-network-wsn/
- 3. https://nptel.ac.in/courses/106105160
- 4. http://www.tfb.edu.mk/amarkoski/WSN/Kniga-w02

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz and Seminar

Course Designer

Dr.D.Radhika

Semester II	Internal M	Iarks: 25	External M	arks:75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22PCS2CCC1C	MANET	CORE CHOICE	6	4

- To understand the principles of adhoc networks
- To get a knowledge of routing protocols and their performance
- To gain knowledge about battery management schemes
- To identify the issues and solutions of transport layer

Prerequisites

Computer Networks

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Recall and Understand the fundamentals of Mobile ad-hoc Networks.	K1, K2
CO 2	Identify and analyze the current features of MANET and WSN	K3, K4
CO 3	Determine and Classify the functions of various routing protocols and their implications	K3, K4
CO 4	Identify the issues of architecture and its protocol, and Design solutions to overcome the issues	K3, K5
CO 5	Discriminate the current trends in MANETs and WSNs from industry and research point of views.	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	2	3	3	3	1	3	3	2	3	1
CO2	2	3	3	2	2	3	3	2	3	2
CO3	2	3	3	2	2	3	2	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

			COs	LEVEL
	Introduction: Fundamentals of Wireless	14	CO1,	K1,
	Communication Technology – The Electromagnetic		CO2,	K2,
	Spectrum – Radio Propagation Mechanisms – Characteristics of the Wireless Channel – IEEE 802		CO4,	К3,
	Networking Standard – Ad Hoc Networks:		CO5	K4
Iı	Introduction – Issues in Ad Hoc Wireless Networks – Ad Hoc Wireless Internet			K5
R	Routing Protocols for Ad Hoc Wireless Networks:	16	CO1,	K1,
	ssues in Designing a Routing Protocol for Ad Hoc		CO2,	K2,
	Wireless Networks – Classifications of Routing		CO3,	К3,
I I	Protocols – Table–Driven Routing Protocols – On- Demand Routing Protocols - Hybrid Routing Protocols.		CO4,	K4,
	John Housing Florocold Tryona Routing Florocold		CO5	K5
	Multicast Routing in Ad Hoc Wireless Networks:	20	CO1,	K1,
	ssues in Designing a Multicast Routing Protocol –		CO2,	K2,
	Classifications of Multicast Routing Protocols – Tree– Based Multicast Routing Protocols– Mesh–Based		CO3,	К3,
	Multicast Routing Protocols— Energy—Efficient		CO4,	K4,
	Multicasting.		CO5	K5
	Transport layer and Security Protocols for Ad Hoc	20	CO1,	K1,
	Wireless Networks: Issues in Designing a Transport		CO2,	K2,
	Layer Protocol for Ad Hoc Wireless Networks - Classification of Transport Layer Solutions – Network		CO3,	К3,
1 1 1/	Security Requirements - Security in Ad Hoc Wireless		CO4,	K4,
	Networks - Network Security Attacks - Secure Routing		CO5	K5
	n Ad Hoc Wireless Networks – Quality of Service in			
	Ad Hoc Wireless Networks: Network Layer Solutions Energy Management in Ad Hoc Wireless Networks:	20	CO1,	K1,
	Battery Management Schemes-Transmission Power	20	CO1,	K1, K2,
l N	Management Schemes-Recent advances in Wireless		CO2, CO4,	K2, K3,
	Networks: Ultra-Wide-Band Radio Communication-		CO ₄ ,	K3, K4,
V	Wireless Fidelity Systems.		CO3	K4, K5
	Self Study for Enrichment	_	CO1,	K1,
	Not included for End Semester Examinations)		CO1,	K1, K2,
	Wireless Sensor Networks: Sensor Network		CO2,	K2, K3,
I I	Architecture – Data Dissemination – Data Gathering –		CO3,	K3, K4,
	MAC Protocols for Sensor Networks – Location		CO ₄ ,	K4, K5
	Discovery – Quality of Sensor Networks – Evolving Standards – Other Issues.		CO3	IX.

Text Book

1. C.Siva Ram Murthy, B.S.Manoj (2014). *Ad hoc Wireless Networks Architectures and protocols*. Pearson Education.

Reference Books

- 1. Stefano Basagni, Marco Conti, Silvia Giordano (2015). *Mobile Ad Hoc Networking: The Cutting Edge Directions*. 2nd Edition, Wiley India.
- 2. Mohamad Taha Sultan (2018). Wireless Technologies in Mobile Ad-Hoc Networks. Globe Edit.

Web References

- 1. https://www.tutorialspoint.com/what-is-ad-hoc-network
- 2. https://www.javatpoint.com/mobile-adhoc-network
- 3. https://www.geeksforgeeks.org/introduction-of-mobile-ad-hoc-network-manet/
- 4. http://et.engr.iupui.edu/~dskim/manet/

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment

Course Designer

Ms.R.Sangeetha

Semester II	Internal M	larks: 40	External Ma	arks: 60
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS
22PCS2CC2P	DATA MINING (P)	CORE	6	5

- Exposure on Solving of data science problems
- Analyze real life data sets for analysis and prediction.
- Able to explore data using Python and R

Prerequisites

Data Mining, Python and R languages

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number		Level
CO 1	Interpret on data insights to evaluate preprocessing techniques	K2
CO 2	Identify various algorithms used in information analysis of data	К3
	mining Techniques	
CO 3	Evaluate the performance of various data mining algorithms	K5
CO 4	Visualize the results produced by data mining techniques	K 6
CO 5	Formulate library functions of Python and R	K6

Mapping of CO with PO and PSO

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	3	3	2	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	2	2

[&]quot;1"-Slight (Low) Correlation
"3"-Substantial (High) Correlation

R

- 1. Built in functions
- 2. Operators
- 3. Looping statements
- 4. Reading and Writing Different Types of Datasets
- 5. Correlation and Covariance
- 6. Classification
- 7. Clustering
- 8. Visualizations

[&]quot;2"—Moderate (Medium) Correlation "-"indicates there is no Correlation.

Exercises

PYTHON

- 1. To compute central tendency and dispersion measures.
- 2. Implement python libraries.
- 3. Data Preprocessing
- 4. Implement Simple Linear and Multiple Linear Regressions.
- 5. Implement decision tree
- 6. Implement KNN
- 7. Implement K-means clustering
- 8. Implement Association Rule Mining

Web References

- 1. https://www.springboard.com/blog/data-science/data-mining-python-tutorial/
- 2. https://dzone.com/refcardz/data-mining-discovering-and
- 3. https://www.rdatamining.com/
- 4. https://edisciplinas.usp.br/pluginfile.php/

Pedagogy

Demonstration

Course Designer

Ms.S.Udhaya Priya

Semester II	Internal M	Iarks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS	
22PCS2DSE2A	CRYPTOGRAPHY AND NETWORK SECURITY	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- To overview the principles of Network Security
- To inculcate the encryption standards and techniques
- To gain knowledge in establishing IP security

Prerequisites

Computer Networks

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Understand and state the Network security concepts	K1, K2
CO 2	Classify and apply network security principles	K2, K3
CO 3	Interpret and analyze network security protocols	K3, K4
CO 4	Examine and Defend network security threat	K4, K5
CO 5	Interpret with various network security applications	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	2	2	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	2	2	3	3	2	3	2
CO5	3	3	3	2	3	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIV E LEVEL
I	Computer and Network Security concepts: Computer security concepts-The OSI Security architecture-Security Attacks – Security Services – Security Mechanisms-A model for Network Security. Classical Encryption Techniques: Symmetric Cipher Model-Substitution Techniques -Transposition Techniques –Steganography. Block Ciphers and the Data Encryption Standard:	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Traditional Block Cipher Structure-The Data Encryption Standard-A DES Example -The Strength of DES-Block cipher design Principles- Public key cryptography and RSA: Principles of Public Key Cryptosystems – The RSA Algorithm.	20	CO2, CO3, CO4, CO5	K2, K3, K4, K5
III	Digital Signatures: Digital signatures- Mutual Trust : X.509 Certificates-Public Key Infrastructure. User Authentication: Remote User-Authentication Principles-Remote User-Authentication Using Symmetric Encryption-Kerberos-Remote User-Authentication Using Asymmetric Encryption.	20	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
IV	Network Access Control and Cloud Security: Cloud Computing-Cloud Security Risks and Countermeasures. Transport—Level Security: Web Security Considerations-Transport layer Security-Wireless Network Security: Wireless Security — Mobile Device Security.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Electronic Mail Security: Internet Mail Architecture- Email Formats- S/MIME-Pretty Good Privacy - IP Security: IP Security Overview –IP Security Policy- Encapsulating Security Payload- Combining Security Associations.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) System Security: Malicious Software: Viruses and Related Threats-Distributed Denial of Service Attacks. Intruders: Intrusion Detection — Password Management-Firewalls: Need for Firewalls-Types of Firewalls.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

1. William Stallings.(2017). *Cryptography and Network Security-Principles and Practices*. 7th edition, Pearson Education, New Delhi.

Reference Books

- 1.Behrouz.A.Forouzan(2020).Cryptography and Network Security.5th Edition.Tata McGraw Hill, New Delhi.
- 2.Atul Kahate (2017). *Cryptography and NetworkSecurity*. 3rd Edition, Tata McGraw Hill, New Delhi.
- 3. Charles P Fleeger, Shari Lawrence P Fleeger. (2011). *Security in Computing*. 4th Edition, Pearson Education, New Delhi.

Web References

- 1. https://www.open.edu/openlearn/science-maths-technology/computing-and ict/systems-computer/network-security/scs.carleton.ca/~paulv/5900wBooks.html
- 2. scs.carleton.ca/paulv/5900wBooks.html
- 3. https://en.wikipedia.org/wiki/Network_security
- 4. https://www.slideshare.net/HatemMahmoud/network-security-applications-4562405
- 5. https://www.intechopen.com/books/security-enhanced-applications-for-information-systems/cybersecurity-in-the-real-world

Pedagogy

Chalk and Talk ,PPT, Discussion, Assignment

Course Designer

Ms.G.Sujatha

Semester II	Internal Mar	External 1	Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/ WEEK	CREDITS
22PCS2DSE2B	BLOCKCHAIN AND CRYPTOCURRENCIES	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To assess blockchain applications in a structured manner
- To impart knowledge in block chain techniques and able to present the concepts clearly and structured
- To get familiarity with future currencies and to create own crypto token

Prerequisites

Basic knowledge in Cryptography, Data Structures, Distributed Systems and networking

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Understand the various technologies and its business use	K1
CO 2	Summarize the blockchain applications in a structured manner	K2
CO 3	Make use of the modern concepts of blockchain technology	К3
CO 4	Compare the modern currencies	K4
CO 5	Interpret the applications in real world scenario	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	2	2	3	2	2	2	2	2	2	2
CO2	2	2	3	2	2	2	2	2	2	2
CO3	3	2	3	2	2	2	2	2	3	2
CO4	3	2	2	2	2	3	2	2	2	2
CO5	2	2	2	3	3	3	2	2	2	2

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Basic Concepts: Decentralized society - Distributed Database, Byzantine General problem - Fault tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete - P2P network - Private key - Public key - Cryptography - Hash Function - Digital Signature - ECDSA - Memory Hard Algorithm - Zero Knowledge Proof	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3 K4, K5
П	Blockchain: Introduction-Advantage over conventional distributed database - Network and protocols - Block chain network - Mining - Mechanism - Life Cycle of Block chain - Distributed consensus - Merkle Patricia Tree - Gas Limit - Transactions and Fee - Anonymity - Reward - Chain policy-Life of Block chain applications -Soft and Hard Fork - Private and Public blockchain.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3 K4, K5
III	Distributed Consensus: Nakamoto consensus - Proof of work - Proof of Stake - Proof of Burn - Difficulty level - Sybil Attack - Energy Utilization and alternate - Fabric model - SDKs - Components of Fabric Model - Architecture of Hyperledger fabric.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3 K4, K5
IV	Cryptocurrency: History - Distributed ledger - Bitcoin protocols - Mining strategy and rewards - Ethereum - construction - Truffle - DAO - dApps - Smart Contract - Boot strapping - GHOST Vulnerability - Attacks - Sidechain - Namecoin	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3 K4, K5
V	Applications: Payment Channels and State Channels - State Channels—Basic Concepts and Terminology - Simple Payment Channel Example-Routed Payment Channels- Bitcoin Transactions- Transaction Outputs and Inputs-Wallet Technology details	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3 K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Cryptocurrency Regulations: Stakeholders - Roots and Bitcoin - Legal Aspects - Crypto currency exchange - Black market and Global economy	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3 K4, K5

Text Books

- 1. Daniel Drescher(2017). *Blockchain Basics A Non-Technical Introduction in 25 steps*, 1st Edition, Apress.
- 2. Andreas M.Antonopoulos.(2019). *Mastering Bitcoin: Unlocking Digital Cryptocurrencies*. 2nd Edition, O'REILLY.

Reference Books

- 1.Paul Vigna and Michael J.Casey (2016). *The Age of Cryptocurrency*, 1st Edition, Picador St.Martin's Press.
 - 2.Imran Bashir (2018). Mastering Blockchain. 1st Edition, Packt, Birmingham.
- 3.David Hooper, Kevin Solorio (2019). *Hands–On Smart Contract Development with Solidity and Ethereum: From Fundamentals to Deployment*, 1st Edition, O'REILLY.
 - 4. Chris Dannen (2017). Introducing Ethereum and Solidity, 1st Edition, Apress.

Web References

- 1. https://www.simplilearn.com/tutorials/blockchain-tutorial/blockchain-technology
- 2. https://sjce.ac.in/wp-content/uploads/2021/12/Block-Chain-notes.pdf
- 3. https://mrcet.com/downloads/digital notes.pdf
- 4. https://www.ibm.com/in-en/topics/what-is-blockchain

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment.

Course Designer

Dr.D. Radhika

Semester II	Internal M	Iarks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS	
22PCS2DSE2C	ETHICAL HACKING	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- To understand and analyze information security threats and countermeasures
- To gain knowledge about security audit and testing
- To study the issues related to hacking and types of attacks

Prerequisites

Basic knowledge in Operating Systems, Networking and Programming Language

Course Outcome and Cognitive Level Mapping

CO Statement	Cognitive
	Level
Recall and Understand the vulnerabilities in hacking	K1, K2
Analyze and apply testing for security	K3, K4
Plan and Execute vulnerability assessment test for a network	K4, K5
Assess the various kinds of standard attacks	K5
Determine the target system vulnerability and make use of penetration test using standard hacking methods in an ethical manner	K5
	Recall and Understand the vulnerabilities in hacking Analyze and apply testing for security Plan and Execute vulnerability assessment test for a network Assess the various kinds of standard attacks Determine the target system vulnerability and make use of

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	2	3	3	3	2	3	3	3	3	2
CO2	3	3	2	3	2	3	3	2	3	2
CO3	3	3	2	3	2	3	3	2	3	3
CO4	2	3	3	3	3	3	3	3	3	3
CO5	3	3	2	3	2	3	3	3	3	2

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction to Hacking: Important terminologies-Categories of Penetration Test-Writing Reports-Structure of a Penetration Testing Report-Vulnerability Assessment Summary-Risk Assessment-Methodology-Linux Basics: Major Linux Operating systems-File structure inside of Linux-Linux Scheduler(Cron Jobs)-Users inside of Linux-Common Applications of Linux-What is BackTrack-Changing the Default Screen Resolution-Some Unforgettable basics-Information Gathering Techniques-Active Information Gathering-Passive Information Gathering-Copying Websites Locally-Yougetsignal.com-Intercepting a Response-WhatWeb-Netcraft-Some basic Parameters-TIP regarding Filetype-Xcode Exploit Scanner-Interacting with DNS Servers-Nslookup-DIG-Forward DNS Lookup with Fierce-Reverse DNS Lookup with fierce-What is DNS Cache Snooping Attacks-Problem with SNMP-Sniffing SNMP Passwords-SMTP Enumeration	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Vulnerability Assessment: What are Vulnerability Scanners and how do they work?-Pros and Cons of a Vulnerability Scanner-Vulnerability Assessment with Nmap-Updating the database-Testing SCADA environments with Nmap-Nessus Vulnerability Scanner-Installing Nessus on BackTrack-Adding a User-creating a new policy-Safe Checks-Silent Dependencies-Port Range Network Sniffing: Introduction-Types of sniffing-Hubs versus Switches-Promiscuous versus Nonpromiscuous Mode-MITM Attacks-ARP Protocol Basics-How ARP works-ARP Attacks-Denial of Service attacks-Tools of the trade-Using ARP Spoof to perform MITM Attacks-Hijacking Session with MITM Attack-Hijacking the session-DNS Spoofing-DHCP Spoofing	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Capturing Traffic: Using Wireshark-ARP Cache Poisoning-DNS Cache Poisoning-SSL Attacks-SSL Stripping-Password Attacks: Password management-Online password attacks-offline password attacks-Client Side Exploitation-Bypassing filters with Metasploit payloads-Client side attacks-Social Engineering: Social Engineering toolkit-Spear Phishing attacks-Web Attacks-Mass E-mail attacks-Multipronged Attacks.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

IV	Bypassing Antivirus Applications: Trojans-How Antivirus application works-Microsoft Security essentials-Virustotal-Getting past an antivirus program-Post Exploitation: Meterpreter-Meterpreter scripts-Local privilege escalation-Lateral Movement-Pivoting Persistence-Web Application Testing: Using Burp proxy-SQL Injection-XPath Injection-Local file inclusion-Remote file inclusion-Command Execution-Cross Site Scripting-Cross site Request forgery-Web application Scanning with w3af.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Wireless Hacking: Introduction-Requirements-Introducing Aircracks-ng-Uncovering Hidden SSIDs-Turning on the Monitor mode-Monitoring Beacon frames on Wireshark-Monitoring with Airodump-ng-Speeding up the process-Placing your wireless adapter in Monitor mode-Determining the target with Airodump-ng-Cracking a WPA/WPA2 Wireless Network using Aircrack-ng-Capturing packets-Capturing the Four way handshake-Cracking WPA/WPA2-Reducing the delay-Web Hacking: Attacking the authentication-Brute Force and Dictionary Attacks-Types of Authentication-Brute Force attack-SSRF Attack-impact-Server hacking-Finding the local root exploit-basic syntax-Updating the password-Finding a WHMCS Server-Symlinking the Configuration file.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Using Kali Linux: Linux Command Line-The Linux filesystem-User privileges-File permissions-Editing files-Data manipulation-Managing Installed Packages- Processes and Services-Managing Networking- Netcat: The Swiss Army knife of TCP/IP Connections	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Rafay Baloch(2014). Ethical Hacking and Penetration Testing Guide. 1st Edition, CRC Press(for Unit I, II & V)
- 2. Georgia Weidman(2014). *Penetration testing: A hands-on introduction to hacking*. 1st Edition, No Starch Press(for Unit III,IV & VI)

Reference Books

- 1. Stuttard, Dafydd and Marcus Pinto (2011). *The web application hacker's handbook: Finding and exploiting security flaws*. 2nd Edition, John Wiley & Sons.
- 2. Himanshu Sharma(2017). *Kali-linux Ethical Hacker's cook book: End-to-End penetration testing solution*. 1st Edition, Packt Publishing.
- 3. Kimberly Graves(2010). Certified Ethical Hacker Study Guide. 1st Edition, Wiley India Pvt Ltd.
- 4. Kevin Beaver.(2018). Ethical Hacking for Dummies. 6thEdition, Wiley

Web References

- 1. https://www.elsevier.com/books/
- 2. https://www.elsevier.com/books/cyber-security-awareness-forlawyers
- 3. https://books.google.co.in/books
- 4. https://www.coursera.org/specializations/ethical-hacking
- 5. https://nptel.ac.in/courses

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment

Course Designer

Ms. S.Saranya

Semester II	Internal Marks	s: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS./WEEK	CREDITS	
22PCS2INT	INTERNSHIP	INTERNSHIP	-	2	

- At the end of Semester I, the students should undergo an internship in a reputed IT company or IT division of reputed company
- Minimum number of days for the internship is 15 days
- A project report and a certificate of attendance are to be submitted after completing the internship

EVALUATION PATTERN FOR INTERNSHIP

Internal Components	omponents Marks External Components		Marks
Institution Profile	5	Regularity	10
Presentation skill	10	Problem solving	10
Report Evaluation	10	Participation and Hands – on training	20
		Professional Attitude	15
		Report Writing	20
Total	25	Total	75