CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED (III CYCLE) WITH "A" GRADE BY NAAC ISO 9001:2015 Certified TIRUCHIRAPPALLI – 18

PG AND RESEARCH DEPARTMENT OF PHYSICS

B.Sc., PHYSICS SYLLABUS (2020-2021 Onwards)

PROGRAMME OUTCOMES

On completion of program, the graduates will able

- **PO1:** To intensify the students academic capability, unique qualities and transferable skills which will give them opportunity to evolve as responsible citizens.
- **PO2:** To explain the fundamentals laws involved in physics.
- **PO3:** To understand the theory and consequence of the various physical occurrence.
- **PO4:** To carryout experiments to interpret the laws and concepts of physics.
- **PO5:** To relate the theories learnt and the skills procured to solve enduring problems.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- **PEO1:** To provide the students with academic excellence, leadership qualities and professional ethics to address the needs of the scientific community.
- **PEO2:** To motivate the students to pursue higher education in well renowned institutions.
- **PEO3:** To acquire placement in educational institutions, engineering and industrial firms.
- **PEO4:** To provide the students with creative and analytical skills for the sustainable developments and nation building initiatives

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) B.Sc., PHYSICS PROGRAMME STRUCTURE UNDER CHOICE BASED CREDIT SYSTEM

(For the candidates admitted from the academic year 2020-2021 onwards)

Sem	Part	Course	Title	Course code	Inst Hrs/	Credit	Exam Hrs	Ma	arks	Total
					week			Int	Ext	
I	I	Language Course I (LC)	இக்கால இலக்கியம்	19ULT1	6	3	3	25	75	100
			Story,Novel,Hindi Literature –1 & Grammar-I	19ULH1						
			History of Popular Tales,Literature and Sanskrit Story	19ULS1						
			Communication in French-I	19ULF1						
	II	English Language Course –I (ELC)	Functional Grammar for Effective Communication-I	19UE1	6	3	3	25	75	100
	III	Core Course-I (CC)	Properties of Matter, Waves and Acoustics	19UPH1CC1	6	5	3	25	75	100
		Core Practical –I (CP)	Physics Practical— I	19UPH1CC1P	3	3	3	40	60	100
		First Allied Course- I (AC)	Mathematics – I	19UPH1AC1	4	3 3	3	25	75	100
		First Allied Course- II (AC)	Mathematics – II	19UPH1AC2	3	-	-	-	-	-
	IV	UGC Jeevan Kaushal Life Skills	Universal Human Values	20UGVE	2	2	3	25	75	100
			Total		30	19				600
II	I	Language Course II (LC)	இடைக்கால இலக்கியமும் புதினமும்	19ULT2	6	3	3	25	75	100
			Prose, Dramma, Hindi Literature -2 & Grammer –II	19ULH2						
			Poetry Textual Grammar&Alakara	19ULS2						
			Communication in French-II	19ULF2						
	II	English Language Course II (ELC)	Functional Grammar for Effective Communication-II	19UE2	6	3	3	25	75	100
		Core Course-II (CC)	Mechanics and Relativity	19UPH2CC2	6	5	3	25	75	100
	III	Core Practical –II (CP)	Physics Practical–II	19UPH2CC2P	3	3	3	40	60	100
		First Allied Course- II (AC)	Mathematics – II	19UPH1AC2	3	3	3	25	75	100
		First Allied Course- III(AC)	Mathematics – III	19UPH2AC3	4	3	3	25	75	100
	IV	Environmental Studies	Environmental Studies	19UGES	2	2	3	25	75	100
			i		As per UGC Recommendation			Ь		
	V	Extra Credit Course	Swayam Online Course	To be fixed later		As per UC	GC Recor	nmeno	lation	

I Language Course-III (LC)	3 25	75 100
Medieval,Modern poetry&History of Hindi Literature-3 Prose,Textual Grammar & 19ULS3 Vakyarachana Communication in French-III 19ULF3 II English Language Reading and Writing for 19UE3 6 3 Course-III (ELC) Effective Communication-I Core Course-III (CC) Thermal Physics and 19UPH3CC3 6 5	3 25	
poetry&History of Hindi Literature-3 Prose, Textual Grammar & 19ULS3 Vakyarachana Communication in French-III 19ULF3 II English Language Reading and Writing for 19UE3 6 3 Course-III (ELC) Effective Communication-I Core Course-III (CC) Thermal Physics and 19UPH3CC3 6 5	3 25	
Vakyarachana Communication in French-III 19ULF3 II English Language Reading and Writing for 19UE3 6 3 Course-III (ELC) Effective Communication-I Core Course-III (CC) Thermal Physics and 19UPH3CC3 6 5	3 25	
II English Language Reading and Writing for 19UE3 6 3 Course-III (ELC) Effective Communication-I Core Course-III (CC) Thermal Physics and 19UPH3CC3 6 5	3 25	
Course-III (ELC) Effective Communication-I Core Course-III (CC) Thermal Physics and 19UPH3CC3 6 5	3 25	
		75 100
	3 25	75 100
III Core Practical –III (CP) Physics Practical-III 19UPH3CC3P 3 3	3 40	60 100
Second Allied Course-I (AC) Chemistry –I 19UPH3AC4 4 3	3 25	75 100
Second Allied Course-I (AP) *Chemistry Practical – I 19UPH3AC1P 3 -		
Non Major Elective –I Troubleshooting of Electrical 19UPH3NME1 2 2 IV For those who studied Tamil Appliances	3 25	75 100
Under Part-I Basic Tamil 19ULC3BT1		
a) Basic Tami for other language students.		
b) Special Tamil for those		
who studied Tamil upto +2 but opt for other languages in degree program		
	GC Recomm	nendation
Total 30 19		600
I Language Course -IV (LC) 19ULT4 6 3	3 25	75 100
பண்டைய இலக்கியம்		
Letter Writing, General 19ULH4 Essays, Technical Terms, Proverbs, Idioms & Pha		
rases,Hindi Literature-4		
Drama, History of Drama 19ULS4 Literature		
Communication in French-IV 19ULF4 II English Language Reading and Writing 19UE4 6 3	3 25	75 100
Course –IV (ELC) Communication-II	3 23	73 100
Core Course-IV (CC) Electricity, Magnetism and 5 5	3 25	75 100
Electromagnetism 19UPH4CC4		
Core Practical –IV (CP) Physics Practical- IV 19UPH4CC4P 3 3	3 40 3 40	60 100 60 100
Second Allied Course-II Chemistry –II 19UPH4AC5 3 3 (AC)	3 25	75 100
Non Major Elective –II	3 25	75 100
VDesign Touri for other		
IV a) Basic Tarin for other language students. b) Special Tamil for those who studied Tamil upto +2		
but opt for other languages		<u> </u>
but opt for other languages in degree program	3 25	75 100
but opt for other languages in degree program Biomedical Instrumentation 19UPH4SBE1A 2 2 Skill Based Elective-I Photography and 19UPH4SBE1B	3 25	75 100
but opt for other languages in degree program Biomedical Instrumentation 19UPH4SBE1A 2 2 Photography and Videography Videography	3 25 GC Recomm	

V		Core Course-V (CC)	Optics	19UPH5CC5	5	5	3	25	75	100
	III	Core Course-VI (CC)	Atomic and Nuclear Physics	19UPH5CC6	5	5	3	25	75	100
		Core Course-VII (CC)	Analog Electronics	19UPH5CC7	6	5	3	25	75	100
		Core Practical- V (CP)	Physics Practical-V	19UPH5CC5P	3	3	3	40	60	100
		Major Based Elective-I	Materials Science	19UPH5MBE1A	5	5	3	25	75	100
			Laser Physics	19UPH5MBE1B						
	IV	Skill Based Elective-II	Physics concepts through Animation -Practical	20UPH5SBE2AP	2	2	3	40	60	100
			Household Appliances Servicing - Practical	20UPH5SBE2BP						
		Skill Based Elective-III	Web Designing - Practical	20UPH5SBE3AP	2	2	3	40	60	100
			Electrical Wiring - Practical	20UPH5SBE3BP						
		UGC Jeevan Kaushal Life Skills	Professional Skills	19UGPS	2	2	3	25	75	100
	V	Extra Credit Course	Swayam Online Course	To be fixed later		As per	UGC R	JGC Recommendation		
		1	Total		30	29				800
	III	Core Course-VIII (CC)	Digital Electronics and Microprocessor Fundamentals	19UPH6CC8	5	4	3	25	75	100
		Core Course-IX(CC)	Classical and Quantum Physics	19UPH6CC9	6	5	3	25	75	100
VI		Core Practical- VI (CP)	Physics Practical – VI	19UPH6CC6P	3	3	3	40	60	100
		Major Based Elective-II	Communication Physics	19UPH6MBE2A	5	5	3	25	75	100
			Computational Physics	19UPH6MBE2B						
		Major Based	Medical Physics	19UPH6MBE3A	5	4	3	25	75	100
		Elective-III	Astrophysics and Cosmology	19UPH6MBE3B						
		Project	Project Work	19UPH6PW	5	4	-	-	-	100
	V	Gender studies	Gender Studies	19UGGS	1	1	3	25	75	100
		Extension Activities	Extension Activities	19UGEA	-	1	-	-	-	-
		1	Total		30	27				700

Project: 100 Marks

i. Internal Component - Nil

ii. External Components - 100 Marks

Review-I- 20 Marks

Review-II- 20 Marks

Report Valuation - 40 Marks

Viva -Voce - 20 Marks

Core Papers: 09

Core Practical: 06

List of Allied Courses:

Allied Course I - Mathematics

Allied Course II - Chemistry

List of Skill Based Electives:

Skill Based Elective I – Biomedical Instrumentation/ Photography and Videography

Skill Based Elective II – Physics concepts through simulation/ Cell Phone Servicing

Skill Based Elective III – Web Designing/ Electrical Wiring

List of Major Based Electives:

MBE I - Material Science/Laser Physics

MBE II - Communication Physics/Computational Physics

MBE III - Medical Physics/Astrophysics and Cosmology

Swayam Online Course: Extra Credit Course

Semester-I
Core Course – I
Course Code -19UPH1CC1

PROPERTIES OF MATTER, WAVES& ACOUSTICS

Hours/Week-6				
Credits-5				
Internal	External			
25	75			

Objective

To build the conceptual understanding of materials with mathematical skills and reviews the prior knowledge of properties of matter.

Course outcome

On the successful completion of the course, students will be able to:

CO	CO statement	Knowledge level
Number		
CO1	Define the basic ideas of elasticity and to assesses the bending movement of a beam in the form of cantilever and girders	K1
CO2	Explain the simple harmonic motion and its composition	K2
CO3	Develop the equation of wave motion and analyze its modes of vibration	K3
CO4	Apply the properties of surface tension in fluids and analyze the capillarity nature in liquids.	K3
CO5	Illustrate the concepts of intensity of sound and to Calculate the Reverberation time and identify the factors affecting the acoustics of buildings.	K2

Mapping with Program Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	M
CO2	S	S	S	L	M
CO3	S	S	S	S	S
CO4	M	S	S	M	S
CO5	S	S	S	S	S

S-Strong; M-Medium; L-Low

CORE COURSE - I

PROPERTIES OF MATTER, WAVES& ACOUSTICS

Syllabus

Unit- I: Properties of matter

20hrs

Elasticity: Basic ideas -Work Done per Unit Volume- Relations between elastic constants-Poisson's Ratio-Limiting Values of Poisson's Ratio-Twisting Couple on a Cylinder (or a Wire)-Torsion pendulum-Determination of Rigidity Modulus-Bending of Beams-Bending Moment-Cantilever Loaded at Free End-Depression of a Beam Supported at the Ends and Loaded at the Centre (weight of the beam neglected)-Determination of Y by Bending of a Beam- I form of Girders.

Unit -II: Harmonic Oscillation

20hrs

Periodic Motion- Simple Harmonic Motion and Harmonic Oscillator- Energy of a Harmonic Oscillator- Examples of Harmonic Oscillator- Anharmonic Oscillator-Composition of Two Simple Harmonic Motions of Equal Periods in a Straight Line - Composition of Two Rectangular Simple Harmonic Motions of Equal Periods: Lissajous Figures - Damping Force-Damped Harmonic Oscillator-Examples of Damped Harmonic Oscillator-Power Dissipation-Quality Factor-Forced Harmonic Oscillator.

Unit –III: Waves 15hrs

Wave Motion-General Equation of Wave Motion- Plane Progressive Harmonic Wave-Energy Density for a Plane Progressive Wave- Intensity of a Wave-Transverse Waves in Stretched Strings- Modes of Transverse Vibrations of Strings- Longitudinal Waves in Rods and Gases-Fourier's Theorem-Wave Velocity and Group Velocity

Unit -IV: Fluids 20hrs

Surface Tension: Definition and dimensions of surface tension - Excess of pressure over curved surfaces - Application to spherical and cylindrical drops and bubbles - Variation of Surface tension with temperature - Jaegar's method.

Viscosity: Co-efficient of viscosity and its dimensions - Rate of flow of liquid in a capillary tube - Poiseuilles' formula - Experiment to determine co-efficient of viscosity of a liquid - Variation of viscosity of a liquid with temperature - Applications of viscosity.

Unit -V: Acoustics 15hrs

Intensity of Sound- Decibel and Bel- Loudness of Sound- Noise Pollution-Ultrasonics: Production of Ultrasonic Waves- Piezo Electric Crystal Method- Determination of Velocity of Ultrasonic Waves in a Liquid - Acoustic Grating-Application of Ultrasonic Waves-Reverberation- Sabine's Formula- Absorption Coefficient-Acoustics of Buildings.

Text Books

S.No	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	D.S. Mathur	Elements of Properties of Matter	S.Chand	2010	10 th Reprint
2.	J.C Upadhyaya	Mechanics	Himalaya	2017	12 th Edition
3.	R.Murugeshan& KiruthigaSivaprasath	Properties of Matter and Acoustics	S.Chand	2012	10 th Edition
4.	BrijLal&Subramaniam	Text book of Sound	Vikas	2008	2 nd Edition
5.	Frank.s.Crawford,Jr.	Berkeley Physics course Vol 3 on Waves	Mcgraw-hill	2017	Revised Edition

Reference Books

S. No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	K Rama Reddy, S Raghavan & D VN Sarma	Elements of Mechanics	Universities Press	1994	1 st Edition
2.	Mahendra K Verma	Introduction to Mechanics	Universities Press	1995	1st Edition
3.	F.H.Newman &V.H.L.Searle	The General Properties of Matter	Edward Arnold	1961	Revised Edition

Pedagogy:

Lecture with OHP presentation, online Assignment, slip tests, Technical quiz

Course Designer:

Dr.S.Gowri

Semester-I		Hours/Week-3 Credits-3	
Core Practical – I	PHYSICS PRACTICAL - I		
Course Code - 19UPH1CC1P		Internal 40	External 60

Objective

To enable the student to gain practical knowledge

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Find the appropriate data accurately and keep	K1
	systematic record of laboratory activities.	
CO2	Demonstrate the usage of equipment's for various	K2
	measurements.	
CO3	Develop practical knowledge by applying the	К3
	experimental methods to correlate with the Physics	
	theory.	
CO4	Utilize standard methods to measure the young's	К3
	modulus of the given material.	
CO5	Build hands on experience using various techniques.	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	M	S	S	M	M
CO3	S	M	S	M	M
CO4	S	S	M	S	M
CO5	S	M	M	S	S

Core Practical - I

PHYSICS PRACTICAL - I

Syllabus

List of experiments – Any Ten

- 1. Measurements of length (or diameter) using Vernier calipers, Screw gauge and Travelling microscope.
- 2. Young's modulus Uniform bending (Pin and Microscope).
- 3. Young's modulus Cantilever depression (scale and telescope).
- 4. Static Torsion Determination of n.
- 5. Surface Tension Capillary rise method.
- 6. Surface Tension and Interfacial Surface Tension Drop weight method.
- 7. Coefficient of viscosity of liquid Variable pressure head.
- 8. Comparison of Viscosities of two liquids HARE's apparatus.
- 9. Coefficient of viscosity of liquid Searle's viscometer method.
- 10. Viscosity of liquid Stoke's method.
- 11. Coefficient of viscosity of liquid Constant pressure head.
- 12. Sonometer determination of frequency of tuning fork.
- 13. Melde's Experiment Transverse and longitudinal.
- 14. Rigidity modulus Dynamic method.
- 15. CRO Study of wave forms Lissajous figures f determination.

Textbook

S.No.	Authors	Title of the	Year of	Publishers	Edition
		Book	Publication		
1.	C.C. Ouseph, U.J.	Practical	2016	S.Viswanathan,	1 st
	Rao,	Physics and		Printers &	
	V.Vijayendran	Electronics		Publishers Pvt	
				Ltd	

Reference book

S.No.	Authors	Title of the Book	Year of Publication	Publishers	Edition
1.	Prof.M.N.Namboodirippad, Prof.P.A.Daniel	B.Sc., Practical Physics	1982	G.B.C. Publications	1 st

Pedagogy

Demonstration, practical sessions and viva voce.

Course Designer:

Ms.N.Manopradha

Semester-II		Hours/Week-4	
Allied course – I	MATHEMATICS-I	Credits-3	
Course code-19UPH1AC1	WATHEWATICS-I	Internal 25	External 75

OBJECTIVE

To equip the students with mathematical methods formatted for their major concepts and train them in basic Integrations.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the concepts of successive differentiation and Leibnitz theorem	K2
CO2	Describe curvature, radius of curvature in Cartesians	K2
CO3	Compute integrals of various types	К3
CO4	Solve integrals by trigonometric substitution and by parts.	К3
CO5	Interpret the properties of definite integrals and evaluate them.	K2
CO6	Apply reduction formula and evaluate the integrals.	К3
CO7	Compute double and triple integrals.	K3
CO8	Classify Fourier series for full range, half range and odd & even functions.	K3

ALLIED COURSE – I (AC)

MATHEMATICS-I

Syllabus:

UNIT-I (15 HOURS)

Successive Differentiation - n^{th} derivative of standard functions (Derivation not needed) simple problems only - Leibnitz Theorem (proof not needed) and its applications- Curvature and radius of curvature in Cartesian only (proof not needed)—Simple problem in all these.

UNIT-II (15 HOURS)

Evaluation of integrals of types

Evaluation of integrals of types

1]
$$\int \frac{px+q}{ax^2+bx+c} dx$$
 2] $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ 3] $\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c}}$ 4] $\int \frac{dx}{a+b\cos x}$

5] $\int \frac{dx}{a+b\sin x}$ 6] $\int \frac{(a\cos x+b\sin x+c)}{(p\cos x+q\sin x+r)} dx$

Integration by trigonometric substitution and by parts of the integrals

Integration by trigonometric substitution and by parts of the integrals

1]
$$\int \sqrt{a^2 - x^2} dx$$
 2] $\int \sqrt{a^2 + x^2} dx$ $\int \sqrt{x^2 - a^2} dx$

UNIT- III (13 HOURS)

General properties of definite integrals – Evaluation of definite integrals of types
$$1] \frac{\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}}}{\int_{a}^{b} \sqrt{(x-a)(b-x)}dx} \qquad 2] \int_{a}^{b} \sqrt{\frac{x-a}{b-x}}dx$$

Reduction formula (when n is a positive integer) for

Reduction formula (when n is a positive integer) for

$$\frac{\pi}{2} - \frac{\pi}{2}$$
1] $\int e^{ax}x^n dx$ 2] $\int \sin^n x \, dx$ 3] $\int \cos^n x \, dx$ 4] $\int \sin^n x \, dx$ 5] $\int \cos^n x \, dx$ (with proof) and $\frac{\pi}{2}$
6] $\int \sin^n x \cos^m x \, dx$ (without proof) and illustrations.

UNIT-IV (10 HOURS)

Evaluation of Double and Triple Integrals in simple cases(Problems Only) - Changing the order and evaluating the double integration (Cartesian only).

UNIT -V (07 HOURS)

Definition of Fourier Series – Finding the Fourier Coefficients for a given periodic function with period 2π - Use of Odd and Even functions in evaluating Fourier Coefficients – Half range sine and cosine series.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS 80%

ASSESSMENT: SEMINAR, ASSIGNMENT

TEXT BOOKS:

S.No	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	S. Narayanan, T.K. Manichavasagam Pillai	Calculus, Volume I.	S. Viswanathan Pvt Limited	2003
2	S. Narayanan, T.K. Manichavasagam Pillai	Calculus, Volume II.	S. Viswanathan Pvt Limited	2003
3	S. Narayanan, T.K. Manichavasagam Pillai	Calculus, Volume III.	S. Viswanathan Pvt Limited	2003

CHAPTERS AND SECTIONS:

S.NO.	UNIT	CHAPTER	Text Book	SECTIONS
1	I	3	1	1.1-2.2
1	1	10	1	2.1-2.3
2	II	1	2	7.3(TYPE-2), 8(CASE 2,5), 9
2	11	1	2	8 (RELEVANT)
3		1	2	8 (RELEVANT),11,13.1-13.5
4	IV	5	2	2.1,3.1,4
5	V	6	3	1-7

REFERENCE BOOK:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	S. Arumugam, Issac and Somasundaram	Trigonometry & Fourier series	New Gamma Publishers	1999

COURSE DESIGNERS:

- Ms.P.SARANYA
- Ms.S.VIDHYA

Semester-I&II		Hours/	Week-3
Allied course – II		Credits-3	
Course code-19UPH1AC2	MATHEMATICS-II	Internal 25	External 75

OBJECTIVES

- To equip the students with mathematical methods formatted for their major concepts.
- To train them in Algebra and Trigonometry.
- To inculcate the basics of Three Dimensional geometry.

SYLLABUS:

UNIT I: Series Expansion (22 Hours)

Application of Binomial Theorem to summation of series – Approximate values – Summation of series by Exponential series - Summation of series by Logarithmic series (Formulae only) – Series which can be summed up by Logarithmic series.

UNIT II: MATRICES (10 Hours)

Matrix-Special types of Matrices –scalar multiplication of matrices-equality of matrices-addition of matrices-subtraction of matrices- Symmetric matrix-skew symmetric matrix-Hermitian matrix-Skew Hermitian matrix –Multiplication of matrix – inverse matrix-orthogonal matrix-Solutions of simultaneous equations-Rank of a matrix-Elementary transformation of a matrix-A system of m homogeneous linear equations in 'n' unknowns-linear dependence and independence of vectors-system of non-homogeneous linear equations - Eigen values, Eigenvectors – Simple applications only.(proof not needed).

UNIT III: Three Dimensional geometry (30 Hours)

Coplanar lines-the condition that two given straight lines should be coplanar- Finding the shortest distance between two given lines and the equation of the plane containing them- Sphere – Definition- The equation of the sphere to find its centre and radius- the length of the Tangent Plane from a point to the sphere – Plane Section of a sphere – Equation of a circle on a sphere – intersection of two spheres-Equation of the tangent plane to the sphere at a point. (Only problems in all the above).

UNIT IV: Expansion of Trigonometric functions (10 Hours)

Expansion of $\sin n\theta$, $\cos n\theta$, $\tan n\theta$ (n being a positive integer) – expansion of $\sin^n \theta$, $\cos^n \theta$, $\sin^m \theta \cos^n \theta$ in a series of sines and cosines of multiples of θ (θ given in radians) – Expansion of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in terms of powers of θ (only problems in all the above).

UNIT V: Hyperbolic functions (18 Hours)

Euler's Formula for $e^{i\theta}$ - Definition of Hyperbolic functions – Formulae involving Hyperbolic functions – Relation between Hyperbolic and Circular functions – Expansion of sinhx, coshx and tanhx in powers of x – Expansion of Inverse hyperbolic functions $\sinh^{-1} x$, $\cosh^{-1} x$ and $\tanh^{-1} x$ - Separation of real and imaginary parts of $\sin(x+iy)$, $\cos(x+iy)$, $\tan(x+iy)$, $\sinh(x+iy)$, $\cosh(x+iy)$ and $\tanh(x+iy)$.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS 80%

Pedagogy: Assignment, seminar, Group Discussion.

TEXT BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATIO N
1	T.K.Manichavasagam Pillai, T.Natarajan, K.S.Ganapathy	Algebra, Volume I	S. Viswanathan Pvt Limited	2004
2	T.K.Manichavasagam Pillai	Algebra, Volume II	S. Viswanathan Pvt Limited	2004
3	T.K.Manichavasagam Pillai and T.Natarajan	A Text book of Analytical Geometry Part-II 3D	New Gamma Publishers	1991
4	T.K.Manichavasagam Pillai and T.Narayanan	Trigonometry	S. Viswanathan Pvt Limited	2013

CHAPTERS AND SECTIONS:

S.NO.	UNIT	CHAPTER	Text Book	SECTIONS
1	Т	3	1	10,14
1	1	4	1	3,7,9
2	II	2	2	1-16
3	III	3	3	7,8
3	111	4	3	Fully
4	IV	3	4	Fully
5	V	4	4	Fully

REFERENCE BOOK:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	T.K.Manichavasagam Pillai	Analytical Geometry 3D and Vector calculus	New Gamma Publishers	1991

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define matrices and various procedures for solving matrices.	K1
CO2	Explain Binomial, Logarithmic and Exponential series.	K2
CO3	Describe skew lines, co planarity, sphere and several concepts on sphere.	K2
CO4	Classify series expansion of sine, cosines, and tangents in all manners.	К3
CO5	Compute using hyperbolic and inverse hyperbolic functions.	К3

Mapping with Programme Outcomes

COS/POS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	S	M	S	S	S
CO2	M	S	M	S	S	S
CO3	M	S	M	S	S	S
CO4	M	S	M	S	S	S
CO5	M	S	M	S	S	S

COURSE DESIGNERS:

- Ms.P.SARANYA, Assistant Professor.
- Ms.S.VIDHYA, Assistant Professor.

Semester-II		Hours/W	eek-6
Core Course – II	MECHANICS AND RELATIVITY	Credits-5	
Course Code-19UPH2CC2		Internal 25	External 75

Objective

• To give a better insight of the change of position of any physical object or event and their consequences

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO 1	Recall the basic concepts of force, mass, acceleration, impulse and momentum.	K1
CO 2	Demonstrate and compute simple harmonic motion.	K2
CO 3	Illustrate the motion of rigid bodies and outline laws of gravitation.	K2
CO 4	Make use of the ideas of frames of reference.	К3
CO 5	Utilize the fundamental theories of special relativity.	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	M	M	S	S	S
CO3	M	S	S	S	S
CO4	M	M	S	M	S
CO5	M	S	S	M	S

CORE COURSE – II MECHANICS AND RELATIVITY

Syllabus

UNIT I: Projectile, Impact and Friction

15 hrs

Projectile – range of horizontal and inclined plane – Impact – Impulsive force – Laws of impact – Impact of a smooth sphere on a smooth horizontal plane – Direct and oblique impacts –Loss in kinetic energy – Friction – Laws of friction – Angle of friction.

UNIT II: Simple Harmonic Motion

20 hrs

Definition of Simple Harmonic Motion – Velocity, acceleration and period of simple harmonic motion – Phase of simple harmonic motion – Energy of a particle executing simple harmonic motion – Equation of motion for a body executing angular oscillations which are simple harmonic – Free, damped and forced harmonic oscillators – Forced vibration – Theory of forced vibrations – Sharpness of resonance – Power dissipation and Quality factor - Simple pendulum – Laws of simple pendulum, for small amplitudes – Loss or Gain of time.

UNIT III: Dynamics of Rigid Bodies and Gravitation

30 hrs

Moment of Inertia - Kinetic energy and angular momentum of rotating body - Theorems of perpendicular and parallel axes – Acceleration of a body rolling down an inclined plane without slipping – Oscillations of a small sphere on a large concave smooth surface – Compound pendulum – Centre of suspension and centre of oscillation – Centre of percussion – Minimum period of a compound pendulum – Kater's pendulum.

Newton's laws of gravitation – Kepler's laws of planetary motion – Deduction of Newton's law of gravitation – Determination of G – Boy's method.

UNIT IV: Frames of Reference

15hrs

Inertial frames of reference – Galilean Transformation - Galilean invariance – Transformation equation for one frame of reference rotating with its axis with respect to an inertial frame – Noninertial frames and fictitious forces – Coriolis force – Foucault's pendulum.

UNIT V: Special Theory of Relativity

10 hrs

Michelson-Morley experiment - concept of ether - Einstein's special theory of relativity - Lorentz transformation - time dilation - length contraction - proper length and proper time - simultaneity - relativistic mass, momentum, force and acceleration - equivalence of mass and energy $(E = mc^2)$.

20 III S

Textbooks

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	M. Narayanamurthi and N. Nagarathinam	Dynamics	The National Publishing Company, Chennai	2008	8 th
2.	D.S. Mathur, P.S.Hemne	Mechanics	S. Chand & Company Ltd., New Delhi	2015	Revised edition 2012

Reference books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	M. Narayanamurthi	Statics,	The National	2002	3 rd
	and N. Nagarathinam	Hydrostatics and	Publishing Company,		
		Hydrodynamics	Chennai		
2.	R. Murugesan	Mechanics and	S. Chand &	2016	3 rd
		Mathematical	Company Ltd., New		
		Physics	Delhi		
3.	BrijilalSubramaniam	Mechanics and Relativity	MarghamPublications	1990	1 st
4.	R. Murugeshan	Modern Physics	S. Chand & Co.,	2016	18 th
	KiruthigaSivaprasath				

Pedagogy:

Chalk and talk, Assignment, Power point presentation

Course Designer:

Ms.N.Manopradha

Semester-II		Hours/W	eek-3
Core Practical - II	PHYSICS PRACTICAL - II	Credits-3	
Course Code-19UPH2CC2P		Internal 40	External 60

Objective

To understand the theory and develop practical application skills

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Recall the usage of basic laws and theories to study properties of sound and fluids.	K1
CO2	Interpret findings using the correct physical scientific framework.	K2
CO3	Develop skills in handling equipment.	К3
CO4	Utilize standard methods to measure the refractive index of the given material.	K3
CO5	Build intellectual communication skills and discuss the basic principles of scientific concepts in a group.	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	M
CO2	M	S	S	S	S
CO3	S	M	S	S	S
CO4	S	S	M	M	M
CO5	S	S	S	M	M

CORE PRACTICAL - II PHYSICS PRACTICAL - II

Syllabus

List of experiments – Any Ten

- 1. Spectrometer μ of solid prism.
- 2. Air wedge thickness of thin wire.
- 3. Newton's Rings RI of convex lens.
- 4. Long focus convex lens f, R, refractive index-determination.
- 5. Concave lens Focal length determination.
- 6. Young's modulus Non-Uniform bending (Pin and Microscope).
- 7. Young's modulus Uniform bending (Optic lever).
- 8. Sonometer Verification of laws.
- 9. Melde's Experiment –RD of solid and liquid.
- 10. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity.
- 11. Determination of the Moment of Inertia of a Flywheel.
- 12. Determination of the elastic Constants of a wire Searle's method.
- 13. Compound pendulum g and k.
- 14. Kater's Pendulum determination of g.
- 15. Moment of Inertia Torsional Pendulum.

Textbook

S.No.	Authors	Title of the	Year of	Publishers	Edition
		Book	Publication		
1.	C.C. Ouseph,	Practical	2016	S.Viswanathan,	1 st
	U.J. Rao,	Physics and		Printers &	
	V.Vijayendran	Electronics		Publishers Pvt	
				Ltd	

Reference book

S.No.	Authors	Title of the	Year of	Publishers	Edition
		Book	Publication		
1.	Prof.M.N.Namboodirippad,	B.Sc.,	1982	G.B.C.	1 st
	Prof.P.A.Daniel	Practical		Publications	
		Physics			

Pedagogy

Demonstration, practical sessions and viva voce.

Course Designer:

Ms.N.Manopradha

Semester-II	MATHEMATICS-III	Hours/Week-4		
Allied course - III		Credits-3		
Course code - 19UPH2AC3	MATHEMATICS-III	Internal 25	External 75	

OBJECTIVES

- To equip the students with mathematical methods formatted for their major concepts.
- To train them in the areas of ODE and PDE.
- To emphasize them in the field of Laplace transforms and Vectors.

SYLLABUS:

UNIT I: Ordinary Differential Equation (15 HOURS)

Ordinary Differential Equation of first order but of higher degree – Type A:Equations solvable for $\frac{dy}{dx}$ -Type B: Equations solvable for y and x- Equations that do not contain x and y explicitly- Clairaut's Form (simple cases only) – linear equations with constant coefficients – Definition – the operator D-Equations homogeneous in x and y- Complementary function of a linear equation with constant co-efficients-Particular integral: General method of finding P.I-Special methods for finding P.I.

UNIT II : Partial differential equations (15 HOURS)

Classification of integrals-General integral –Derivation of Partial differential equations by elimination of constants, by elimination of arbitrary function-Lagrange's method of solving the linear equation-Special methods –Standard forms-I,II,III,IV-Clairaut's form.(Geometrical Meaning is not needed)-(only problems in all the above – No proof needed for any formula).

UNIT III : Laplace Transforms (10 HOURS)

Laplace Transforms – Definition – Piecewise continuity-Sufficient condition for the existence of Laplace transforms-Basic results-Laplace transforms of periodic functions-Some general theorems-Evaluation of integrals using Laplace transforms.

UNIT IV: Inverse Laplace Transforms (10 HOURS)

The Inverse Transforms –Modification of results obtained in finding Laplace transforms to get the transformation of functions- Laplace Transforms to solve ordinary differential equations with constant co-efficient.

UNIT V : Vector Differentiation(10 HOURS)

Limit of a vector function-continuity of vector functions-Derivative of a vector function-some standard results-geometrical significance of vector differentiation-Physical application of derivatives of vectors-partial derivative of a vector function-Gradient, curl divergence-Scalar and vector point functions-level surface –gradient of a scalar point function-directional derivative of a scalar point function-Equations of a tangent plane and normal line to a level surface-Divergence And curl of a vector point function-Definition- Curl of a vector point function-irrotational vector-Physical interpretation of divergence of a vector - Physical interpretation of curl of a vector-vector identities.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS 80%

Pedagogy: Assignment, seminar, Group Discussion.

TEXT BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATIO N
1.	S. Narayanan, T.K. Manicavachagam Pillai	Differential Equations and its applications	S. Viswanathan Pvt Limited	2016
2.	P.R.Vittal & V.Malini	Vector Analysis	Margham Publications	2016

CHAPTERS AND SECTIONS:

S.NO.	UNIT	CHAPTER	Text Book	SECTIONS
1	T	4	1	1-4
1.	1	5	1	1-4
2.	II	12	1	1-5.4
3.	III	9	1	1-5
4.	IV	9	1	6-8
5.	V	1	2	FULLY

BOOKS FOR REFERENCE:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	S. Narayanan, T.K. Manicavachagam Pillai	Calculus, Vol. III	S. Viswanathan Pvt Limited	2003
2.	M.L. Khanna	Differential Calculus	Jaiprakashnath and Co.,	2004

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define Laplace transforms and solve.	K1
CO2	Rephrase the partial differential equations by eliminating constants and arbitrary functions and solve various types of PDE's.	K2
CO3	Solve ordinary differential equations under several methods.	К3
CO4	Apply inverse Laplace transforms and solve second order ODE	К3
CO5	Classify vectors and vector differentiation	К3

Mapping with Programme Outcomes

COS/POS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	S	M	S	S	S
CO2	M	S	M	S	S	S
CO3	M	S	M	S	S	S
CO4	M	S	M	S	S	S
CO5	M	S	M	S	S	S

CAUVERY COLLEGE FOR WOMEN (Autonomous), TIRUCHIRAPPALLI- 18

(Applicable to the candidates admitted from the Academic year 2019-20 onwards)

ENVIRORMENTAL STUDIES

Semester	Course Title	Course Code	Category	Instructional Hours	Credits
II	ENVIRONMENTAL STUDIES	19UGES	PART IV	2	2

PREAMBLE

To train the students to get awareness about total environment and its related problems and to make them to participate in the improvement and protection of the environment.

Course Outcome

- 1. Outline the nature and scope of environmental studies
- 2. Illustrate the various types of natural resources and its importance.
- 3. Classification of various types of ecosystem with its structure and function.
- 4. Develop an understanding of various types of pollution and biodiversity.
- 5. List out the various types of social issues related with environment.

СО	CO Statement	Knowledge Level
CO1	Outline the nature and scope of environmental studies	K2
CO2	Illustrate the various types of natural resources and its importance.	K2
CO3	Classification of various types of ecosystem with its structure and function.	K2
CO4	Develop an understanding of various types of pollution and biodiversity.	K3
CO5	List out the various types of social issues related with environment.	K4

ENVIRONMENTAL STUDIES

Unit: 1 Introduction to environmental studies

Definition, scope and importance. Need for public awareness

Unit: 2 Natural Resources:

Renewable and non-renewable resources:

- a) Forest resources: use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams benefits and problems.
- c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.
- d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.
- e) Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Case studies.
- f) Land resources: Land as a resources, land degradation, man induced Landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources.

Unit: 3 Ecosystems

- Concept, Structure and function of an ecosystem.
- Producers, consumers and decomposers
- Energy flow in the ecosystem and Ecological succession.
- Food chains, food webs and ecological pyramids
- Introduction, types, characteristic features, structure and function of the following ecosystem:-
- a. Forest ecosystem
- b. Grassland ecosystem
 - c. Desert ecosystem
- d. Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)

Unit: 4 Biodiversity and Environmental Pollution

- Introduction, types and value of biodiversity
- India as a mega diversity nation
- Hot-spots of biodiversity
- Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India
- Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.
- Definition, Causes, effects and control measures of :
- a. Air Pollution
- b. Water Pollution
- c. Soil Pollution
- d. Noise pollution
- e. Nuclear hazards
- Solid waste Management: Causes, effects and control measures of urban and industrial wastes.

- Role of an individual in prevention of pollution
- Disaster management: floods, earthquake, cyclone and landslides.

Unit: 5 Social Issues and the Environment

- Water conservation, rain water harvesting, watershed management.
- Climate change, global warming, acid rain, ozone layer depletion,
- Wasteland reclamation.
- Environment Protection Act
- Wildlife Protection Act.
- Forest Conservation Act.
- Population explosion Family Welfare Programmes
- Human Rights Value Education
- HIV/ AIDS Women and Child Welfare
- Role of Information Technology in Environment and human health

References:

- 1. Agarwal, K.C. 2001 Environmental Biology, Nidi Public Ltd Bikaner.
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt ltd, Ahamedabad 380013, India, E-mail: mapin@icenet.net(R)
- 3. Brunner R.C. 1989, Hazardous Waste Incineration, McGraw Hill Inc 480 p
- 4. Clark R.S. Marine Pollution, Clanderson Press Oxford (TB)
- 5. Cunningham, W.P.Cooper, T.H.Gorhani E & Hepworth, M.T. 2001.
- 6. De A.K. Environmental Chemistry, Wiley Eastern Ltd
- 7. Down to Earth, Centre for Science and Environment (R)
- 8. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford University, Press 473p.
- 9. Hawkins, R.E. Encyclopedia of India Natural History, Bombay Natural History Society, Bombay (R)
- 10. Heywood, V.H & Watson, R.T. 1995. Global Biodiversity Assessment. Cambridge University Press 1140 p.
- 11. Jadhav, H & Bhosale, V.M. 1995. Environmental Protection and Laws Himalaya Pub. House, Delhi 284 p.
- 12. Mckinney, M.L. & Schoch R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition 639 p.
- 13. Mhaskar A.K. Matter Hazardous, Techno-Science Publications (TB)
- 14. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- 15. Odum, E.P. 1971 Fundamentals of Ecology. W.B. Saunders Co. USA. 574 p
- 16. Rao MN & Datta, A.K. 1987 Waste Water treatment, Oxford & IBH Publication Co. Pvt Ltd 345 p.
- 17. Sharma B.K. 2001 Environmental chemistry Goel Publ House, Meerut.
- 18. Survey of the Environment, The Hindu (M).
- 19. Townsend C. Harper, J and Michael Begon, Essentials of Ecology, Blackwell science (TB)
- 20. Trivedi R.K. Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media (R).
- 21. Trivedi R.K. and P.K. Goel, Introduction to air pollution, Techno-Science Publications (TB).
- 22. Wagner K.D. 1998 Environmental Management. W.B. Saunders Co. Philadelphia USA 499 p
- (M) Magazine (R) Reference (TB) Textbook
- 23. http://nbaindia.org/uploaded/Biodiversityindia/Legal/33% 20 Biological% 20 Diversity% 20 Rules,% 20 2004.pdf.

Semester-III	
Core Course – III	THERMAL PHYSICS AND
Course Code-19UPH3CC3	STATISTICAL MECHANICS

Hours/Week-6			
Credits-5			
Internal External			
25	75		

Objectives

- To gain knowledge in heat transfer, entropy, production of low temperature and liquefaction of gases and thermal radiation.
- To understand the phenomena connected with radiation, conduction, different thermal capacities of substances.
- To acquire a solid understanding of the fundamental laws of thermodynamics and statistical physics.

Course Outcomes

On the completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define Laws of thermodynamics	K1
CO2	Interpret Maxwell thermodynamic relations	K2
CO3	Explain transmission of heat	K2
CO4	Summarize Statistical thermodynamics	K2
CO5	Apply the Specific heat of solids and gases	K3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	
CO1	S	S	M	M	M	
CO2	S	M	M	M	M	
CO3	S	M	M	M	M	
CO4	S	M	M	M	M	
CO5	S	M	L	S	M	

S – Strong; M – Medium; L – Low

CORE COURSE - III THERMAL PHYSICS AND STATISTICAL MECHANICS

Syllabus

UNIT I: THERMODYNAMICS - I

18hrs

Thermodynamic system - Zeroth law of thermodynamics - internal energy First law of thermodynamics - reversible and irreversible process - Carnot's ideal heat engine - Carnot's cycle - internal combustion engine - Otto and diesel engine - second law of thermodynamics - entropy - change in entropy during reversible and irreversible process - T- dS equation- second law of thermodynamics - third law of thermodynamics—Clausius's Claypeyron's latent heat equations.

UNIT II: THERMODYNAMICS II

18hrs

Statistical equilibrium - Maxwell's thermodynamic relations - Joule Thomson cooling - temperature of inversion- thermodynamic potential — Joule Thomson porous plug experiment - Joule Thomson expansion - Linde's method — Adiabatic demagnetization — liquefaction of gases - liquefaction of hydrogen and Helium adiabatic demagnetization - Practical applications of low temperature — Refrigerating mechanism — Air conditioning machines.

UNIT III: TRANSMISSION OF HEAT

18hrs

Coefficient of thermal conductivity- rectilinear flow of heat along a bar Forbes method - Lee's method for bad conductors and liquids - convection and its applications - Black body - Stefan Boltzmann law - Wien's displacement law - Rayleigh - Jeans law - Planck's law -derivation and experimental verification of Stefan's law - Newton's law of cooling from Stefen's law- solar constant - temperature of the Sun - Angstrom's Pyroheliometer

UNIT IV: SPECIFIC HEAT

18hrs

Specific heat of solids – Method of mixtures – Dulong and Petit's law - Quantum theory - Einstein's theory of specific heat – Debye's theory of specific heat – Specific heat of liquids – Newton's law of cooling - Specific heat of gases – Mayer's Relation – Quantization of various contributions to energy of diatomic molecules – Specific heat of diatomic gases.

UNIT V: STATISTICAL THERMODYNAMICS

18hrs

Phase space – Statistical equilibrium - Microstates and Macrostates – probability theorems in statistical thermodynamics Maxwell Boltzmann distribution law - Maxwell - Boltzmann distribution in terms of temperature - ideal gas - quantum statistics - B-E statistics - Application of B-E statistics to photon gases – F-D statistics

Text Books

S.No	Authors	Title of the book	Year of	Publishers	Edition
			Publication		
1	Brijlal and	Heat and	2017	Chand& Co.	5 th edition
	Subramaniyam	Thermodynamics			
2	J.B.Rajam and C.L	Heat and	2009	S. Chand & Company	9 th edition
	Arora	Thermodynamics		New Delhi:	

Reference books

S.No	Authors	Title of the	Year of	Publishers	Edition
		book	Publication		
1	M.Narayanamoorthy	Heat	1987	National publishing	8 th Edition
	& N. Nagarathinam,			Co, Chennai,	
2	D.S. Mathur	Heat and	2014	S. Chand & Co.	5 th edition
		Thermodynamics			

Pedagogy

Chalk and talk, Power point presentation, Group discussion and Seminars, Animation video and Quiz

Course Designer:

Dr.R.Gayathri

Semester-III		Hours/We	ek-3
Core Practical - III	PHYSICS PRACTICAL- III	Credits-3	
Course Code-19UPH3CC3P		Internal	External
		40	60

Objectives

- To introduce the various method of experimental physics
- To gain the knowledge of physics principles
- To impart the creative skills among the industrial applications

Course Outcomes

On the successful completion of the course, the student will be able to

CO Number	CO Statement	Knowledge Level
CO1	Apply the physics principle involved in the various instruments; also relate the principles to new application.	K1
CO2	Understand the theoretical concepts of transmission of heat with the experimental knowledge	K2
CO3	Use the theoretical ideas of spectrometer	K3
CO4	Expand the creative skills that are essential for industrial applications	K6

Mapping with program outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	M	S	S	M
CO3	M	S	M	M	M
CO4	S	S	M	S	S

S – Strong; M – Medium; L – Low

List of experiments

- 1. Specific heat capacity of a liquid Newton's law of cooling.
- 2. Emissive power of a surface Spherical calorimeter
- 3. Thermal conductivity of a bad conductor Lee's disc.
- 4. Joule's Calorimeter Specific heat capacity
- 5. Spectrometer- Refractive index (Hollow prism)
- 6. Potentiometer Calibration of low range voltmeter
- 7. Potentiometer Ammeter calibration
- 8. Characteristics of Junction and Zener Diodes
- 9. Transistor Characteristics' CE Configuration
- 10. Meter Bridge Specific Resistance

Text Books

S.No	Authors	Title of the	Publishers	Year of	Edition
		book		publication	
1.	Dr.S.Somasundaram	Practical	Apsara	2012	Revised
		Physics	publications,		
		-	Tiruchirappalli		
2.	R. Sasikumar	Practical	PHI Learning	2011	Revised
		Physics	Pvt. Ltd, New		
			Delhi		

Reference Books

S.No	Authors	Title of the	Publishers	Year of	Edition
		book		publication	
1.	S.Srinivasan	A Text Book	S.Sultanch and	2001	Revised
		of Practical	publications		edition
		physics			
2.	Department of Physics	Practical	St.Joseph's	2011	Revised
		Physics,	College,		edition
		-	Tiruchirapalli		
			-		

Pedagogy

Demonstration and practical sessions

Course Designer

Dr R. Meenakshi

SECOND ALLIED COURSE-I

CHEMISTRY - I

2019-2020 ONWARDS

Semester-III		Hour	s/Week-4
Second Allied Course-I	CHEMISTRY – I	Credit-3	
Course Code-19UPH3AC4		Internal 25	External 75

Objectives

- > To stimulate the concepts in basic chemistry and apply them in real world problems.
- > To learn the fundamental concepts of rate of reaction and renewable energy sources
- > To study the types ,structure and properties of solids

Course Outcomes

On the successful completion of the course, students will be able to:

Co number	CO statement	Knowledge level
CO 1	Recall the types of crystal structure and terms involved in kinetics and chemical equilibrium.	K1
CO 2	Compare the theories of bonding with metal atoms.	K2
CO 3	Discuss the properties of benzene, naphthalene and halogen compounds.	K2
CO4	Apply the concepts of electron displacement effect in organic compounds.	К3

Mapping with Programme Outcomes

CO	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	M	S
CO2	S	S	M	M	S
CO3	S	M	S	S	S
CO4	S	M	M	M	S

S-Strong; M-Medium

SECOND ALLIED COURSE-I

CHEMISTRY – I

2019-2020 ONWARDS

UNIT I BIO INORGANIC AND INDUSTRIAL CHEMISTRY

(12 hrs)

Coordination Chemistry: Nomenclature – Werner's, Sidgwick and Pauling's theories. Chelation-industrial importance of EDTA, Biological role of hemoglobin and Chlorophyll. Industrial chemistry: Fuel gases—water gas, producer gas, LPG gas, and natural gas. Fertilizers – NPK and mixed fertilizers- Soaps and detergents.

UNIT II BASICS OF ELECTRON DISPLACEMENT REACTIONS AND CHEMISTRY OF PESTICIDES (12 hrs)

Polar effects: Inductive effect— Relative strength of aliphatic monocarboxylic acid and aliphatic amines. Resonance — condition and consequences of resonance — resonance of energy. Acidic property of phenol and basic property of aniline. Hyperconjugation — Heat of hydrogenation — Bond length, dipole moment and Steric effect. Halogen compounds: Important chlorohydrocarbons. Types of solvents - Polar and Non polar.

Pesticides – Dichloromethane, chloroform, carbon tetrachloride, DDT, BHC Malathion, Parathion and chlorodane.

UNIT III ORGANIC REACTIONS AND MEDICINAL CHEMISTRY (12hrs)

Aromatic compounds: Structure, stability, resonance, aromaticity and substitution reaction of benzene. nitration, halogenations and alkylation. Naphthalene – isolation, properties and uses.

Organic reaction: Benzoin, Perkin, Cannizaro, Claisen, Biuret, and Haloform reactionsorganic compounds possessing analgesics, antibacterial, anti- inflammatory, antibiotics, antiseptic and disinfectant, anesthetics local and general (Structures not necessary)

UNIT IV SOLID STATE AND ENERGETICS

(12 hrs)

Solid state: Typical crystal lattices - unit cell, elements of symmetry, Bragg's equation, Weiss Indices, Miller indices, Simple, Body centered and Face centered lattices.

Energetic: First law of thermodynamics – state and path function – need for the second law – Carnot cycle, spontaneous and Non – spontaneous processes.

UNIT V CHEMICAL KINETICS AND MATERIALS FOR RENEWABLE ENERGY (12 hrs)

Chemical Kinetics: Order, molecularity, rate constant for zero, first and second order reactions-Effect of temperature on reaction rate (Arrhenius theory).

Renewable energies: Batteries, Solar cell, H₂ production fuel cell, e-Vehicles.

Textbooks

S.No	Author name	Year of Publication	Title of the book	Publisher name
1.	Puri B R, Sharma L R, Kalia K K,	1993	Principles of Inorganic chemistry	Shoban lal Nagin Chand&Co.,
2.	Madan R D	2000	Modern Inorganic Chemistry	S.Chand and Company Ltd.,
3.	Soni P.L.	2006	Text Book of organic Chemistry	S. Chand & Co, New Delhi
4.	Bahl B S and Arun Bahl	1997	Advanced Organic Chemistry	Sulthan Chand and Co
5.	Puri B.R. Sharma L.R. and	2013	Principles of Physical	35 th edition,
	Pathania M.S.		Chemistry	New Delhi: Shoban
				Lal Nagin Chand
				and

Reference Books

S.No.	Author name	Year of Publication	Title of the book	Publisher name
1	Gopalan. R	2012	Text Book of Inorganic Chemistry	2 nd Edition, Hyderabad, Universities Press, (India)
2	Morrison R.T. and Boyd R.N., Bhattacharjee S. K.	2011	Organic Chemistry	7 th edition, Pearson India,

Pedagogy

Chalk and Talk, power point Presentation, Group discussion, Seminar, Interaction, problem solving.

Course Designers

- ❖ Ms. N.Anusuya, Assistant Professor, Department of Chemistry.
- **Dr. K.Shenbagam**, Assistant Professor, Department of Chemistry

SECOND ALLIED COURSE- I(AP)

CHEMISTRY PRACTICAL - I

2019-2020 ONWARDS

Semester-III		Hou	rs/Week-3
Second Allied Course-I(AP)	CHEMISTRY PRACTICAL - I	Credit-3	
Course Code-19UPH3AC1P		Internal	External
		40	60

Objectives

- To learn the techniques of titrimetric analyses.
- To know the estimation of several cations and anions
- To know the estimation of total hardness of water.

Course outcomes

On the successful completion of the course, students will be able to

СО	CO Statements	Knowledge Level
CO1	Recall the basic principles of volumetric analysis	K1
CO2	Demonstrate the experimental methods of volumetric analysis	K2
CO3	Compare the hardness present drinking water	K2

Mapping with Programme Outcome

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	M
CO2	S	S	S	M	M
CO3	S	S	S	M	M

S-Strong; M- Medium

SECOND ALLIED COURSE- I(AP)

CHEMISTRY PRACTICAL - I

2019-2020 ONWARDS

Hours/Week: 3
Credits: 3

VOLUMETRIC AND ORGANIC QUANTITATIVE ANALYSIS I

Volumetric Analysis

1. Acidimetry and alkalimetry

(a) Strong acid vs strong base (b) Weak acid vs strong base (c) Determination of hardness of water.

2. Permanganometry

(a) Estimation of ferrous sulphate (b) Estimation of oxalic acid

3. Iodometry

(a) Estimation of potassium dichromate (b) Estimation of potassium permanganate

II. Organic Analysis

Analyse the following organic Compounds.

1. Carbohydrate, 2. Amide, 3. Aldehyde, 4. Ketone, 5. Acid & 6. Amine

The students may be trained to perform the specific reactions like tests for elements (nitrogen only), aliphatic or aromatic, saturated or unsaturated and functional group present and record their observations.

Text Books

S. No.	Author's Name	Year of	Title of the Book	Publisher's Name
		Publication		
1.	R. Gopalan	2000	Elements of analytical	S. Chand, New
			chemistry	Delhi]
2.	N. S.	1998	Organic Chemistry lab	S. Viswanathan and
	Gnanapragasam		manual	Co. Pvt. Ltd
	and G.			
	Ramamurthy			

Course Designers

- **Ms. N.Anusuya**, Assistant Professor, Department of Chemistry.
- ❖ Dr. K.Shenbagam, Assistant Professor, Department of Chemistry

Semester-III		Hours/W	eek-2
Non Major Elective – I	TROUBLESHOOTING OF ELECTRICAL APPLIANCES	Credits-2	,
Course Code-19UPH3NME1		Internal	External
		25	75

- To create awareness about types and handling of domestic appliances.
- To acquire knowledge about principles of operation, working and applications of various appliances.
- To give knowledge and competencies regarding servicing, repair, fault diagnosis for consumer electronics.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
number		
CO 1	Identify the electronic components in any given appliances.	K2
CO 2	Understand the terminology of Soldering & Desoldering technique.	K2
CO 3	Understand the working function of electrical appliances	K2
CO 4	Identification of problem arise in Home appliances Carry out fault rectification.	K2

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4
CO1	S	L	L	M
CO2	S	L	L	M
CO3	S	L	L	M
CO4	S	L	L	M

NON MAJOR ELECTIVE – I

TROUBLESHOOTING OF ELECTRICAL APPLIANCES

Syllabus

UNIT I Introduction to Electricity

5hrs

Electric Charge – Voltage -Electric Current - Ohm's Law- Electric Potential-Serial and Parallel Circuit-Transformer

UNIT II Electronic and Electrical Components

6hrs

Active and Passive Components-Resistors-Capacitors and Inductors-Semiconducting Devices: Diodes-Transistors - Integrated Circuits -Digital ICs for logic gates.

UNIT III Soldering/ de- Soldering Techniques

6hrs

Principles of solder connections-soldering flux- Flux removal after soldering-Safety, health and medical aspects in soldering.

UNIT IV Basic Functionality of Electrical Equipment

6hrs

Working principle /functionality- Main Components of a Tube light, Fan, Water Heater iron box and Refrigeration System- Common occurring faults- Possible causes and solution.

UNIT V Basic Functionality Motor Aappliances

8hrs

Working principle and Functioning of motor (mixer/juicer/grinder)- Functioning of motor - Common occurring faults - possible causes and solution.

Textbooks

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1	R Murugeshan	Electricity and Magnetism	S. Chand Publishing	2017	4th
2	V.K Mehta Rohit Mehta	Principles of Eelectronics	S. Chand Publishing	2014	7 th
3.	Walter C Bosshart	Printed Circuits Boards	McGraw- Hill	1995	-
4	https://www.electrical4u.com/working- principle-of-a-tube-light	-	-	-	-
5	https://www.academia.edu/26360706/JUICER-MIXER-	-	-	-	-

Reference

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1	Eric Kleinret	Troubleshooting and Repairing Major Appliances	McGraw-Hill Education	2013	3 rd
2	Shashi Bhushan Sinha	Handbook of Repair and Maintenance of Domestic Electronics Appliances	ВРВ	2016	1 st

Pedagogy:

Chalk And Talk, Assignment, Power Point Presentation

Course Designer:

Ms. R.A.KIRUTHIKA

Semester-IV		Hours/W	eek-5
Core Course – IV	ELECTRICITY , MAGNETISM AND ELECTROMAGNETISM	Credits-5	
Course Code-19UPH4CC4		Internal 25	External 75

- To develop knowledge in electrostatics and magneto statics so that students would apply theories of static and moving charges.
- To extend the understanding of its applications to instruments involving electric and magnetic fields.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		level
CO1	Demonstrate a mastery of Coulomb's law for the electric field, and apply it to systems of point charges. Use the principle of superposition and law of Gauss to calculate the electrical forces and the intensity of the electric field in various electricity problems	K2
CO2	Understand the implications of Kirchhoff's rules. To calculate the magnetic forces that act on moving charges and the magnetic fields due to currents	K2
CO3	Identify the laws of magneto statics and the various properties of magnetic materials	K3
CO4	Build up strong problem solving skills by effectively formulate a circuit problem using Inductance, Resistance and capacitance.	K3
CO5	Develop the understanding of Dynamo and DC Motor using magnetization principle.	K3

Mapping with programme outcomes

Cos	PO1	PO2	PO3	PO4
CO1	S	S	M	M
CO2	S	M	M	M
CO3	S	M	L	M
CO4	S	M	L	M
CO5	S	M	L	S

CORE COURSE – IV

ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM

Syllabus

Unit - I: Electrostatics 15hrs

Point charge - Rest charge - charge distributions - coulomb's law - vector form - Principle of superposition - Gauss's Law and its applications - Electric Field due to a uniformly charged sphere, -hollow cylinder -solid cylinder)— Electric Potential — Potential at a point due to a uniformly charged conducting sphere — Principle of a capacitor— Capacity of a spherical and cylindrical capacitors — Energy stored in a charged capacitor—Loss of energy on sharing of charges between two capacitors.

Unit - II: Current Electricity

15hrs

Current and current density - equation of continuity - combination of resistance star and Delta transformations - grouping of cells - Ampere's circuital law and its applications - Field along the axis of a circular coil and Solenoid –Theory of Ballistic Galvanometer – Figure of merit – Damping Correction - Kirchhoff's laws - Wheatstone Bridge - Carry - Foster's Bridge-Potentiometer Calibration of ammeter and voltmeter- Comparison of resistance and capacitance.

Unit -III: Magneto statics

15hrs

Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Intensity of magnetization - Susceptibility - Types of magnetic materials - Properties Para, dia and ferro magnetic materials - Cycle of magnetization - Hysteresis - B-H curve - application of BH curve - Magnetic energy per unit volume

Unit - IV: Electro Magnetic Induction

15hrs

Laws of electromagnetic induction—Self and mutual induction—Self-inductance of a solenoid—Mutual inductance of a pair of solenoids—Coefficient of coupling—Experimental determination of self (Rayleigh's method) and mutual inductance—Growth and decay of current in a circuit containing L and R—Growth and decay of charge in a circuit containing C and R—Measurement of High resistance by leakage.

Unit V: AC Circuits 15hrs

Alternating EMF applied to series circuits containing LC, LR and CR- Alternating EMF applied to circuits containing L, C and R-Series and Parallel resonance circuits—Sharpness of resonance—Q factor—Comparison between Series and Parallel resonant circuits—Power in AC circuits (R, L-R, L-C-R only)—Power factor—Wattless current—Choke Coil—Transformer—Uses of Transformers—Skin Effect.

Text Books

S.No	Authors	Title of the book	Year of Publication	Publishers	Edition
1	Brijlal and Subramaniyam	Electricity and Magnetism	1990	S.Chand& Co.	18th edition
2	R.Murugesan	Electricity and Magnetism	2013	S.Chand& Co.	5 th edition
3	Sehgal - Chopra - Sehgal	Electricity and magnetism	2004	Sultan Chand and Sons Ltd,	6 th edition

Reference books

S.No	Authors	Title of the book	Year of	Publishers	Edition
			Publication		
1	K K.Tewari	Electricity and	2007	S. Chand & Co.	3 rd edition
		magnetism		Ltd., NewDelhi	

Pedagogy:

Lecture, Seminar, Assignment, Power point Presentation, Animation video and Quiz

Course Designer:

Dr.R.Gayathri

Semester-IV		Hours/We	ek-3
Core Practical – IV	PHYSICS PRACTICAL- IV	Credits-3	
Course Code-19UPH4CC4P		Internal	External
		40	60

- To introduce the various method of experimental physics
- To gain the knowledge of physics principles
- To impart the creative skills among the industrial applications

Course Outcomes

On the successful completion of the course, the student will be able to

CO Number	CO Statement	Knowledge Level
CO1	Recall the principles of Wheatstone bridge and apply with P.O box.	K1
CO2	Understand the experimental knowledge of Potentiometer and its applications	K2
CO3	Apply the theoretical ideas of Ballistic Galvanometer	K3
CO4	Understand the applications of Spectrometer.	K2
CO5	Develop the understanding of resonance circuits	K3

Mapping with program outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	S	S	M	M	M

List of experiments

- 1. P.O.Box Temperature coefficient.
- 2. Carey Foster's Bridge R and p
- 3. Spectrometer i-d curve
- 4. Potentiometer Temperature coefficient of R
- 5. Spectrometer Grating Normal incidence
- 6. Potentiometer -x of thermistor.
- 7. Potentiometer High range voltmeter calibration.
- 8. Series and Parallel resonance circuits
- 9. Ballistic Galvanometer Figure of merit.
- 10. B.G. Absolute capacity of condenser.

Text Books

S.No	Authors	Title of the	Publishers	Year of	Edition
		book		publication	
1.	Dr.S.Somasundaram	Practical Physics	Apsara publications, Tiruchirappalli	2012	Revised
2.	R. Sasikumar	Practical Physics	PHI Learning Pvt. Ltd, New Delhi	2011	Revised

Reference Books

S.No	Authors	Title of the	Publishers	Year of	Edition
		book		publication	
1.	S.Srinivasan	A Text Book	S.Sultanch and	2001	Revised
		of Practical	publications		edition
		physics			
2.	Department of Physics	Practical	St.Joseph's	2011	Revised
		Physics,	College,		edition
			Tiruchirapalli		
			_		

Pedagogy

Demonstration and practical sessions

Course Designer

Dr R. Meenakshi

SECOND ALLIED COURSE – II

ALLIED CHEMISTRY-II

2019-2020 ONWARDS

Semester-IV		Hours	/Week-4
Second Allied Course-II	ALLIED	Cre	edit-4
Course Code-19UPH4AC5	CHEMISTRY – II	Internal	External
		25	75

Objectives

- > To stimulate the concepts in basic chemistry and apply them in real world problems.
- > To learn the fundamental concepts of nuclear chemistry and photochemistry
- > To study the structure and properties of carbohydrates.

COURSE OUTCOMES

СО	CO statement	Knowledge level
CO 1	Recall the properties and applications of carbohydrates, amino acids and proteins	K1
CO 2	Understand the basics of nuclear chemistry	K2
CO 3	Apply the basic concepts of photochemistry	К3
CO4	Analyze the concepts of electrochemistry and material science	K4

MAPPING OF CO WITH PO

CO	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	M	S
CO2	S	S	M	M	S
CO3	S	M	S	S	S
CO4	S	M	M	M	S

S-Strong; M-Medium

SEMESTER IV

ALLIED CHEMISTRY - II

2019-2020 ONWARDS

UNIT I: NUCLEAR CHEMISTRY

(12Hrs)

Nuclear chemistry: Fundamental particles of nucleus- isotopes – isotones - isotones - isomers-distinction between chemical and nuclear reactions - nuclear stability - n/p ratio - nuclear forces-nuclear fission - fusion reaction- radioactive series- units of radioactivity - half life and average life - types of nuclear reactor - safe handling of radio isotopes - atomic energy programmes in India - applications of radio isotopes

UNIT II: CARBOHYDRATES, AMINOACIDS AND PROTEINS

(12Hrs)

Carbohydrates: classification - glucose and fructose - preparation and properties - structure of glucose only - Fischer and Haworth cyclic structures- amino acids and proteins: - classification based on structure - essential and non - essentials amino acids -preparation - properties and uses - peptides-proteins-classification based on physical properties and biological functions - structure of proteins - primary and secondary structure (elementary treatment).

UNIT III: PHOTO CHEMISTRY

(12Hrs)

Photochemistry: Introduction - Photosynthesis - comparison between thermal and photochemical reactions - Beer-Lambert law - Grotthus-Dropper law - Einstein's law of photochemical equivalence - quantum yield - Hydrogen-chlorine reaction (elementary idea only) - Jablonski diagram - photo process - phosphorescence - fluorescence - photosensitization - quenching - thermo luminescence - bio-luminescence - chemiluminescence- significances of photochemical process

UNIT IV:ELECTROCHEMISTRY& MAGNETIC PROPERTIES OF MATERIALS (12Hrs)

Galvanic cells - emf - standard electrode potential - reference electrodes - electrochemical series and its applications - corrosion and methods of prevention-galvanization, electroplating and cathodic protection. Magnetic properties of molecules: types of magnetic behavior- dia – para - ferro - antiferro magnetism - magnetic susceptibility - determination of magnetic moment using Guoy balance-applications of magnetic measurements.

Ferrous and non-ferrous alloys- composition of glass and ceramics - Conductive polymers-types-synthesis and application- Biomedical applications of polymers- contact lens- dental polymers - artificial heart - kidney - skin and blood cell - water absorbing polymers- fiber reinforced composites - applications of grapheme - quantum dots - gold nano particles.

TEXT BOOKS

S.No	Author name	Year of	Title of the book	Publisher name
		Publication		
1	Puri B R, Sharma L R,	1993	Principles of Inorganic	Shoban lal Nagin
	Kalia K K,		chemistry	Chand&Co.,
2	Madan R D	2000	Modern Inorganic	S.Chand and Company
			Chemistry	Ltd.,
3	Soni P.L.	2006	Text Book of organic	S. Chand & Co, New
			Chemistry	Delhi
4	Bahl B S and Arun Bahl	1997	Advanced Organic	Sulthan Chand and Co
			Chemistry	
5	Puri B.R. Sharma L.R.	2013	Principles of Physical	35 th edition,
	and Pathania M.S.		Chemistry	New Delhi: Shoban Lal
				Nagin Chand
6	Arnikar	1995	Elements of nuclear	New Age Publication
			chemistry	
7	S L Kakani, Amit	2016	Material Science	New Age International
	Kakani			Private Limited

REFERENCE BOOKS

S.No.	Author name	Year of Publication	Title of the book	Publisher name
1	Gopalan. R	2012	Text Book of Inorganic Chemistry	2nd Edition, Hyderabad, Universities Press, (India)
2	Morrison R.T. and Boyd R.N., Bhattacharjee S. K.	2011	Organic Chemistry	7th edition, Pearson India,
3	William D. Callister, Jr., David G. Rethwisch	2018	Materials Science and Engineering	John Wiley & Sons, Limited,

Pedagogy

Chalk and Talk, Power point Presentation, Group discussion, Seminar, Interaction, Problem solving

Course Designers

- ❖ Ms. N.Anusuya, Assistant Professor, Department of Chemistry
- **Dr. K.Shenbagam**, Assistant Professor, Department of Chemistry

Semester-IV		Hours/W	eek-2
Non Major Elective – II	AUDIO AND VIDEO SYSTEM	Credits-2	
Course Code-19UPH4NME2		Internal 25	External 75

- The state of the art in Audio and Video system will enable the students to comprehend concept s of modern electronic system.
- The knowledge acquired by students will help them to become familiar with concepts of audio and video systems.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
number		
CO 1	Describing the basic idea in audio and video.	K1
CO 2	Identifying the audio devices.	K2
CO 3	Identifying the types of signals, correction in signals and know the transmission techniques.	K2
CO 4	Understanding the video section fundamentals.	K2
CO 5	Understanding the Gain and noise cancelling.	K2

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	L	L	M
CO2	S	L	L	M
CO3	S	L	L	M
CO4	S	L	L	M
CO5	S	L	L	M

NON MAJOR ELECTIVE – II

AUDIO AND VIDEO SYSTEM

Syllabus

UNIT I: Characteristics of Sound

6hrs

Nature of Sound - Pressure and Intensity of sound waves - Sensitivity of human ear for sound Frequency of Sound waves-Resonance effect in sound systems-Helmholtz resonator-Reflection and diffraction of sound waves.

UNIT II: Audio Devices 8 hrs

Microphones: Introduction-Characteristics of a Microphone - Requisites of a Good Microphone- Moving Coil Microphone-Ribbon Microphone-Carbon Microphone-Comparisons of Various Types of Microphones- Precautions while Using Microphones.

Loudspeakers: Characteristics of Loudspeakers-Moving Coil Cone Type Loudspeaker-Electrodynamics Loudspeaker.

UNIT III: Digital Transmission And Coding Techniques

5 hrs

Introduction-Return to Zero and Non-Return to Zero- Unipolar and Bipolar Signals- ASK Format-PSK Format-FSK Format.

UNIT IV: Video Section Fundamentals

5 hrs

Picture Reproduction - Video amplifier Requirements - Video amplifiers - Basic Video Amplifier Operation.

UNIT V: Automatic Gain Control and Noise Cancelling Circuits

6 hrs

Advantages of AGC-Types of AGC-Various AGC Systems-Peak AGC Systems- Keyed AGC Systems-Delayed AGC Systems- AGC adjustments- Noise cancellation.

Text books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	N Subrahmanyam &Brijlal	A Text book of Sound	Vikas Publication House	2018	2 nd
2.	R.L.Saighal	A Text book of Sound	S.Chand & Co	2005	Revised Edition
3.	V.K. Meta Rohit Meta	Principles of electronics	S.Chand & Co	1995	Revised Edition
4.	R.R.Gulati	Monochrome And Colour Television	New Age International	1983	Reprint,2001

Reference

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	R.G.Gupta	Audio and Video Systems	Mc Graw Hill Education Limited	2011	2 nd

Pedagogy:

Chalk and talk, Assignment, power point presentation

Course Designer:

Ms. R.A.KIRUTHIKA

Semester-IV		Hours/W	eek-2
Skill Based Elective – I	BIOMEDICAL INSTRUMENTATION Credits-2		,
Course Code-19UPH4SBE1A		Internal 25	External 75

- To provide fundamental ideas of Biomedical instrumentation
- To acquire knowledge in medical imaging systems

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
number		
CO 1	Tell the fundamental principle and working of the	K1
	biomedical instruments system	
CO 2	Explain about types of electrodes	K2
CO 3	Illustrate about Instrumentation recording and monitoring.	K2
CO 4	utilize knowledge in electrical safety in medical environment	K3
CO 5	outline the basic principles in imaging techniques	K2

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	M	S
CO2	M	S	M	M	M
CO3	S	M	S	M	S
CO4	M	M	M	S	M
CO5	M	M	S	M	S

SKILL BASED ELECTIVE - I A

BIOMEDICAL INSTRUMENTATION

Syllabus

UNIT I: Fundamentals of Medical Instrumentation

6 hrs

Role of Technology in Medicine – Basic medical instrumentation system – Performance requirements of medical instrumentation systems – PC-based medical instruments – Consumer and portable medical equipment – Micro-Electro-Mechanical Systems (MEMS) – General constraints in design of medical instrumentation systems.

UNIT II: Electrodes and Transducers

6hrs

Origin of Bioelectric signals – ECG – EEG – EMG – Limb electrodes – Floating electrodes – Pregelled disposable electrodes – Electrodes for EEG and EMG – Micro electrodes – Transducer – Classification of Transducers (basic ideas only)

UNIT III: Biomedical Recorder and Foetal Monitoring Instruments

6 hrs

Electrocardiograph – Block diagram description of an Electrocardiograph – The ECG leads – Effects of artefacts on ECG recordings – Major challenges in Electrocardiograph design – Multichannel ECG machine – Cardiotocograph – Medical Ultrasound – Basic Pulse-Echo apparatus

UNIT IV: Patient Safety

6 hrs

Electric shock hazards – Gross shock – Effects of electric current on the human body – Microcurrent shock – Leakage currents – Types of leakage current – Precautions to minimize electric hazards – Testing of biomedical equipment

UNIT V: Modern Imaging Systems

6hrs

Computed Tomography – Basic principle –Contrast scale – Magnetic Resonance Imaging (MRI) system – Basic NMR components –Biological effect of NMR imaging – Advantages of NMR imaging system

Textbooks

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	R.S.Khandpur	Handbook of	McGraw Hill	2014	3 rd
		Biomedical	Education		
		Instrumentation			

Reference

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Leslie Cromwell, Fred J. Weibell, Erich Pfeiffer A	Biomedical Instrumentation and Measurement	Prentice hall of India	1997	2 nd
2.	M.Arumugam	Bio-Medical Instrumentation	Anuradha Agencies	2003	-

Pedagogy:

Chalk and talk, Assignment, power point presentation

Course Designer:

Ms. N.Manopradha

Semester-IV		Hours/W	eek-2
Skill Based Elective – I	PHOTOGRAPHY AND VIDEOGRAPHY	Credits-2	,
Course Code-19UPH4SBE1B		Internal 25	External 75

- To acquire knowledge in modern cameras, and find a recommendation for which one you should buy, if you are in the market for one.
- To provide fundamental ideas about camera lenses, exposure, and lighting

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
number		Level
CO 1	Knowledge and skills in the use of basic tools, techniques, technologies and able to acquaint with basic camera operations.	K1
CO 2	Understanding of special features and utility purposes of various types of lenses and able to choose an appropriate lens for the job concerned	K1
CO 3	Demonstrate uses of cameras and lighting/digital technologies.	K2
CO 4	Utilize the concept of correct exposure and identify correct and incorrect exposure in photographs.	К3
CO 5	Apply understanding of aesthetics related to shooting and editing.	К3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	M
CO2	M	S	M	M	M
CO3	M	M	S	M	S
CO4	M	M	M	S	S
CO5	M	M	S	S	S

SKILL BASED ELECTIVE - IB

PHOTOGRAPHY AND VIDEOGRAPHY

Syllabus

UNIT I: Introduction 3 hrs

Digital Photography – Advantages and Disadvantages – SLR – Aperture – Shutter Speed – ISO Sensitivity

UNIT II: Lenses 6hrs

Specialized Lenses – Telephoto Lens – Wide-Angle Lens – Lens Multiplication Factor - Zoom Lens – Prime Lens – Macro (or Close-Up) Lens – Fish-Eye Lens – Tilt And Shift Lenses

UNIT III: Composing the Picture: Light, Framing, Focus 9 hrs

Composing the Picture – Lighting – Framing – Focus – Downloading and Storing Your Photos

UNIT IV: Shooting video with DSLR

6 hrs

Fundamentals of the shoot – Exposure – Keeping the camera steady – Shooting to edit – Shooting Just Enough Variations – Watching and Learning from the Movies – Varying Focal Length – Mastering Shot Structure – Maintaining continuity between shots

UNIT V: Getting Creative with Shoot

6hrs

Controlling Aperture for Effect – Finding the Best Angle – Using Camera Filters – Tooling with Camera Effects – Using Time-Lapse Photography

Textbooks

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Brian Black	DSLR Photography for Beginners	Independently Published	2013	1 st
2.	John Carucci	Digital SLR Video & Filmmaking for Dummies	John Wiley & Sons, Inc.	2013	-

Reference

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Tom Clark	Digital Photography Composition for Dummies	John Wiley & Sons, Inc.	2011	-

Pedagogy:

Chalk and talk, Assignment, power point presentation

Course Designer:

Ms. N.Manopradha

Semester-V		Hours/W	eek-5
Core Course - V	OPTICS Credits-5		
Course Code-19UPH5CC5		Internal 25	External 75

- To understand the basic ideas of geometric optics
- To gain knowledge of the working of optical instruments.

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO 1	Outline the behaviour of light.	K2
CO 2	Explain the various types of aberration.	K2
CO 3	Demonstrate basic optical phenomena like interference, diffraction and polarization.	K2
CO 4	Predict optical elements and set-up basic experiments.	K3
CO 5	Apply the concepts of light.	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	L	S
CO2	S	M	M	S
CO3	S	S	M	S
CO4	M	M	M	S
CO5	S	S	S	S

S – Strong; M – Medium; L – Low

CORE COURSE – V OPTICS

Syllabus

UNIT -I: Geometrical Optics

18 hrs

Matrix method in ray optics - Effect of translation, refraction - Thick and thin lens formulae Unit planes-Nodal planes-System of two thin lenses.

Lens aberrations - Spherical aberrations of a single surface -Astigmatism - Curvature of field-Distortion -Abbe's sine condition - Chromatic aberrations.

UNIT- II: Interference 12 hrs

Fresnel's biprism, Fresnel's mirrors and Lloyd's single mirror experiments Achromatic fringes-Interference in thin films(from reflected and transmitted light) -Fringes in wedge shaped films - Reflective and antireflective coatings - Michelson's interferometer - Determination of wavelength and refractive index.

UNIT- III: Diffraction 15 hrs

Rectilinear propagation of light - Zone plate - Fresnel diffraction - Diffraction at circular aperture, circular disc and a straight edge - Fraunhofer diffraction - Diffraction at a single and double slit - Missing orders in double slit - Theory of diffraction grating - Determination of wavelength - Dispersive power - Rayleigh's criterion and resolving power of a prism, grating, telescope and microscope

UNIT- IV: Polarization 15 hrs

Plane of polarization -Polarization by reflection - Brewster's law -Pile of plates- Polarization by refraction - Malu's law -Double refraction - Nicol prism - Huygen's explanation of double refraction - Elliptically and circularly polarized light -Quarter and half wave plates - Production and determination of plane, elliptically and circularly polarized light - Optical activity - Fresnel's theory-Specific rotation-Laurent's half shade polarimeter

UNIT – V: Optical Instruments

15 hrs

Microscopes – Simple Microscope (Magnifying glass) – Compound Microscope – Ultra-Microscope – Eyepieces - Huygen's Eyepiece - Ramsden's Eyepiese — Comparison of Eyepieces – Telescope – Refracting astronomical telescope – Abbe Refractometer – Pulfrich refractometer - Photographic Camera – Prism binoculars.

Textbooks

S.No.	Author name	Title of the book	Publishers	Year of Publication	Edition
1.	Ajoy Ghatak	Optics	Tata McGraw Hill Co. (For Matrix methods)	2010	6 th Edition
2.	Dr. N. Subramaniyam, Brijlal and Dr.M.N. Avathanulu	Optics	S. Chand & Co. Pvt.Ltd., New Delhi	2016 (Reprint)	25 th Revised Edition

Reference books

S.No.	Author name	Title of the book	Publishers	Year of Publication	Edition
1	S.L.Kakani, K.C. Bhandari	A Text Book of Optics	S.Chand and Sons, New Delhi.	2002	2 nd Edition

Pedagogy

Lecture, Seminar, Interaction, Assignment, Debate, power point presentation.

Course Designer

Ms.D.Devi

Semester-V		Hours/Week-5	
Core Course - VI	ATOMIC AND NUCLEAR PHYSICS	Credits-5	
Course Code-19UPH5CC6		Internal 25	External 75

- To acquire the knowledge of Atomic Physics.
- To familiarize the concepts of nuclear Physics

Course Outcome

On the successful completion of the course, students will be able to:

Co	CO statement	Knowledge
Number		level
CO 1	Outline the knowledge of basic properties of Cathode rays and Tue rays. Calculate the values of e/m and Critical potential.	K2
CO 2	Extend the concept of vector atom model to draw the electronic configuration of atoms and the Periodic classification.	K2
CO 3	Apply the Quantum mechanical principles in Spectral transitions (Lande's g factor)	К3
CO 4	Utilize the interaction of particle and matter to Solve the problem in nuclear physics.	К3
CO 5	Analyze nuclear radio activities and Apply the concepts of radio isotopes in general field.	K4

Mapping with programme outcome

CO's	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	M	M
CO3	S	S	M	M	M
CO4	S	S	M	M	M
CO5	S	S	M	M	S

S-Strong; M-Medium; L-Low

CORE COURSE – VI

ATOMIC AND NUCLEAR PHYSICS

Syllabus

Unit -I: Cathode Rays and Tue Rays.

15 hrs

Cathode rays – properties – e/m of cathode rays – Milliken's oil drop method – Positive rays – Properties – e/m of Positive rays: Thomson's parabola method – Aston's Bain's bridge - Determination of critical Potential – Franck and Hertz's experiment - Davi's and Goucher method.

Unit- II: Vector Atom model

15 hrs

Various quantum numbers, L-S and j-j Couplings – Pauli's exclusion principle – electronic configuration of elements and periodic classification – magnetic dipole moment of electron due to orbital and spin motion – Bohr magnet ion stern and Gerlach experiment.

Unit - III: Fine structure of special lines

15 hrs

Special terms and notations – selection rules- intensity rule and internal rule – Fine structure of sodium D lines – Alkali spectra – Fine structure in Alkali spectra – spectrum of Helium – Zeeman effect - Larmor's theorem – Debye's quantum mechanical explanation of the normal Zeeman effect – Anamolous Zeeman effect – theoretical explanation - Lande's 'g' factor and explanation of splitting of D1 and D2 lines of sodium.

Unit - IV: Structure of Nuclei and Radioactivity

15 hrs

Basic properties of nuclei- Composition – Charge – Size - Rutherford's experiment for estimation of nuclear size- density of nucleus- Mass defect and Binding energy- Packing fraction- BE/A vs A plot, stability of nuclei (N Vs Z plot) and problems. Radioactive disintegration concept of natural and artificial radioactivity- Properties of α , β , γ -rays laws of radioactive decay-half-life- mean life (derivation not required)- units of radioactivity-successive disintegration and equilibriums - radioisotopes.

Unit - V: Particle accelerators and detectors

15 hrs

Linear accelerators- Cyclotron - Betatron - GM counter - Ionisation chamber

Nuclear Reactions: Types of Reactions and Conservation Laws - Concept of Compound and Direct Reaction - Q value equation and solution of the Q equation – problems - Fusion and fission definitions and qualitative discussion with examples.

Text Books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1	N.Subrahmanyam and Brijlal and seshan.	Atomic and nuclear Physics	S.Chand	2007	Revised edition
2	R.Murugesan Kiruthiga Sivaprasath	Modern Physics	S.Chand	2011	Revised edition
3	Beiser. Shobhit mahajan S.Rai Choudhury	Perspectives of Modern Physics	Tata McGraw Hill	2009	6 th edition

Reference Books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1	S.N. Ghosal	Atomic physics	S.chand	2007	Revised edition
2	S.N. Ghosal	Nuclear physics	S.chand	2008	Reprint

Pedagogy

Lecture with Discussion, Power point presentation, Group discussion and Seminars.

Course designer

Ms.S.Priya

Semester-V		Hours/W	eek-6	
Core Course - VII	ANALOG ELECTRONICS	Credits-5	Credits-5	
Course Code-19UPH5CC7		Internal 25	External 75	

- To acquire a diversified knowledge on semiconductors and diodes
- To impart the knowledge about the transistor characteristics in different configurations and different types of biasing
- To grasp the basic ideas of feedback and its application in amplifiers and oscillators

Course Outcome

On the successful completion of the course, the students will be able to:

CO	CO statement	Knowledge level
number		
CO1	Explain semiconductors, Rectifiers, and different types of diodes	K2
CO2	Outline the idea of field effect transistors and special semiconductor diodes	K2
CO3	Identify the operation of transistor and its characteristics	K3
CO5	Construct the various mathematical operations of operational amplifier	K3
CO4	Analyze the amplitude and frequency response characteristics of common amplification circuits.	K4

Mapping with Program Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	M	S	S	S
CO3	S	M	S	S	S
CO4	S	M	S	S	S
CO5	S	S	S	S	S

S-Strong; M-Medium; L-Low

CORE COURSE – VII

ANALOG ELECTRONICS

Syllabus

UNIT-I Semiconductors and Diodes

16hrs

Intrinsic and Extrinsic semiconductor-n-type semiconductor-p-type semiconductor-pn junction diode-Biasing of pn junction-Volt Ampere characteristics of pn junction -Rectifier-Half wave rectifier- full wave rectifier and full wave bridge rectifier-Zener diode-Characteristics of zener diode-Zener as a voltage stabiliser-Light Emitting Diode (LED)-Photo diode-LED-Tunnel diode-Varactor diode.

UNIT-II Transistors 16hrs

Circuit Analysis: Kirchoff's Current law (KCL)-Kirchoff's Voltage law (KVL)-Thevenin's theorem.

Transistor-Naming the transistor terminals-Transistor Action-Transistor Connections-Common Base connection- Common Emitter connection-Transistor load line analysis- Operating point-Faithful amplification-Transistor Biasing- stabilization-stability factor-Methods of transistor biasing- Base resistor method-Voltage divider bias method.

UNIT-III Amplifiers, Oscillators and Multivibrators

22hrs

Single stage Transistor amplifier-Practical Circuit of transistor Amplifier- D.C and A.C Equivalent circuits-Power amplifiers-Classification of Power Amplifiers-Expression for Collector Efficiency-Efficiency of Class A and Class B amplifiers- Push- pull amplifiers

Feedback-Negative voltage feedback in amplifier-Principle-Gain-Emitter Follower-Sinusoidal Oscillator-Types-Oscillatory Circuit- Positive feedback amplifier-Essentials-Barkhausen criterion-Colpitt's oscillator- Hartley oscillator - Phase shift oscillator- Wein bridge oscillator.

Multivibrators-Types of Multivibrators-Astable multivibrator-Monostable multivibrator- bistable multivibrator.

UNIT-IV Special Semiconductor devices

18hrs

Types of Field Effect Transistor-Junction Field Effect Transistor (JFET)-Difference between JFET and Bipolar Transistor-Metal Oxide Semiconductor FET (MOSFET)-Types of MOSFET-Silicon Controlled Rectifier (SCR)-V-I Characteristics of SCR-SCR as a switch-Triac-Diac-Unijunction Transistor (UJT)-UJT relaxation oscillator.

UNIT-V Operational Amplifiers

18hrs

Op-amp characteristics-Common mode rejection ratio (CMRR)-Inverting and Non inverting amplifier-Adder, Subtractor, Integrator, Differentiator-Voltage follower-Op-amp comparator-Log & antilog amplifier- Filters-low, high pass and band pass filters.

Text Books

S.No	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	V.K. Mehta & Rohit Mehta	Principles of Electronics	S.Chand.	2012	11 th edition
2.	D.Chattopadhyay, P.C. Raxshit, B. Sara and Purkait	Foundations of electronics	New Age International	2006	7 th edition
3.	V. Vijayendran	Introduction to Integrated Electronics	S. Viswanathan	2010	6 th edition
4.	S. Salivahanan N. Suresh Kumar	Electronic Devices and Circuits	McGraw Hill Education	2011	2 nd edition

Reference Books

S.No	Authors	Title of the book	Publishers	Year of	Edition
				Publication	
1.	Theraja. B.L	Basic electronics solid state	S.Chand	2012	Reprint
		solid state			(2012)
2.	Millman and	Integrated	Tata Mc	2008	48 th
	Halkias	Electronics			Reprint

Pedagogy

Lecture, Lecture with discussion, Technical quiz, Assignment

Course Designer

Ms. J. Aarthi

Semester-V		Hours/W	eek-3
Core Practical -V	PHYSICS PRACTICAL - V	Credits-3	
Course Code-19UPH5CC5P		Internal 40	External 60

- To apply the theoretical knowledge of spectral, electrical and physical aspects of materials through hands on learning experience.
- To impart the creative skills among the industrial applications

Course Outcomes

On the successful completion of the course, students will be able to:

Co Number	CO statement	Knowledge level
CO 1	Verify the Optical and Spectral Properties of prism and Grating	K1
CO 2	Apply the fundamental laws to determine the properties of the given material	K1
CO 3	Construct and Apply the principles of semiconductor Devices as vibrators, Amplifiers and Oscillators	K2,k3

Mapping With Programme Outcomes

CO's	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	M
CO2	S	S	M	S	M
CO3	S	S	M	S	S

S-Strong;**M**–Medium; **L**–Low

Syllabus

List of Experiments:

- 1. Spectrometer Grating dispersive power.
- 2. Spectrometer Cauchy's constants.
- 3. Field along the axis of a coil determination of M.
- 4. Koenig's method Uniform bending.
- 5. M and H Absolute determination using deflection and vibration magnetometer.
- 6. Regulated power supply using Zener diode Percentage of regulation.
- 7. Single stage RC coupled amplifier Transistor.
- 8. FET Characteristics.
- 9. Emitter follower.
- 10. Astable Multivibrator.
- 11. AND, OR and NOT gates using discrete components
- 12. Op Amp Adder and Subtractor.

Text Books

S.No.	Authors	Title of the book	Year of Publication	Publishers	Edition
1	Dr. S. Somasundaram,	Practical Physics,	2012	Apsara publications, Tiruchirapalli	Reprint
2	Department of Physics	Practical Physics, (B.Sc. Physics Main),	1998	St.Joseph's College, Tiruchirapalli	Reprint

Reference Books

:

S.No.	Authors	Title of the book	Year of Publication	Publishers	Edition
1	S. Srinivasan,	A Text Book of Practical physics	2005	S. Sultan Chand	Reprint
2	R. Sasikumar	Practical Physics	2011	PHI Learning Pvt. Ltd New Delhi,	Reprint

Pedagogy

Demonstration and practical sessions

Course Designers

- 1. Ms.S.Priya
- 2. Ms.A.Mary Girija

Semester-V		Hours/W	eek-5
Major Based Elective –I	MATERIALS SCIENCE	Credits-5	
Course Code-19UPH5MBE1A		Internal 25	External 75

- To develop the knowledge in material science and to understand the chemical structure and bonding between the molecules
- To gain cognition on the defects in materials
- To acquire the knowledge about the materials and its mechanical properties

Course Outcomes

On the successful completion of the course, students will be able to:

СО	CO statement	Knowledge
Number		level
CO1	Define the different types of crystal structure and bonding in solids,	K1
	and the physical ramifications of these differences. Give a type of	
	bond, be able to explain its physical origin as well as strength	
CO2	Explain out the different kinds of technological properties of	K2
	materials	
CO3	Classify the new materials in the material engineering and to	K2
	understand their role in materials behavior	
CO4	Identify the materials defects and given a simple set on explaining	К3
	the non – destructive testing in materials	
CO5	Explain the nuclear materials and uses of the materials in the space	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	S
CO2	M	S	S	M	M
CO3	M	M	S	S	S
CO4	S	M	S	M	M
CO5	M	S	S	M	M

Major Based Elective –I A MATERIALS SCIENCE

Syllabus

UNIT – I: Crystal Structure and Chemical Bonds

15 hrs

Introduction to crystals – Classification of crystal system – Introduction to Bravais lattice – Lattice planes and Miller indices – Interplanar spacing in a cubic lattice – Cubic lattice – SC – BCC – FCC – Sodium chloride and Diamond crystal structure – Bonding of solids (Ionic, Covalent, Metallic, Hydrogen and Vander Waal)

UNIT – II: Technological Properties

14 hrs

 $Introduction\ to\ material\ science-Classification\ of\ engineering\ materials-Structure-Property\ relationships\ in\ materials-Stability\ and\ metastability-Selection\ of\ materials-Weldability-Machineability-Formability-Castability\ .$

UNIT – III: New Materials and Phase Transformation in Materials

11 hrs

Metallic glass – Fiber reinforced materials – Metal matrix composites – SAW materials – Biomaterials – Ceramics.

Nucleation and Growth - solidification - Allotropic transformation - isothermal transformation - martensitic transformation - phase transformation in alloy steels.

UNIT –IV: Mechanical Properties and Non Destructive Testing

20 hrs

Fundamental Properties – Fatigue – Creep – Testing technique – Tensile – Compression – Hardness - Stress – Rupture – Elastic deformation – Fracture – Plastic deformation slip – Critical shear stress - Metals forming process – Deformation of crystals and polycrystalline materials.

Surface defect detection by NDT – Equipments using in NDT – Metallurgical microscope – Electron microscope – Scanning Electron Microscope(SEM) – Tunneling Electron Microscope (TEM) – Coolidge X-RAY tube – Production of ultrasonic waves – Magnetostriction ultrasonic generator – Piezo electric ultrasonic generator.

UNIT -V Materials for Nuclear and Space Applications

15 hrs

Nuclear fuels - fuel cladding- moderators, control materials -coolants - shielding materials - Space programme - structural material and their properties - system requirements - extreme high temperature materials - materials for thermal protection - pressure vessels - lubrication.

Text Books

S.No	Authors	Title of the Book	Publishers	Year of publication	Edition
1.	M.Arumugam	Material Science	Anuradha agencies, Kombakonam	2009	1 st edition
2.	V.Raghavan	Material Science and Engineering	Prentice Hall	1993	5 th edition
3.	S.K. Hayra Choudhury	Materials Science and Processes	Indian Book Distributing Co	1991	1 st edition

Reference Books

S.No	Authors	Title of the Book	Publishers	Year of publication	Edition
1.	S.O.Pillai	Solid State Physics	New Age International Private Limited	2005	6 th edition

Pedagogy

Chalk and talk, power point presentation, assignment, seminar, interaction, problem solving

Course Designer:

Ms.T.Noorunnisha

Semester-V		Hours/Week-5 Credits-5	
Major Based Elective –I	LASER PHYSICS		
Course Code-19UPH5MBE1B		Internal 25	External 75

- To gain knowledge in the basic of lasers, enhance comprehension in the principles of lasers
- To familiarize with the diverse applications of lasers.

Course Outcomes

On the completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define the interaction of radiation with matter	K1
CO2	Explain the basic principle of laser	K2
CO3	Characterize the different types of laser	K2
CO4	Summarize Properties of laser	K2
CO5	Apply the laser principle in various field	K3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4
CO1	S	S	M	M
CO2	S	M	M	M
CO3	S	M	M	M
CO4	S	M	M	M
CO5	S	M	L	S

Major Based Elective -IB LASER PHYSICS

Syllabus

UNIT I: Interaction of Radiation with Matter

15hrs

Introduction to electromagnetic radiation- wavelength- wave number- frequency- interaction of light with atoms and molecules-absorption- emission-kinetics of optical absorption-stimulated and spontaneous emission- intensity of spectral lines- line broadening mechanism.

UNIT II: Basic Principles of Laser

15hrs

Principle of lasers- population inversion-conditions of lasing action, characteristics of a laser coherence-monochromaticity- divergence- intensity- Einstein's co-efficients-laser pumping- two and three level laser systems.

UNIT III: Types of Lasers

15hrs

Solid state lasers-Ruby laser- Nd: YAG Laser- Semiconductor lasers- features of semiconductor lasers- diode lasers - Gas laser: He-Ne laser- CO₂ laser -liquid lasers: dye lasers and chemical lasers.

UNIT IV: Control of Laser Properties and Production

15hrs

Laser pumping-resonators- vibrational modes of resonators- number of modes per unit volumeopen resonators-control resonators- Q factor-losses in the cavity-threshold condition-quantum yield-mode locking (active and passive).

UNIT V: Applications of Lasers

15hrs

Lasers cutting – Welding – Drilling – Hologram – Recording and reconstruction of hologram-Lasers in Surgery – Lasers in ophthalmology – Lasers in cancer treatment -Optic fibre communication – Total internal reflection – Block diagram of fibre optic communication system – Advantages of fibre optic communication.

Text Books

S.No.	Authors	Title of the book	Year of Publicatio	Publisher name	Edition
			n		
1	B.B.Laud	Laser and	2011	New Age Interational	3 rd Edition
		Nonlinear			
		Optics			
2	K.Thyagarajan and	Lasers Theory	1986	Plenum Press	2 nd
	A.K.Ghatak	and			Edition
		Applications			

Reference books

S.	Author name	Title of the	Year of	Publisher	Edition
No.		book	Publication		
1	Seigman	Lasers	1986	Oxford University Press	3 rd Edition
2	O.Seelto	Principles of Laser	2010	Springer Publication	5 th Edition

Pedagogy

Chalk and talk, Power Point Presentation, Group discussion and Seminars, Animation video and Quiz

Course Designer:

Dr.R.Gayathri

	LOGISI III	eek-2
CONCEPTS THROUGH Cr	redits-2	
ATION - PRACTICAL In		External 60
	ATION DDACTICAL	2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

- To provide a basic skills in Simulation and Photoshop
- To Create a physics oriented animations using Flash package
- To expose the Photoshop tools to prepare physics oriented objects

Course Outcomes

On the successful completion of the course, the students will be able to:

CO	CO statement	Knowledge level
Number		
CO1	Develop the skills to simulate physics concepts	K3
CO2	Construct the animation of physics oriented objects using flash	К3
CO3	Construct the basic circuit diagram of physics using photoshop	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	M	S	S	S
CO3	S	M	M	S	S

S-Strong; M-Medium; L-Low

Skill Based Elective – II A PHYSICS CONCEPTS THROUGH ANIMATION

Syllabus

List of Practicals (Any 8)

- 1. Create and animate Shape Tween
- 2. Create an animation for bouncing a ball
- 3. Create an animation of Simple Pendulum
- 4. Create an animation of Atomic Model
- 5. Create an animation of Dispersion of Light
- 6. Create an animation of Projectile Motion
- 7. Create an animation of Law of Gravitation
- 8. Create an animation of Newton's Law
- 9. Create an animation of Kepler's law of ellipses
- 10. Draw a simple Physics Circuit

Text Books

S.No	Authors	Title of the book	Publishers	Year of	Edition
				Publication	
1.	Kogent Learning Solutions	Flash CS6 in	Dreamtech	2013	Revised
		simple Steps	Press		Edition
2.	DT Editorial Services	Photoshop CS6 in Simple Steps	Dreamtech Press	2018	New Edition

Reference Book

S.No	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Daven Brown and et.al.,	Web	Macmillion	1997	First
		Development for			Edition
		the Designer			

Web References

- 1. https://www.udemy.com/course/animation-in-flash/
- 2. http://www.floobynooby.com/flashcourseA.html

Pedagogy

Practical demonstration, Power Point Presentation

Course Designer

Ms. J. Aarthi

Semester-V		Hours/W	eek-2
Skill Based Elective - II	HOUSEHOLD APPLIANCES	Credits-2	
Course Code-	SERVICING - PRACTICAL	Internal	External
20UPH5SBE2BP		40	60

- To create knowledge about the basic safety practices.
- To provide basic knowledge about household appliances and its maintenance.

Course Outcomes

On the successful completion of the course, the students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Understand the working function of each household appliances	K2
CO2	Analyse the capacity power consumption for each appliance	К3
CO3	Identify the problems arises in household appliances	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	S	S
CO2	S	M	M	S	M
CO3	S	M	S	M	S

S-Strong; M-Medium; L-Low

Skill Based Elective – II B HOUSEHOLD APPLIANCES SERVICING - PRACTICAL

Syllabus

List of Practicals (Any 8)

- 1. Troubleshooting of Electric Short Circuits.
- 2. Repairing and maintenance of Tube Light.
- 3. Identification of problems in Ceiling Fan.
- 4. Troubleshooting of Iron Box.
- 5. TV Repair for beginners.
- 6. Rectifying problems in Induction Plate.
- 7. Troubleshooting of Geyser.
- 8. Repairing and maintenance of Air Conditioner.
- 9. Troubleshooting of Automatic Electric Dryer.
- 10. Rectifying problems in Smart Watches.

Text Books

S. No	Authors	Title of the book	Publishers	Year of Publication	Edition
				1 ublication	
1.	Eric Kleinert	Troubleshooting and	McGraw-Hill	2013	-
		Repairing Major			
		1 0 5			
		Appliances			
2.	Homer L.	Consumer Electronics	McGraw-Hill	1999	_
	Davidson	Troubleshooting			
		&Repair Handbook			

Reference Book

S. No	Authors	Title of the book	Publishers	Year of	Edition
				Publication	
1.	H. Brooke	Electrician's	McGraw-Hill	2007	Third
	Stauffer and	Troubleshooting and			Edition
	John E. Traister	Testing Pocket Guide			

Web Reference

https://www.galvinpower.org/how-to-fix-short-circuits/

Pedagogy

Demonstration and Practical Sessions

Course Designer

Ms. R. Mekala

Semester-V		Hours/W	eek-2
Skill Based Elective - III	WEB DESIGNING - PRACTICAL	Credits-2	
Course Code-		Internal	External
20UPH5SBE3AP		40	60

- To understand the basic concepts in web designing.
- To create and develop a web page.

Course Outcome

On the successful completion of the course, the students will be able to:

CO	CO statement	Knowledge
Number		Level
CO1	Discuss the basic ideas for create the web page	K2
CO2	Demonstrate the structure and working in a website programme	K2
CO3	Utilize the website	K3
CO4	Develop and design the web pages	К3
CO5	Illustrate formatting and linking website pages	K3

Mapping with Program Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	M	S
CO2	M	S	M	S	S
CO3	M	M	S	M	S
CO4	M	S	M	S	S
CO5	S	M	M	M	S

S-Strong; M-Medium; L-Low

SKILL BASED ELECTIVE-III A WEB DESIGNING -PRACTICAL

Syllabus

List of experiments (Any 8)

- 1. Create a web page to demonstrate font variations.
- 2. Create a web page illustrating text formatting tags.
- 3. Prepare a sample code to illustrate three lists in HTML.
- 4. Create a HTML page with 7 separate lines in different colors. State color of each line in its text.
- 5. Write the HTML code to form a table.
- 6. Create a web page using form elements.
- 7. Create your personal website.
- 8. Construct a HTML code to design your own Curriculum Vitae.
- 9. Create a website to explain the physics experiments.
- 10. Design a webpage using HTML for a scientific supplier.

Text Books

S.No	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Weixel, Fulton, Barkslade, Morse	Multimedia Basics	Eswar Press	2004	-

Reference Books

S.No	Authors	Title of the book	Publishers	Year of	Edition
				Publication	
1.	R. N. Srivastava	Web Technology	Global	2011	First edition
			Academic		
			Publishers &		
			Distributors		
2.	Daniel Gray	Web Design	Sun Rise	2000	First edition
		Fundamentals	Printers		
		Hand Book	Shahdara, Delhi		

Web References

https://www.w3schools.com/html

Pedagogy

Power Point presentation, Practical demonstration

Course Designer

Dr. B. Anitha

Semester-V		Hours/W	eek-2
Skill Based Elective - III	ELECTRICAL WIRING- PRACTICAL	Credits-2	
Course Code- 20UPH5SBE3BP		Internal 40	External 60

- To acquire an experience to handle basic electrical equipment.
- To impart knowledge on electrical wiring practically.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the fundamental concepts involving	K1
	electrical wiring	
CO2	Recognize basic electrical equipments.	K1
CO3	Explain domestic wiring procedures practically	K2
CO4	Construct different wiring system	K3
CO5	Build hands on experience to fabricate simple	K3
	electrical appliance at home.	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	L	S	S	M	M
CO2	M	S	S	M	M
CO3	S	M	S	S	M
CO4	M	S	S	S	S
CO5	M	M	S	S	M

S – Strong; M – Medium; L - Low

Skill Based Elective – III B ELECTRICAL WIRING- PRACTICAL

Syllabus

List of experiments (Any 8)

- 1. Replacement of a Fuse wire at home, Fitting of lamp in a lamp holder, Three pin plug connection.
- 2. Wire up a circuit in conduit system one lamp controlled by one switch.
- 3. Wire up a circuit in conduit system two lamps (in series) with one switch.
- 4. Wire up a circuit in conduit system two lamps (in parallel) with one switch.
- 5. Stair case lighting system using two-way switch.
- 6. Fluorescent Lamp Wiring.
- 7. Corridor wiring
- 8. Decorative serial LED light connection at home
- 9. Fabrication of Extension Board (One Switch & One Socket)
- 10. Residential house wiring using Switches, Fuse, Indicator, Lamp and Energy meter.

Text Books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Bawa H.S	Workshop Practice	Tata McGraw –	2007	-
			Hill Publishing		
			Company Limited,		
2.	Jeyachandran	A Primer on	Anuradha	2007	-
	K.Natarajan S. &	Engineering Practices	Publications		
	Balasubramanian S	Laboratory			
3.	Del Toro	Electrical	Pearson Education,	1989	Second
		Engineering	NewDelhi, .		edition
		Fundamentals			

Reference Book

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Jeyapoovan T., Saravanapandian	Engineering Practices Lab	Vikas Puplishing	2006	-
2.	M. & Pranitha S Kannaiah P. & Narayana K.L	Manual Manual on Workshop Practice	House Pvt.Ltd Scitech Publications	1999	-

Web References

- **1.** https://www.instructables.com/Serial-LED-Light-Using-Multi-Color-LEDs/
- 2. https://www.instructables.com/Make-Your-Own-Extension-Board/

Pedagogy

Demonstration and Practical sessions

Course Designer

Dr.T.Noorunnisha

Semester-VI
Core Course – VIII
Course Code-19UPH6CC8

DIGITAL ELECTRONICS AND MICROPROCESSOR FUNDAMENTALS

Hours/Week-5				
Credits-4				
Internal External				
25 75				

Objectives

- To acquire knowledge of the basic Logic gates and its combinational circuits.
- To understand the fundamentals of microprocessor programs.

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge
Number		Level
CO1	Classify different number system	K2
CO2	Analyze different methods used for simplification of Boolean expressions.	К3
CO3	Develop Combinational logic circuits.	K3
CO4	Develop synchronous and asynchronous sequential circuits.	K3
CO5	Utilize the knowledge of programming concepts of 8085 for various applications.	K4

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	L
CO2	S	S	S	S	S
CO3	S	S	M	S	S
CO4	S	S	S	S	S
CO5	S	S	S	M	L

S-Strong; M-Medium; L-Low

CORE COURSE – VIII

DIGITAL ELECTRONICS AND MICROPROCESSOR FUNDAMENTALS

Unit-I: Digital Electronics Fundamentals

20 hrs

Number Systems – Binary, Decimal, Hexa Decimal -Conversion from one number system to another - BCD code - Logic gates - AND, OR, NOT gates and its truth tables-NAND and NOR gates - Universal building blocks - Binary addition-subtraction-multiplication and division-complement- subtraction by l's and 2's complement forms.

Unit-II: Simplification of Logic Circuits

15hrs

Rules and laws of Boolean algebra - Demorgan's Theorems - Standard sum of product and product of sum forms -Min term and Max terms - Simplification of Boolean Expressions using Boolean Rules -Minimization Techniques for Boolean Expressions using Karnaugh Map(2,3 and 4 variables).

Unit-III: Combinational Circuits:

15 hrs

Half adder- full adder- Half subtractor - Full subtractor - 4-bit adder/subtractor- Decoder - Encoder Multiplexer - Demultiplexer - A/D conversion - Successive approximation method - D/A conversion - R-2R ladder network.

Unit-IV: Sequential Logic Circuits

20hrs

Flip Flops: Introduction to Sequential Circuits -Flip Flops – RS Flip Flop – Clocked RS Flip Flop D Flip Flop – JK Flip Flop – T Flip Flop – Triggering of Flip Flops – Master Slave Flip Flop

Shift Registers: Introduction to shift registers-Basic Shift Register Operations-Types of shift registers - SISO – SIPO – PIPO – PISO- Applications of Registers.

Counters: Introduction to counters -Types of Counters-Asynchronous and synchronous counters -Ring counter-Johnson's counter -Ripple counter-4 Bit Binary Up/Down counter-BCD counter-Applications of counters.

Unit-V: Microprocessor (INTEL 8085)

20 hrs

Introduction to microprocessor and microcomputer – Architecture of Intel 8085 – Address bus – Data bus – Control bus – Pin configuration – Flags – Instruction format – Types of instructions – Addressing modes – Assembly language programming – Programmes for addition, subtraction, complement- Largest and smallest from the given list- Ascending and Descending Order.

Textbooks

S.No	Authors	Title of the book	Publishers	Year of	Edition
				Publication	
1.	Donald P Leach,	Digital principles	McGraw-Hill Inc, US	1995	7 th Edition
	Albert Paul	and applications			
	Malvino and				
	Goutam Saha				
2.	V. Vijayendran	Digital fundamentals	S. Viswanathan Printers	2003	1 st Edition
			and Publishers Pvt. Ltd		
3.	Virendra Kumar	Digital electronics	New Age International	2007	2 nd Edition
		Theory and	Publishers		
		Experiments			
4.	B.Ram	Fundamentals of	Dhanpat Rai	1986	5 th Edition
		Microprocessor and	Publications, New Delhi		
		Microcomputers			

Reference books

S.No	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	Jacob Millman and Christo Halkias, Chetan D Parikh	Integrated Electronics	Mc. Graw Hill	2001	2 nd Edition
2.	Herbert Taub and Donald Schilling	Digital integrated electronics	Mc. Graw Hill	1977	2 nd Edition
3.	Ramesh S.Gaonkar	Microprocessor Architecture Programming, And Applications with the 8085.	Pearson Education	1984	5 th Edition

Pedagogy

Chalk and talk, Group Discussion, Seminar, Assignment, Power Point Presentation.

Course Designer

Ms.D.Devi

Semester-VI		Hours/W	eek-6
Core Course – IX	CLASSICAL AND QUANTUM PHYSICS	Credits-5	
Course Code-19UPH6CC9		Internal	External
		25	75

- To expose the students to the fundamentals of Theoretical Physics
- To provide the students with knowledge of the applications of Quantum Physics

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
	Define the concepts of Conservation Laws for a single particle,	
CO 1	D'Alembert's Principle, Lagrange's equation and it's applications.	K1
CO 2	Relate the different concepts of Hamilton's equation of motion.	K2
CO 3	Classify the types of classical concepts and explain the De Broglie's matter waves.	K2
CO 4	Identify the basic postulates of quantum mechanics.	К3
CO 5	Develop the knowledge about solvable quantum states.	К3

Mapping with Programme outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	M	M
CO3	S	S	S	M	M
CO4	S	M	M	M	M
CO5	S	S	M	M	M

CORE COURSE – IX

CLASSICAL AND QUANTUM PHYSICS

Unit – I: Elementary Principles of Classical Mechanics

18 hrs

Newtonian mechanics: Conservation laws for a single particle and a system of particles – Types of constraints – Generalized coordinates – D'Alembert's principle and Lagrange's equation of motion – Applications to : (a) Motion of one particle, (b) Atwood's machine and (c) bead sliding on rotating wire.

Unit - II: Hamiltonian Formalism

18 hrs

Variational principle and derivation of Hamilton's equation of motion —Principle of least action — Phase space — cyclic coordinates — conservation theorems: generalized momenta and energy.

Unit – III: Genesis of quantum transition

20 hrs

Inadequacy of classical concepts: Black body radiation - Planck's hypothesis - Photoelectric effect - Compton effect - de Broglie's hypothesis - matter waves - wave length, wave velocity and group velocity -Experimental evidences for de Broglie's matter waves: Davison and Germer experiment - G.P. Thomon's experiment - Heisenberg's uncertainty Principle.

Unit – IV: Basic formalism of quantum mechanics

18 hrs

Setting of Schrodinger wave equation – Plane wave solution - Probability interpretation of $\varphi \varphi$ * and conditions on wave equation – Eigenfunctions and eigenvalues – Expectation values Linear and hermitian operators and their properties - Postulates of quantum mechanics - Ehrenfest's theorem.

Unit – V: Exactly solvable systems

16 hrs

Free particle - Linear harmonic oscillator - Particle in a box -Rectangular barrier potential and tunnel effect -Rigid rotator - Hydrogen atom.

Text books

S. No.	Authors	Title of the book	Publishers	Year of Publication	Edition
	S.L. Gupta, V.	Classical	S.Chand & Company		
1.	Kumar and	Mechanics	Ltd	2012	Revised
1.	H.V.Sharma				
2.	R. Murughesan	Modern Physics	S. Chand & Company	2016	Revised
2.	K. Mulughesan	Wiodein i hysics	Ltd, New Delhi	2010	Revised
3.	G. Aruldhas	Classical	PHI Publisher	2008	Revised
3.	G. Afululias	Mechanics		2008	Reviseu

Reference books

S. No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1	Ajoy Ghotak and S. Loganathan	Quantum Mechanics: Theory and Applications	Mc.Graw Hill	1999	6 th
2	H.Goldstein	Classical Mechanics	Narosa Book distributors, New Delhi	1980	Revised
3	N.C.Rana and P.S.Joag	Classical Mechanics	Tata Mc. Graw Hill, New Delhi	1991	Revised
4	P M. Mathews and K. Venkatesan	A Text Book of Quantum Mechanics	Tata Mc.Graw Hill, New Delhi	1987	Revised

Pedagogy

Lecture, Seminar, Interaction, Assignment, Power Point Presentation.

Course Designer

Dr. M. Kavimani

Semester - VI		Hours/Week - 3	
Core Practical – VI	PHYSICS PRACTICAL - VI	Credit - 3	
Course Code - 19UPH6CC6P		Internal 40	External 60

- To apply the theoretical knowledge of Digital electronics and Microprocessor through hands on learning experience.
- To enhance the problem solving skills in Digital electronics and Microprocessor

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO statement	Knowledge level
CO 1	Apply the Microprocessor concept mathematical to obtain quantitative results for arithmetic progression	K1
CO 2	Demonstrate the Basic and the Universal gates	K2
CO 3	Construct and analyses the concepts of multiplexers, shift registers and counters.	K3
CO 4	Apply the concepts of digital electronics and verify the results	К3

Mapping with Programme Outcomes

CO's	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	M
CO2	S	S	M	S	M
CO3	S	S	M	S	M
CO4	S	S	M	S	S

S–Strong; M–Medium; L–Low

CORE PRACTICAL – VI PHYSICS PRACTICAL –VI

List of Experiments: Any Twelve

Section- A – Digital Electronics

- 1. AND, OR and NOT gates using IC's.
- 2. NAND as universal gate.
- 3. NOR as universal gate.
- 4. Half Adder and Full adder circuits using logic gates.
- 5. Half Subtractor and Full Subtractor circuits using logic gates.
- 6. Flip flops using gates.
- 7. Demorgan's theorem.
- 8. BCD to 7 segment decoder-7 segment Led display.
- 9. Digital to analog converter.
- 10. Analog to digital converter.

Section - B Microprocessor 8085.

- 1. 8-bit addition and 8-bit subtraction.
- 2. 8-bit multiplication and 8-bit division.
- 3. Conversion from decimal to hexadecimal system.
- 4. Conversion from hexadecimal to decimal system.

Text Books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1	Dr.S.Somasundaram	Practical Physics,	Apsara publications Tiruchirapalli	2012.	Reprint
2	Department of Physics	Practical Physics	(B.Sc Physics Main), St. Joseph's College, Tiruchirapalli.	1998	Reprint

Reference Books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1	S.Srinivasan, S.Sultan	A Text Book of Practical physics	Chand publications	2005	Reprint
2	R. Sasikumar	Practical Physics	PHI Learning Pvt. Ltd	2011	Reprint

Pedagogy

Demonstration and practical sessions

Course Designers

- 1. Ms. S.Priya
- 2. Ms. A.Mary Girija

Semester-VI		Hours/Week-5		
Major Based Elective – II	COMMUNICATION PHYSICS	Credits – 5		
Course Code- 19UPH6MBE2A		Internal 25	External 75	

- To acquire knowledge in basic concepts of communication systems.
- To learn about function of various communication systems.

Course Outcomes

On the successful completion of the course, the students will be able to:

CO	CO statement	Knowledge level
Number		
CO1	Outline the basic concepts of modulation	K1
	and demodulation	
CO2	Critique the ideas of radar system and its	K3
	applications	
CO3	Predict the parameters such as total internal	K3
	reflection, acceptance angle and numerical	
	aperture in order to formulate the optical	
	sensor	
CO4	Utilization of GSM, Cell, FAX, Modem and	K3
	Wi–Fi in mobile communication system	
CO5	Design and analysis of satellite	K4
	communication systems	

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	M
CO2	M	S	S	M	M
CO3	S	S	S	M	M
CO4	S	S	S	S	S
CO5	M	M	S	M	M

S–Strong; M–Medium; L–Low

MAJOR BASED ELECTIVE – II A

COMMUNICATION PHYSICS

UNIT- I: Radio Communication

16 hrs

Modulation – Need for modulation – Types of modulation – Modulation factor – Limitations of amplitude modulation – Frequency modulation – Comparison of AM and FM modulation – Demodulation – Essentials in demodulation – AM and FM radio receivers – Difference between FM and AM receivers.

UNIT-II: Radar Communication

13 hrs

Basic radar system – Radar range – Antenna scanning – Pulsed radar system – A-scope – Plan position indicator – Tracking radar – Moving target indicator – Doppler effect – MTI Principle – CW doppler radar – Frequency modulator CW Radar.

UNIT-III: Optical Fiber Communication

16 hrs

Structure of optical fiber – Principal and propagation of light in optical fiber – Total internal reflection – Acceptance angle – Numerical aperture – Types of optical fibers based on material – Number of modes – Refractive index profile – Fiber optical communication system – Fiber optic sensors.

UNIT- IV: Wireless Communication

15 hrs

GSM – Mobile services– Concept of cell – System architecture – Radio interface – Logical channels and frame hierarchy – Protocols – Localization and calling – Handover– Facsimile (FAX) – Application – VSAT (very small aperture terminals) – Modem – IPTV (internet protocol television) – Wi–Fi – 3G.

UNIT-V: Satellite Communication

15 hrs

Introduction to satellite communication system – Satellite orbits – Classification of satellites – Basic components of satellite communication – Constructional features of satellites – Satellite foot points – Satellite communication in India.

Text Books

S.No	Author name	Title of the book	Publisher name	Year of Publication	Edition
1.	Metha V.K	Principles of Electronics	S.Chand	2013	Reprint
2.	Anokh Singh and Chopra A.K	Principles of communication Engineering	S.Chand	2013	Reprint
3.	Mani I. P	A text book of Engineering Physics	Dhanam Publications	2014	Revised

Reference Books

S.No	Author name	Title of the book	Publisher name	Year of Publication	Edition
1.	Dennis Roddy, John Coolen	Electronic Communication	PHI	1990	3 rd Edition
2.	Gerd Keiser	Optical fiber communications	McGrw Hill	2000	Reprint
3.	William C.Y. lee	Cellular telecommunication	Tata Mcgraw hill	1991	2 nd Edition

Pedagogy

Lecture with Discussion, Power point presentation, Seminar, Assignment.

Course Designer

Dr. B. Anitha

Semester-VI	COMPUTATIONAL PHYSICS	Hours/Week-5	
Major Based Elective – II B		Credits – 5	
Course Code- 19UPH6MBE2B		Internal 25	External 75

- To solve the problems in physics using computational methods using MAT Lab.
- To Learn Scientific Word Processing using programming tools for preparing articles, papers etc. which include mathematical equations, picture and tables.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	To understand the basic programming techniques in MATLAB.	K1
	WITTEND.	
CO2	To address analytically intractable problem errors	K2
CO3	Create a user-interface graphics objects in MAT LAB	K2
CO4	To understand various numerical techniques	K2
CO5	To show how physics can be applied in a much broader context than discussed in traditional curriculum	K3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4
CO1	S	M	M	M
CO2	S	M	M	M
CO3	S	M	M	M
CO4	S	M	M	M
CO5	S	M	M	M

S - Strong; M - Medium; L - Low

MAJOR BASED ELECTIVE-II B COMPUTATIONAL PHYSICS

UNIT I: Need of Computational Tools

10hrs

Example of problems in physics requiring computational approach- Basic computer architecture and latest advancements - Introduction to MATLAB - MATLAB Features -Desktop windows-MATLAB help and demos - MATLAB Functions-operators and Commands-saving and Loading data.

UNIT – II: Error Analysis

15hrs

Need for error analysis-Definition of error - Absolute error - Relative error - Precision - Addition - Subtraction - Multiplication - Division - Error in numerical methods - Truncation error - Round off Errors - Error propagation in arithmetic operations - Error propagation in iterated algorithms - Methods for reducing error - Mean - Median - Mode - Standard deviation - Variance - Correlation.

UNIT – III: Matlab and Data Visualization

15hrs

Creation of arrays and matrices - Arithmetic Operations— Saving and Restoring- - Solution of simultaneous equations- MATLAB plot module — Import export data - Plotting graphs-1D plot — 2D plot — mesh — surf — 3D plots.

UNIT – IV: Numerical Methods using MAT Lab

15hrs

Roots of algebraic and transcendental equations – bisection method, Newton Raphson methodsolution of simultaneous linear equations by Gauss elimination methods- Interpolation – Lagrangian interpolation-Newton's interpolation-Numerical Integration: Trapezoidal, Simpson's method

UNIT -V: - Applications in Physics using MAT Lab

20hrs

Calculate time period using Simple Pendulum -Verify Hooke's Law - Falling object in one dimension - Two dimensional motion- Projectile motion - V-I Characteristics of Junction and Zener diode .

Text Books

S.No.	Authors	Title of the book	Year of	Publisher name	Edition
			Publicatio		
			n		
1	AmosGilat	MATLAB An introduction with Applications	2007	John Wiley & Sons	4 th Edition
2	Kincaid D. and	Numerical Analysis:	2009	AMS, University	Ist Edition
	Chenney W	Mathematics of Scientific		Press, Hyderabad	
		Computing			
3	Rizwann Butt	Introduction to Numerical	2008	Jones and Bartlett	Ist Edition
		Analysis using MATLAB		Publishers	
4	Sastry S.S	Introductory Methods of	2005	Prentice Hall of India	4 th Edition
		Numerical Analysis			
5	V.K.Mittal,	Computational Physics	2009	ANE Books	1 st Edition
	R.C.Verma &	_			
	S.C.Gupta				

Reference Books

S.No.	Author name	Title of the book	Year of	Publisher	Edition
			Publication		
1	Joel Franklin	Computational	2018	Cambridge University	1 st Edition
		Methods for		Press	
		Physics			
2	Gupta, Agarwal	Design And	2008	PHI Learning	2 nd
	and Varshney	Analysis of			Edition
	,	Algorithms			

Pedagogy

Chalk and talk, Group discussion and Seminars and Quiz

Course Designer:

Dr.R.Gayathri

Semester-VI	MEDICAL PHYSICS	Hours/W	eek-5
Major Based Elective – III		Credits – 4	
Course Code- 19UPH6MBE3A		Internal 25	External 75

- To gain knowledge in general concepts of human body mechanism.
- To understand the principles, features and applications of ECG, EMG and EEG

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO statement	Knowledge
number		level
CO1	List out the importance of physics in medicine.	K 1
CO2	Explain the concept of mechanics of a human body.	K2
CO3	Compare the principles of ECG EMG and EEG.	K2
CO4	Explain the production, types and application of lasers in medicine.	K2
CO5	Summarize the ultrasound imaging method and its application in medical field.	K2
CO6	Make use of medical imaging techniques in day today life.	К3

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	S
CO2	S	M	S	M	M
CO3	M	S	S	S	M
CO4	S	M	M	S	M
CO5	S	M	M	S	S
CO6	M	S	S	S	S

S-Strong; M-Medium; L-Low

MAJOR BASED ELECTIVE – III A

MEDICAL PHYSICS

UNIT - I: Mechanics of Human Body

15 hrs

Static, Dynamic and Frictional forces in the Body –Composition, properties and functions of Bone – Heat and Temperature – Temperature scales –Clinical thermometer –thermography – Heat therapy – Cryogenics in medicine– Heat losses from body – Pressure in the Body – Pressure in skull, Eye and Urinary Bladder.

UNIT-II: Medical Instrumentation

15 hrs

Measurements of Non electrical parameters-Respiration-heart rate-temperature-blood Pressure - Electrical activity of the heart-effect of electrified on cardiac muscles stimulation laws-Arhythmias its detection- principles of Electro cardiography, Electromyography-Electroencephalography- measurement and displaying and recording of ECG- features of EMG &EEG and their applications.

UNIT - III: Lasers in Medicine

15 hrs

Introduction to laser-principle and production of laser- effects of laser radiation on tissues, Different types of lasers- photo thermal effects, photochemical effects —photodynamic therapy, Laser applications in therapy and diagnosis-opthalmology, Fibreoptic endoscopy and dentistry. Laser as a beautician's tool-laser hazards-biological effects,

UNIT- IV: Medical Imaging Techniques

15 hrs

X-ray imaging-properties of X -rays- Production of X-rays-Planar X-ray imaging-instrumentation-γ-ray imaging-principle and working of single crystal scintillation camera (gamma camera) Magnetic resonance imaging-Introduction-ideas of NMR-Advantages- Clinical MRI, MRI instrumentation-Biological effect of NMR.

UNIT- V: Ultrasound Imaging

15 hrs

Ultrasound imaging- generation and detection of ultrasound - Properties -reflection - Transmission - attenuation - Ultrasound Transducers, Ultrasound instrumentation Mechanical and electronic probes-probes for external and internal use-Principles of A-mode-B-mode-M-mode-Scanning. Hazards and safety of ultrasound.

Textbooks

S.No	Authors	Title of the book	Publishers	Year of	Edition
				Publication	
1.	J.R.Cameron andJ.GSkofonick	Medical Physics	John Wiley &Sons	1978	1 st Edition
2.	R .W Wayanant	Lasers in Medicine	Plenum	2001	1 st Edition
3.	S .Webb	The physics of medical imaging	Hilger	1988	2 nd Edition
4.	R. S Khandpur	Handbook of Biomedical	Tata McGraw- Hill	1997	3 rd Edition
5.	S.Atheena Milagi Pandian	Instrumentation Biomedical Engineering	Amazon	2019	1 st Edition
6.	W.Mark Saltzman	Biomedical Engineering	Cambridge University Press	2009	1 st Edition

Reference books

S.No.	Authors	Title of the book	Publishers	Year of Publication	Edition
1.	O.Glasser	Medical Physics Volume 1-3	Chicago	1946	2 nd Edition
2.	Leslie Cromwell	Biomedical Instrumentation and measurement	Prentice hall of India	1999	2 nd Edition
3.	John G. Webster	Medical Instrumentation Application and Design	John Wiley and sons	1998	3 rd Edition

Pedagogy

Chalk and talk, Group Discussion, Seminar, Assignment, PPT.

Course Designer

Ms.A.Mary Girija

Semester-VI	
Major Based Elective – III	
Course Code- 19UPH6MBE3B	

ASTROPHYSICS AND COSMOLOGY

Hours/Week-5		
Credits – 4		
Internal 25	External 75	

Objectives

- To provide students with the basic knowledge about the theory and techniques of observational astronomy and physics of the astrophysical phenomenon.
- To Learn the the large scale structure of the Universe and its history

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define the major constituents of the universe and planets	K1
CO2	Explain the steelar astronomy	K2
CO3	Analyse the milky way galaxy	K2
CO4	Analyse the clusters in galaxy	K2
CO5	Derive the Big bang theory	К3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4
CO1	S	S	M	M
CO2	S	M	M	M
CO3	S	M	M	M
CO4	S	M	M	M
CO5	S	M	L	S

MAJOR BASED ELECTIVE-III B ASTROPHYSICS AND COSMOLOGY

UNIT I: Introductory astronomy

15hrs

History of Astronomy-Overview of the major constituents of the universe- Solar System-Planets - laws of motion of planets-inner planets- outer planets- Extra solar planets- Methods of detection of extra solar planets- Black body radiation-specific intensity- luminosity

UNIT II: Stellar astronomy

20hrs

<u>Measurement of stellar Parameters:</u> Stars-general Distances to stars - trigonometric parallax; Stellar brightness — luminosity- flux-apparent magnitude- magnitude system- distance modulus- colour index- extinction- colour temperature- effective temperature- spectral classification of stars.

<u>Stellar structure:</u> Equation of Hydrostatic equilibrium - Bounds on Pressure and temperature oin stars. Basics of radiative transfer emission coefficient- absorption coefficient-source function.

UNIT III: Evolution of stars

15hrs

<u>Stellar Evolition:</u> General idea of Main sequence. Quanlitative discussion on evolution away from Main sequence.

End Stage of Stars: White Dwarfs, Neutron stars- Estimating their Mass radii relation.

Binary stars: - visual binary, eclipsing binary - spectroscopic binary

UNIT IV: Galactic and Extragalactic astronomy

15hrs

Milky way- Hubble classification of galaxies-Spiral galaxies-Elliptical galaxies-Irregular galaxies- Dwarf galaxies-Masses of galaxies-Rotation curves of galaxies-Dark matter. Groups and clusters of galaxies- Interacting galaxies-

UNIT V: Cosmology

10hrs

Standard Candles (Cepheids and SNe Type1a), Cosmic Distance Ladder, Olbers Paradox, Hubble Expansion, Cosmological Principle, Newtonian Cosmology

Text Books

S.No.	Authors	Title of the book	Year of Publication	Publisher name	Edition
1	Shu F	The physical universe,	1982	Univ Science Book	1 st Edition
2	Bradley W. Carroll & Dale A. Ostlie	An introduction to Modern Astrophysics	2006	Pearson	2 nd Edition
3	IGNOU	Basics of Astronomy - IGNOU course book PHE-15 Astronomy and Astrophysics	2006	Neeraj Publications	1 st Edition

Reference Books

S.No	Author name	Title of the book	Year of	Publisher	Edition
			Publication		
1	Harwit M.	Astrophysical concepts	2000	Springer	2 nd Edition
2	G. B. Rybicki & Lightman A. P.	Radiative processes in Astrophysics	1986	Wiley-VCH	2 nd Edition

Pedagogy:

Chalk and talk, Power Point Presentation, Group discussion and Seminars, Quiz

Course Designer:

Dr.R.Gayathri