CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015 Certified

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS
AUTONOMOUS SYLLABUS
(2023-2024 and ONWARDS)

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

MISSION

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR B.Sc Mathematics, B.Sc Physics, B.Sc Chemistry PROGRAMME

After completing a B.Sc., programme, a learner will be able to

PO NO.	On completion of B.Sc Mathematics / B.Sc Physics / B.Sc Chemistry
	Programme, the students will be able to
PO1	DOMAIN KNOWLEDGE
	Analyse, design and develop solutions by applying from fundamental
	concepts of basic sciences and expertise in discipline.
PO2	PROBLEM SOLVING
	Ability to think abstractly, to evaluate and concentrates effectively on
	problem-solving, as well as knowledge of global challenges.
PO3	CREATIVE THINKING AND TEAM WORK
	Develop prudent decision-making skills and mobility to work in teams
	to solve multifaceted problems.
PO4	EMPLOYABILITY
	Self-study acclimatize them to observe effective interactive practices for
	practical learning enabling them to be a successful science graduate.
PO5	LIFE LONG LEARNING
	Assure consistent improvement in the performance and arouse interest
	to pursue higher studies in premium institutions.

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc MATHEMATICS

PSO NO.	The Students of B.Sc Mathematics will be able to	POs Addressed
PSO1	Procure a precise understanding of the mathematical concepts.	PO1, PO3
PSO2	Excel by enhancing interpersonal skills, overcoming procedural challenges and intending career paths.	PO3, PO4
PSO3	Recognize, strengthen and analyse mathematical problems in order to acquire better conclusion.	PO4, PO5
PSO4	Manipulate numerical abilities across a variety of domains.	PO2, PO5
PSO5	Develop and desire to learn more about advanced mathematics and its applications.	PO5

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS B.Sc MATHEMATICS PROGRAMME STRUCTURE

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS-LOCF)

(For the candidates admitted from the Academic year 2023-2024 Onwards)

er		(1 or the candidat	es admitted from the Academic	,		ĺ		Exan	n	7
ıest	Part	Conca Code Code Code Code Code Code Code Code				redi	Hrs.	Ma	rks	Total
Semester					Ins	C	H	Int	Ext	1
			பொதுத்தமிழ் - I	23ULT1						
			Hindi ka Samanya Gyan our	23ULH1						
	I	Language Course-I (LC)	Nibandh Poetry, Grammar and History	23ULS1	6	3	3	25	75	100
	1	Language Course-1 (LC)	of Sanskrit Literature	23UL31	0	3	3	23	13	100
			Foundation Course: Paper I-	23ULF1						
-			French I		_					100
	II	English Language Course – I (ELC)	General English-I	23UE1	6	3	3	25	75	100
I		Core Course – I (CC)	Algebra and Trigonometry	23UMA1CC1	4	4	3	25	75	100
		Core Course – II (CC)	Differential Calculus	23UMA1CC2	5	4	3	25	75	100
	III	First Allied Course – I (AC)	Mathematical Statistics	23UMA1AC1	5	4	3	25	75	100
		First Allied Course – II	Programming Language using	23UMA1AC2P	2	2	3	40	60	100
-		(AP) Ability Enhancement	MATLAB (P) Value Education	23UGVE	2	2	_	100		100
	IV	Compulsory Course-I	value Education	230011				100		100
		(AECC)								
	1			Total	30	22				700
			பொதுத்தமிழ் -II	23ULT2						
			Hindi Literature and Grammar-II	and 22ULH2						
	Ι	Language Course-II (LC)	Prose, Grammar and	23ULS2	6	3	3	25	75	100
			History of Sanskrit							
			Literature	22ULF2						
		English Language Course	Basic French-II	23UE2	6	3	3	25	75	100
	II	- II (ELC)	General English-II	23062	U	3	3	23	73	100
		Core Course – III (CC)	Differential Equations and Laplace Transforms	23UMA2CC3	4	4	3	25	75	100
II	III	Core Course – IV (CC)	Integral Calculus	23UMA2CC4	4	4	3	25	75	100
	111	Core Practical –I (CP)	Statistics with Excel (P)	23UMA2CC1P	2	2	3	40	60	100
		First Allied Course – III (AC)	Applied Statistics	23UMA2AC3	4	3	3	25	75	100
		Ability Enhancement		************				100		100
	IV	Compulsory Course-II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	1	100
	•	Ability Enhancement	Innovation and	2211CIE	2	1		100	1	100
1		Compulsory Course III					-		_	LUU
		Compulsory Course-III (AECC)	Entrepreneurship	22UGIE						
-		_ ·		22UGIE			C Re	comm		

CORE COURSE – I (CC)

ALGEBRA AND TRIGONOMETRY

(2023-2024 Onwards)

Semester I	Internal Marks	Exter	nal Marks:75	
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
CODE				
23UMA1CC1	ALGEBRA	CORE	4	4
	AND			
	TRIGONOMETRY			

Course Objective

- Basic ideas on the Theory of Equations, Matrices and Number Theory.
- Knowledge to find expansions of trigonometry functions, solve theoretical and applied problems.
- Understanding of how Hyperbolic functions can be used as a powerful tool in solving problems in science.

Course Outcomes

Course Outcome and Cognitive Level Mapping

	CO Statement	Cognitive
CO	On the successful completion of the course, students	Level
Number	will be able to	
CO1	Define and interpret on reciprocal equations	K1, K2
CO2	Illustrate the sum of binomial, exponential and	К3
	logarithmic series	
CO3	Compute Eigen values, eigen vectors, verify Cayley –	К3
	Hamilton theorem and diagonalize a given matrix.	
CO4	Determine the powers and multiples of trigonometric	K4
	functions in terms of sine and cosine.	
CO5	Evaluate the relationship between circular and	K5
	hyperbolic functions and the summation of	
	trigonometric series.	

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	2	3	3	3	2	2
CO2	3	3	3	2	2	3	2	2	2	2
CO3	3	3	3	3	3	3	2	2	2	2
CO4	3	2	3	3	2	3	3	3	2	2
CO5	2	2	3	2	2	3	3	2	2	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Reciprocal Equations - Standard form - To increase or decrease the roots of a given equation by a given quantity- Removal of terms- Horner's method – related problems.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Binomial Series— The following are the deductions from the Binomial Series - Approximations using Binomial Series- The Exponential Series - The Logarithmic series- related problems.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Inverse matrix -Characteristic equation – Eigen values and Eigen Vectors-Similar matrices - Cayley – Hamilton Theorem (Statement only) - Finding powers of square matrix, Inverse of a square matrix up to order 3, Diagonalization of square matrices - related problems.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Expansions of $\cos n\theta$ and $\sin n\theta$ - Expansion of $\tan n\theta$ in powers of $\tan \theta$ - Expansion of $\tan (A+B+C+)$ - Powers of sines and cosines of θ in terms of functions of multiples of θ , Expansions of $\cos^n \theta$, $\sin^n \theta$, $\sin^n \theta \cos^n \theta$ when n is a positive integer - Expansions of $\sin \theta$ and $\cos \theta$ in a series of ascending powers of θ - related problems.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Hyperbolic functions – Relation between circular and hyperbolic functions - Inverse hyperbolic functions - Logarithm of complex quantities - related problems.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Symmetric function of the roots - Partial Fractions- Rank of a matrix - To resolve into factors the expression $x^n - a^n, x^n + a^n$ - Summation of trigonometric series.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

1. Manicavachagom Pillay, T.K, Natarajan T, Ganapathy K S (2018). *Algebra, Volume I.* S.Viswanathan (Printers & Publishers), Pvt. Ltd.

- 2. Sudha S (1998). *Algebra, Analytical Geometry*(2D) and Trigonometry. Emerald Publishers.
- 3. Manicavachagom Pillay, T.K, Natarajan T, Ganapathy K S (2015). *Algebra, Volume II*. S.Viswanathan (Printers & Publishers), Pvt. Ltd.
- 4. Narayanan, S, Manicavachagom Pillay, T.K (2013). *Trigonometry*. S.Viswanathan (Printers & Publishers), Pvt. Ltd.

Chapters and Sections

UNIT-I Chapter VI: Sections 16-17,19, 30 [1]

UNIT-II Chapter I: Sections 1.1-1.5 [2]

UNIT-III Chapter II: Sections 8, 16 [3]

UNIT- IV Chapter III: Sections 1-5 [4]

UNIT- V Chapter IV: Fully [4]

Chapter V : Section 5 [4]

Reference Books

- 1. David C. Lay, *Linear Algebra and its Applications*, 3rd Ed., Pearson Education Asia, Indian Reprint, 2020.
- 2. Frank Ayres JR, *Theory and Problems of Plane and Spherical Trigonometry*, Schaum's Outline Series McGraw-Hill Book Company, 1954.
- 3. Vittal P.R, Malini V, *Algebra, Analytical Geometry and Trigonometry*, Margham Publications, 2010.

Web References

- 1. https://www.youtube.com/watch?v=0HwGGTdrBzg
- 2. https://www.youtube.com/watch?v=BydVprh9NgQ
- 3. https://www.youtube.com/watch?v=r-b4m2-yCt0
- 4. https://www.youtube.com/watch?v=IcBXhQNx4fY
- 5. https://www.youtube.com/watch?v=ZjBcmEeUWXg

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R.Divya

CORE COURSE – II (CC)

DIFFERENTIAL CALCULUS

(2023-2024 Onwards)

Semester I	Internal Marks: 25		External M	1arks:75
COURSE CODE	COURSETITLE	CATEGORY	Hrs /Week	CREDITS
23UMA1CC2	DIFFERENTIAL	CORE	5	4
	CALCULUS			

Course Objective

- **Explore** the basic skills of the students with mathematical methods formatted for their major concepts and train them in basic Differentiation.
- Analyze mathematical statements and expressions.
- **Evaluate** the fundamental concepts of differentiation, successive differentiation, and their applications.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students	Level
	will be able to	
CO1	Explain the concepts of Calculus.	K1, K2
CO2	Classify the problem models in the respective area.	К3
CO3	Solve various types of problems in the corresponding	K3
	stream.	
CO4	Identify the properties of solutions in the core area.	К3
CO5	Discover the applications of Calculus.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	2
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Successive Differentiation: Introduction (Review of basic concepts) — The n^{th} derivative — Standard results — Fractional expressions — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula for the n^{th} derivative of a product — A complete formal proof by induction.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
II	PartialDifferentiation:Partialderivatives— Successivepartialderivatives— Function of a function rule— Total differential coefficient— Aspecial case— Implicit Functions.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Partial Differentiation (Continued): Homogeneous functions – Partial derivatives of a function of two functions – Maxima and Minima of functions of two variables – Lagrange's method of undetermined multipliers.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Envelope: Method of finding the envelope – Another definition of envelope – Envelope of family of curves which are quadratic in the parameter – Family of curves will contain two parameters and the two parameters are connected by a relation.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Curvature: Definition of Curvature – Circle, Radius and Centre of Curvature – Cartesian formula for the radius of curvature – The coordinates of the centre of curvature – Evolutes and Involute – Radius of Curvature when the curve is given in Polar Co-ordinates	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self -Study for Enrichment: (Not included for End Semester Examination) Meaning of Derivative : Geometrical interpretation— Feynman's method of differentiation — Taylor's expansion of f(x,y) — p-r equation : pedal equation of a curve.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Book

1. Narayanan.S Manicavachagom Pillay.T.K. (2019). *Calculus Volume-I*. Ananda Book Depot.

Chapters and Sections

UNIT-I	Chapter III	Sections 1.1-1.6, 2.1,2.2
UNIT-II	Chapter VIII	Sections 1.1-1.5
UNIT-III	Chapter VIII	Sections 1.6, 1.7, 4, 5
UNIT-IV	Chapter X	Sections 1.1-1.4
UNIT-V	Chapter X	Sections 2.1-2.6

Reference Books

- 1. Rawat.K.S.(2006). *An Differential Calculus*.1st Edition, Daryaganj, Newdelhi-2:AdhyayanPulishers and distributors, j m d House, Murarlal stre.
- 2. Arumugam. S and Issac. (2014). Calculus. New Gamma Publishing House.
- 3. Bali. N.P. (2010). *Differential Calculus*. Laxmi Publications (P) Ltd. New Delhi.

Web References

- 1. https://www.youtube.com/watch?v=s8hVridQ5IA
- 2. https://freevideolectures.com/course/4224/nptel-integral-vector-calculus/34
- 3. https://www.youtube.com/watch?v=IQJ0UiM91Z4
- 4. https://www.youtube.com/watch?v=AXqhWeUEtQU
- 5. https://www.youtube.com/watch?v=j5VGo1n8KBY&list=PLpklqhIbn1jrI bgS6UckW39WE04bAFjOS
- 6. https://archive.nptel.ac.in/courses/111/104/111104095/

Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, Seminar, Assignment and Quiz.

Course Designer

Dr.L.Mahalakshmi

FIRST ALLIED COURSE -I (AC)

MATHEMATICAL STATISTICS

(2023-2024 Onwards)

Semester I	Internal Marks:2	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS
23UMA1AC1	MATHEMATICAL	ALLIED	5	4
	STATISTICS			

Course Objectives

- **Enable** in-depth knowledge of probability.
- **Explore** the concepts of some statistical data.
- Analyse the properties of discrete and continuous distributions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will	Level
	be able to	
CO1	Define the basic concepts in probability, some special	K 1
	distributions, and sampling distributions.	
CO2	Explain the properties of probability and the theory of	K2
	sampling distributions to find solutions of real-life	
	problems.	
CO3	Solve problems in probability, some special distributions and sampling distributions.	К3
CO4	Examine the given data and interpret the results	K4
CO5	Analyze probability, and various distributions in the case of solid conclusions about the values of the population parameter.	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	2
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1"-Slight (Low) Correlation"2" - Moderate (Medium) Correlation

[&]quot;3" - Substantial (High) Correlation" - "indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	Theory of Probability: Introduction – Short History – Definitions of Various Terms – Mathematical or Classical or 'a Priori' Probability –Statistical or Empirical Probability –Mathematical Tools: Preliminary Notion of sets–Sets and Elements of Sets – Operations on Sets – Algebra of Sets-Axiomatic approach to Probability–Random Experiment (Sample Space) – Event–Some Illustrations–Algebra of Events–Probability: Mathematical Notion – Probability Function – Laws of Addition of Probabilities–Extension of General Law of Addition of Probabilities–Law of Multiplication or Theorem of Compound Probability-Independent Events–Pair wise Independent Events–Mutually Independent Events–Baye's theorem.	15	CO1, CO2, CO3, CO4, CO5	1
II	Random Variables and Distribution Functions: Random Variable—Distribution Functions — Properties of Distribution Function—Discrete Random Variable —Probability Mass Function — Discrete Distribution Function— Continuous Random Variable —Probability Density Function—Various Measures of Central Tendency, Dispersion, Skewness and Kurtosis for Continuous Probability Distribution — Continuous Distribution Function — Joint Probability Mass Function and Marginal and Conditional Probability Function—Joint Probability Distribution Function—Joint Density Function, Marginal Density Function —The Conditional Distribution Function and Conditional Probability Density Function.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

III	Mathematical Expectation			
	Mathematical Expectation – Addition			
	Theorem of Expectation – Multiplication			
	Theorem of Expectation – Co-variance –		CO1,	K1,
	Expectation of a Linear Combination of		CO2,	K2,
	Random Variables –Variance of a Linear		CO3,	K3,
	Combination of Random Variables –	15	CO4,	K4
	Expectation of a Continuous random		CO5	
	variable – Conditional Expectation &			
	Conditional Variance.			
IV	Special Discrete Probability			
	Distributions: Introduction – Discrete			
	uniform Distribution – Bernoulli			
	Distribution: Moments of Bernoulli		CO1,	K1,
	Distribution-Binomial Distribution:		CO2,	K2,
	Moments of Binomial Distribution –		CO3,	,
	Recurrence Relation for the Moments of		CO4,	,
	Binomial Distribution – Factorial Moments	15	CO5	
	of Binomial Distribution–Mean Deviation			
	about Mean of Binomial Distribution–Mode			
	of Binomial Distribution –Moment			
	Generating Function of Binomial			
	Distribution – Additive Property of			
	Binomial Distribution.			
V	Special Continuous Probability			
	Distributions:			
	Introduction – Normal Distribution:			
	Normal Distribution as a Limiting Form		CO1,	K1,
	of Binomial Distribution-Chief		CO2,	K2,
	Characteristics of the Normal Distribution—	15	CO3,	K3,
	Mode of Normal Distribution-Median of		CO4,	K4
	Normal Distribution–M.G.F. of Normal		CO5	
	Distribution-Cumulant Generating Function			
	(c.g.f.) of Normal Distribution-Moments of			
	Normal Distribution –A Linear Combination			
	of Independent Normal Variates -Fitting of			
	Normal Distribution.			
VI	Self-Study for Enrichment: (Not included		CO1,	K1,
	for End Semester Examinations)		CO2,	K2,
	Extension of Multiplication Law of	-	CO3,	K3,
	Probability— Independent Random Variables		CO4,	K 4
	-Generating Functions- Poisson distribution		CO5	
	–Exponential Distribution.			

Text Books

- 1. Gupta.S.C. & Kapoor.V.K (2018), *Elements of Mathematical Statistics*, Sultan Chand & Sons, New Delhi.
- 2. Gupta. S.C & Kapoor.V.K (2014), *Fundamentals of Mathematical Statistics*, Sultan Chand & Sons, New Delhi.

Chapters and Sections

UNIT-I Chapter 4: Section 4.1 to 4.8 (omit 4.7.1) [1]

UNIT-II Chapter 5: Sections 5.1 to 5.5.3, 5.5.5 [1]

UNIT-III Chapter 6: Sections 6.1 to 6.8 [1]

UNIT-IV Chapter 8: Sections 8.1 to 8.3, 8.4 (8.4.1 to 8.4.7) [2]

UNIT-V Chapter 9: Sections 9.1 and 9.2 (9.2.1 to 9.2.8, 9.2.14) [2]

Reference Books

- 1. Pillai.R.S.N & Bhagavathi (2008) *Statistics, Theory and Practice*, S.Chand & Sons.
- 2. Bhishma Rao.G.S.S (2011), *Probability and Statistics*, Scitech Publications (India) Pvt Ltd.
- 3. Veerarajan.T (2010), *Probability, Statistics and Random Processes*, Tata McGraw Hill Education Private Limited.

Web References

- 1. https://www.youtube.com/watch?v=ZKkiCC6uCaU&list=PLpEFfNAthorfHz
 https://watch?v=ZKkiCC6uCaU&list=PLpEFfNAthorfHz
 https://watch.com/watch?v=ZKkiCC6uCaU&list=PLpEFfNAthorfHz
 https://watch.com/watch?v=ZKkiCC6uCaU&list=PLpEFfNAthorft]
 <a href="https://www.youtube.com/watch?v=ZKkiCC6uCaU&list=PLpEFfNAt
- 2. https://www.voutube.com/watch?v=imaZG6roVaU
- 3. https://www.voutube.com/watch?v=gHBL5Zau3NE
- 4. https://www.voutube.com/watch?v=3PWKOiLK41M
- 5. https://www.voutube.com/watch?v=dOr0NKvD310
- 6. https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/uniform-distribution/

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designers

- 1. Dr. S. Sasikala
- 2. Dr. R. Radha

FIRST ALLIED COURSE –II (AP)

PROGRAMMING LANGUAGE USING MATLAB (P)

(2023-2024 Onwards)

Semester I	Internal Marks: 4	10	External Marks: 60		
COURSE	COURSE TITLE	CATEGORY	Hrs	CREDITS	
CODE			/Week		
23UMA1AC2P	Programming	ALLIED	2	2	
	Language Using	PRACTICAL			
	MATLAB (P)				

Course Objective

- **Apply** MATLAB as a simulation tool.
- **Compute** mathematical solutions using MATLAB and develop interdisciplinary skills.
- **Determine** syntax, semantics, data-types and library functions of numerical computing.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will	Level
	be able to	
CO1	Explain fundamental concepts of MATLAB.	K2
CO2	Illustrate a great numbers of MATLAB commands and how to use them in programming and in many applications of Mathematics.	K2
CO3	Compute simple program for a given problem in MATLAB coding.	К3
CO4	Determine the result and the outcome of any command or script.	K4
CO5	Deduce Mathematical solutions using MATLAB tools.	K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

[&]quot;1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

Listings:

- 1. Operations using Matrices (Addition, Subtraction, Multiplication, Transpose and Inverse)
- 2. Basic plotting of variables (Simple and multiple data set).
- 3. Sorting of given data.
- 4. Finding the sum of 'n' numbers, sum of square of 'n' numbers, sum of 'n' odd numbers.
- 5. Finding the roots of a polynomial equation.
- 6. Solving system of equations using matrices.
- 7. Finding the Eigen vectors and Eigen values.
- 8. Generating Fibonacci series.
- 9. Vector operations.
- 10. Evaluation of integrals.
- 11. Finding the derivatives of given order.
- 12. Operations on sets.
- 13. Finding rank of a matrix.
- 14. Solving ordinary differential equations.

Web References

- 1. https://www.youtube.com/watch?v=EF4wmV5xBM0
- 2. https://www.youtube.com/watch?v=XsrhAO3r3VY
- 3. https://www.youtube.com/watch?v=aEjeuj5jfLU
- 4. https://www.youtube.com/watch?v=ZBafH5fss1E
- 5. https://www.youtube.com/watch?v=XtiAC4adozQ
- 6. https://www.youtube.com/watch?v=kt8QSkt-M6c
- 7. https://www.youtube.com/watch?v=pi6Dkvs6rP4
- 8. https://www.youtube.com/watch?v=YzEp0jiVyYs
- 9. https://www.youtube.com/watch?v=LFoutvnfP6A
- 10. https://youtu.be/rqWPw21E90A
- 11. https://youtu.be/CUdL4-tJy58

Pedagogy

Power point presentations, Live Demo, Hands on Training.

Course Designer

Dr. C. Saranya

CORE COURSE – III (CC) DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS (2023-2024 Onwards)

Semester II	Internal Marks	s: 25	External Marks:75		
COURSE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS	
CODE					
23UMA2CC3	DIFFERENTIAL	CORE	4	4	
	EQUATIONS				
	AND LAPLACE				
	TRANSFORMS				

Course Objective

- **Explain** the basics of Ordinary Differential Equations.
- **Evaluate** in the field of Partial Differential Equations.
- **Explore** the mathematical methods formatted for major concepts.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students	Level
	will be able to	
CO1	Explain various notions in ODE, PDE, Laplace transforms.	K1, K2
CO2	Classify the problem models in the respective area.	К3
CO3	Identify the properties of solutions in the field of mathematics.	К3
CO4	Solve various types of problems involving differential equations.	К3
CO5	Analyze the applications of the Differential equations in practical life.	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Equations of the first order but of higher degree: Equations solvable for dy/dx - Equations solvable for y - Equations solvable for x - Clairaut's form - Extended form of Clairaut's form - Exact differential equations - Conditions of integrability of M dx + N dy = 0 - Practical rule for solving an exact differential equation - Rules for finding integrating factors - simple problems.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
II	Linear equations with constant coefficients: Definition — The operator D — Complementary function of a linear equation with constant coefficients — Particular integral — General method of finding P.I. — Special methods for finding P.I. of the forms e ^{ax} , cos ax or sin ax, e ^{ax} V, x ^m — Linear equations with variable coefficients — Methods of finding particular integrals — Method of Variation of Parameters.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Partial differential equations of the first order: Classification of Integrals – Derivation of partial differential equations – By elimination of constants – By elimination of an arbitrary function – Lagrange's method of solving the linear equation – Special methods for some standard forms $F(p,q) = 0, F(x,p,q) = 0, F(y,p,q) = 0, F(z,p,q) = 0, f_1(x,p) = f_2(y,q)$ Clairant's form – Equations reducible to the	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	standard forms – Charpit's method . Laplace transforms: Definition – Piecewise continuity – Sufficient conditions for the existence of the Laplace Transforms – Basic results – Laplace Transform of periodic functions – Some general theorems & simple applications – Evaluation of certain integrals using Laplace Transform.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Inverse laplace transforms: The Inverse Transforms –Modification of results in Laplace Transform to get the inverse Laplace Transform - Use of Laplace Transforms in solving ODE with constant coefficients – The Laplace transform can also be used to solve systems of differentiable equations- Laplace transforms can be used to solve differential equations with variable coefficients.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

VI	Self Study for Enrichment: (Not included for End Semester Examination) Equations that do not contain x explicitly- Equations that do not contain y explicitly - Special method of evaluating the P.I. when X is of the form x m -Solving of few standard forms from Charpit's method - Certain equations involving integrals can	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
	also be solved by Laplace transform.			

Text Books

1. Narayanan, S and Manicavachagom Pillay, T.K (2016). *Differential Equations And Its Applications*. S.Viswanathan Publishers Pvt. Ltd.

Chapters and Sections

UNIT-I Chapter IV: Sections 1-3.

Chapter II: Section 6.

UNIT-II Chapter V: Sections 1-5 (Omit 5.5).

Chapter VIII: Section 4.

UNIT-III Chapter XII: Sections 1-6.

UNIT- IV Chapter IX: Sections 1-5.

UNIT- V Chapter IX: Sections 6-10.

Web References

- Raisinghania M.D. (2008). Ordinary and Partial Differential Equations. S. Chand
 & Company.
- 2. Zafar Ahsan.(2006). Differential Equation and Their Applications (Second Edition). Prentice Hall of India Private Limited.
- 3. Dr.S.Arumugam, A Thangapandi Isaac (2014). Differential Equations and Applications. New Gamma Publishing House.

Web References

- 1. https://youtu.be/aYrsPeE7NLQ
- 2. https://youtu.be/913LV_0QDO0
- 3. https://youtu.be/JEyzQtRPnjk
- 4. https://youtu.be/2LyY4t0Gfvs?si=Bq9dFIA4dHSQdSRg
- 5. https://youtu.be/UzaBAA3VJOY?si=MUQxwUqrykVZzkSt

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R.Divya

CORE COURSE – IV (CC)

INTEGRAL CALCULUS

(2023-2024 Onwards)

Semester II	Internal Marks: 2	External Marks:75			
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDIT	
CODE				S	
23UMA2CC4	INTEGRAL	CORE	4	4	
	CALCULUS				

Course Objective

- Analyze the properties of definite integral and Reduction formulae.
- **Explore** the order of Integration, Triple Integrals, Beta and Gamma functions.
- Apply Geometrical Applications of Integration of area under plane curve.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Identify the integrals of algebraic, trigonometric and logarithmic	K1, K2
	functions and to find the reduction formulae.	
CO2	Solve multiple integrals and to find the areas of curved surfaces	К3
	and volumes of solids of revolution.	
CO3	Evaluate double and triple integrals and problems using change of	K4
	order of integration.	
CO4	Explain beta and gamma functions and to use them in solving	K5
	problems of integration.	
CO5	Discover the applications of Integral Calculus.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	3	2
CO2	3	2	3	3	2	2	2	3	3	3
CO3	3	3	3	3	3	2	3	2	2	2
CO4	3	2	3	3	2	3	3	3	2	2
CO5	3	3	3	3	3	2	2	2	3	3

"1" – Slight (Low) Correlation — "2" – Moderate (Medium) Correlation — "3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Integration:		CO1,	K1,
	Integration of rational algebraic functions		CO2,	K2,
I	- Rule(a), Rule(b), Rule(c) - Integration	12	CO3,	K3,
	of irrational functions – Case(i), Case(ii)		CO4,	K4,
	only.		CO5	K5
			CO1,	K1,
	Integration:		CO2,	K2,
II	Integration by parts – Reduction	12	CO3,	K3,
n	formulae – Bernoulli's formula.		CO4,	K4,
			CO5	K5
	Multiple Integrals:		CO1,	K1,
	Definition of the double integral –		CO2,	K2,
III	Evaluation of the double integral -	12	CO3,	K3,
	Double integrals in polar co-ordinates –		CO4,	K4,
	Triple integrals.		CO5	K5
	Improper integrals: Beta and Gamma		CO1,	K1,
	functions:		CO2,	K1, K2,
IV	Definitions – Convergence to $\Gamma(n)$ -	12	CO3,	K2, K3,
1	Recurrence formula of Gamma functions	12	CO4,	K4,
	 Properties of Beta functions - Relation 		CO5	K5
	between Beta and Gamma functions.			
	Geometrical Applications of		CO1,	K1,
**	Integration:	10	CO2,	K2,
V	Areas under plane curves: Cartesian co-	12	CO3,	K3,
	ordinates – Area of a closed curve –		CO4,	K4,
	Areas in polar co-ordinates.		CO5	K5
	Self -Study for Enrichment: (Not included for End Semester			
	Examination)			
			CO1,	K1,
	Integration of the form $\sqrt{ax^2 + bx + c}$		CO2,	K1, K2,
VI	and $(px+q)\sqrt{ax^2+bx+c}$ - Integration	_	CO3.	K3,
'-	as summation - Applications of multiple		CO4,	K4,
	integrals - Applications of Gamma		CO5	K5
	functions to multiple integrals –			
	Approximate Integration: Trapezoidal			
	rule.			

Text Book

1. Narayanan.S Manicavachagom Pillay.T.K. (2021). *Calculus Volume II*. Ananda Book Depot.

Chapters and Sections

UNIT-I Chapter 1 : Sections 7.1- 7.4, 8(Page No. 40-46)

UNIT-II Chapter 1 : Sections 12, 13, 14, 15.1.
UNIT-III Chapter 5 : Sections 2.1, 2.2, 3.1, 3.2, 4.
UNIT-IV Chapter 7 Sections 2.1 - 2.3, 3, 4.

:

UNIT-V Chapter 2 : Sections 1.1 - 1.4

Reference Books

1. Shanti Narayan & Mittal, P. K (2008). *Integral Calculus*, S. Chand & Company Ltd.

- 2. Singh. U. P. Srivastava, R. J & Siddiqui, N. H. (2011). A Text Book of Integral Calculus, Wistom Press.
- 3. Singh. J. P. (2014) Calculus, Ane Books Pvt. Ltd.

Web References

- 1. https://youtu.be/GIGJdvdrdhs?si=-zflb8uCpb7Aw0WT
- 2. https://youtu.be/ocgjfF2AboA?si=8NMu-wdGBn9Yij9F
- 3. https://youtu.be/5SuPKa3Q9BM?si=taJPIYim2zdBJqZA
- 4. https://youtu.be/rCQZjpoVJ-o?si=VCw5630f1FEcLRh-
- 5. https://youtu.be/xU1HBisdJJs?si=nChZzYPOKF8foCPT
- 6. https://math.mit.edu/~nehcili/data/mat136_integration.pdf
- 7. https://www.academia.edu/31132415/MA 210 lecture notes INTEGRAT ION_TECHNIQUES_pdf

Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, seminar,

Assignment and Quiz.

Course Designer

Dr. P. Sudha

CORE PRACTICAL –I (CP)

STATISTICS WITH EXCEL (P)

(2023-2024 Onwards)

Semester II	Internal Marks: 40	arks:60		
COURSE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
CODE				
23UMA2CC1P	STATISTICS	CORE	2	2
	WITH EXCEL	PRACTICAL		
	(P)			

Course Objective

- Understands the basic concepts in quantitative data analysis.
- **Apply** the technical knowledge to **interpret** and **solve** the problems.
- **Explore** the ideas of Excel in Statistics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive						
Number	On the successful completion of the course, students will							
	be able to							
CO1	Explore various statistical concepts in Excel.	К3						
CO2	Solve the different types of statistical problems using	К3						
	Excel.							
CO3	Make use of formulas, including the use of built-in	К3						
	functions.							
CO4	Compute Statistical data's using Excel.	К3						
CO5	Analyze the concepts of statistical methods and apply it to	K4						
	the real-life problems.							

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	1	2	3	2	2	2	3	2	2	2
CO2	1	2	3	2	2	2	3	2	2	2
CO3	1	2	3	2	2	2	3	2	2	2
CO4	1	2	3	2	2	2	3	2	2	2
CO5	1	2	3	2	2	2	3	2	2	2

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation – "-" indicates there is no correlation.

LIST OF PROGRAMS:

- 1. Arithmetic Mean, Geometric Mean and Harmonic Mean.
- 2. Median and Mode.
- 3. Quartile Deviation and Mean Deviation.
- 4. Standard Deviation and Co-efficient of Variation.
- 5. Moments and Kurtosis.
- 6. Fitting of a Binomial Distribution.
- 7. Fitting of a poisson distribution.
- 8. Karl Pearson's Co-efficient of correlation.
- 9. Rank Correlation.
- 10. Fit the regression line.
- 11. Test the hypothesis for the difference between two sample means.
- 12. Test the hypothesis for single proportion.
- 13. Test the significance of hypothesis using 't' test.
- 14. Test the significance of hypothesis using 'F' test.
- 15. Test the significance of hypothesis using chi-square test.

Web References

- 1. https://youtu.be/rRGJZp6GLsY
- 2. https://youtu.be/6dw3KNn0dYw
- 3. https://youtu.be/L9TiYC6tQmU
- 4. https://youtu.be/rAKu30EtVg8
- 5. https://voutu.be/GzUNF0PspYw
- 6. https://youtu.be/vqvBX0fe0S8
- 7. https://youtu.be/bcUW8kELOLw
- 8. https://youtu.be/sPgm9e8pDQM
- 9. https://youtu.be/7Y1g340tcbU
- 10. https://youtu.be/L a8Z0BVjyM
- 11. https://youtu.be/0Bjf8LKnSOA
- 12. https://youtu.be/BIS11D2VL_U

Pedagogy

Power point presentations, Live Demo, Hands on training.

Course Designer

Dr. C. Saranya

FIRST ALLIED COURSE – III (AC) APPLIED STATISTICS

(2023-2024 Onwards)

Semester II	Internal Marks: 25	External Marks:75			
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
CODE					
23UMA2AC3	APPLIED STATISTICS	ALLIED	4	3	

Course Objective

- **Define** the notion of measures of central tendency, measures of dispersion.
- **Explore** the fundamental concepts correlation and regression.
- **Apply** the idea of large sample tests and small sample tests in various fields.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Define measures of central tendency, correlation, regression, measures of dispersion, large and small sample tests.	K1
CO2	Explain the basic concepts of measures of central tendency, measures of dispersion, correlation, regression, large and small sample tests.	K2
CO3	Apply the various concepts of correlation, regression, measures of central tendency & dispersion and sampling tests for solving the problems.	К3
CO4	Solve the problems using measures of central tendency and dispersion, correlation, regression, large and small sample tests.	К3
CO5	Examine the given data and interpret the results.	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	3	3	3
CO2	3	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3	2	3	3
CO4	3	3	3	3	3	3	3	2	2	3
CO5	3	3	3	3	3	3	2	3	3	3

[&]quot;1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

[&]quot;3" – Substantial (High) Correlation — "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITI VE LEVEL
I	Measures of Central Tendency: Arithmetic Mean – Properties of Arithmetic Mean – Merits and Demerits of Arithmetic Mean – Weighted Mean – Median – Merits and Demerits of Median – Mode – Merits and Demerits of Mode – Geometric Mean - Merits and Demerits of Geometric Mean – Harmonic Mean - Merits and Demerits of Harmonic Mean – Selection of an Average – Partition Values.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
II	Measures of Dispersion: Measures of Dispersion – Range – Quartile Deviation – Mean Deviation – Standard Deviation and Root Mean Square Deviation – Relation between Standard Deviation and Root Mean Square Deviation – Different Formulae for Calculating Variance – Theorem (Variance of the Combined Series) - Coefficient of Dispersion – Coefficient of Variation.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Correlation and Regression: Karl Pearson Coefficient of Correlation – Limits of Correlation Coefficient – Rank Correlation – Repeated Ranks – Regression – Lines of Regression – Regression Curves – Regression Coefficients – Properties of Regression Coefficients.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Sampling and large Sample Tests: Tests of Significance for Large Samples - Sampling of Attributes – Test for Single Proportion – Test of Significance for Difference of Proportions – Test of Significance for Single Mean – Test of Significance for Difference of means – Test of Significance for the Difference of Standard Deviations. (Problems Only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Exact Sampling Distribution: Chi-square Test as a Test for Population Variance – Chi-square Test of Goodness of Fit – Independence of Attributes – Test for Single Mean – F-test for Equality of Population Variance. (Problems Only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Graphical Location of Partition Values _ Moments - Probable Error of Correlation Coefficient - Angle between two Lines of Regression - Standard Error of sample Mean - Applications of Chi-square Distribution - Applications of t-distribution - Applications of F-distribution.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Book

1. Gupta.S.C and Kapoor.V.K. (2003). *Elements of Mathematical Statistics* (*Third Edition*). Sultan Chand & Sons Educational Publishers, New Delhi.

Chapters and Sections

UNIT-I Chapter 2: Sections 2.5 – 2.11 (Omit 2.11.1)

UNIT-II Chapter 3: Sections 3.3 - 3.8

UNIT-III Chapter 10: Sections 10.3, 10.6 & 10.7 (10.7.1 – 10.7.4)

UNIT- IV Chapter 12: Sections 12.8, 12.9, 12.13 – 12.15

UNIT- V Chapter 13: Sections 13.5.1 – 13.5.3

Chapter 14: 14.2.6, 14.2.7, 14.3.2

Reference Books

- 1. Pillai.R.S.N & Bhagavathi (2008). *Statistics, Theory and Practice*. S.Chand & Sons.
- 2. Bhishma Rao.G.S.S. (2011). *Probability and Statistics*. Scitech Publications (India) Pvt. Ltd..
- 3. Veerarajan.T (2010). *Probability, Statistics and Random Processes*. Tata McGraw Hill Education Private Limited.

Web References

- 1. https://tinyurl.com/yu57nmb5
- 2. https://youtu.be/pSm9mgi65l4
- 3. https://youtu.be/BiLIcCtXmm0
- 4. https://youtu.be/xTpHD5WLuoA
- 5. https://tinyurl.com/yb57hh5e
- 6. https://tinyurl.com/h3nbyj35
- 7. https://rb.gy/muaxp

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya