CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

M.Sc., Chemistry Syllabus 2024-2025 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF CHEMISTRY

VISION

 To progress into a centre of superiority in Chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

MISSION

- To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
- To enhance services to the community and build partnerships with the industry.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc., Mathematics, M.Sc., Physics, M.Sc., Chemistry PROGRAMMES

PO No.	Programme Outcome
	On completion of M.Sc., Programme, the students will be able to
PO1	Problem analysis:
	Provide opportunities to develop innovative design skills, including the ability to
	formulate problems, to think creatively, to synthesize information, and to communicate effectively.
PO2	Scientific skills:
	Create and apply advanced techniques and tools to solve the societal environmental
	issues.
PO3	Environment and Sustainability:
	Ascertain eco-friendly approach for sustainable development and inculcate
	scientific temper in the society.
PO4	Ethics:
	Imbibe ethical and social values aiming towards holistic development of learners.
PO5	Lifelong learning:
	Instill critical thinking, communicative knowledge which potentially leads to
	higher rate of employment and also for higher educational studies.

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc. CHEMISTRY

PSO	Programme Specific Outcomes`	POs				
NO.	Students of MI.Sc., Chemistry will be able to	Addressed				
PSO1	Acquire knowledge in basic concepts, fundamental principles, and applications of chemical and scientific theories and their relevancies in the day-to-day life.	PO1 PO2				
PSO2	PSO2 Design experiments, analyze, synthesize and interpret data to provide solutions to different industrial problems by working in the pure, inter and multi-disciplinary areas of chemical sciences.					
PSO3	Attain maneuver in diverse contexts with Global Perspective	PO3 PO4				
PSO4	Gain a thorough Knowledge in the subject to be able to work in projects at different research as well as academic institutions.	PO1 PO2 PO5				
PSO5	Afford Global level research opportunities to pursue Ph.D programme targeted approach of CSIR – NET examination	PO1 PO2 PO3 PO4 PO5				

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF CHEMISTRY M.Sc. CHEMISTRY

(For the Candidates admitted from the Academic year 2024 - 2025 and onwards)

ter				Inst	ts	Exam			l
nes	Course	Course	Course Code	Hrs. /	edi	š	Μ	arks	ota
Ser		Title		week	Cr	Hr	Int.	Ext.	H
	Core Course– I (CC)	Organic Reaction Mechanism – I	23PCH1CC1	6	5	3	25	75	100
	Core Course – II (CC)	Structure and bonding in Inorganic compounds	23PCH1CC2	6	5	3	25	75	100
	Core Course –III (CC)	Molecular Spectroscopy	23PCH1CC3	6	5	3	25	75	100
	Core Practical - I (CP)	Organic Chemistry – I (P)	24PCH1CC1P	6	5	6	40	60	100
Ι	Discipline Specific Elective Course-I (DSE)	A. Analytical Instrumentation Techniques (P)	24PCH1DSE1A P						
		B. Nanoscience and Nanotechnology (P)	22PCH1DSE1B P	6	3	6	40	60	100
		C. Biochemistry (P)	22PCH1DSE1C P						
		Total		30	23				500
	1:	5 Days INTERNSHIP du	uring Semester H	lolidays	5	1	1		r
	Core Course– IV (CC)	Physical Chemistry – I	23PCH2CC4	6	5	3	25	75	100
	Core Practical – II (CP)	Organic Chemistry – II (P)	22PCH2CC2P	6	5	6	40	60	100
	Core Choice Course– I (CCC)	A. Organic Reaction Mechanism – II	23PCH2CCC1A						
		B. Chemistry of Natural Products	23PCH2CCC1B	6	4	3	25	75	100
		C. Molecular Rearrangement	23PCH2CCC1C						
	Core Practical – III (CP)	Inorganic Chemistry– I (P)	22PCH2CC3P	6	5	6	40	60	100
	Discipline Specific Elective Course-II (DSE)	A. Green Chemistry	23PCH2DSE2A	6	3	3	25	75	100
II		B. Forensic Chemistry	23PCH2DSE2B						
		C. Analytical Chemistry	23PCH2DSE2C						
	Internship	Internship	23PCH2INT	-	2	-	-	100	100
	Extra Credit Course	SWAYAM	As pe	r UGC	Reco	omm	endati	ion	
		Total		30	24				600

S. No	Courses	No. of	No. of Credits	Marks
		Courses		
1.	Core Course – (CC)	6	30	600
2.	Core Choice Course– (CCC)	3	12	300
3.	Core Practical - (CP)	6	29	600
4.	Discipline Specific Elective- (DSE)	3	09	300
5.	Generic Elective Course - (GEC)	2	04	200
6.	Project	1	04	100
7.	Internship	1	02	100
	Total	22	90	2200

Courses & Credits for PG Science Programmes

The internal and external marks for theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	25	75

Separate passing minimum is prescribed for Internal and External

For Theory:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e.30 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Practical:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e.24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project:

Marks for Dissertation: 80

- Marks for Viva Voce : 20
- Total marks 100

Internal Component (Theory)

Component	Marks
Library	03
Attendance	03
Assignment &	04
Seminar	
CIA -I	7.5
CIA-II	7.5
Total	25

Internal Component (Practical)

Component	Marks
Observation	05
Record	10
Continual performance	10
Model	15
Total	40

Question Paper Pattern

PART A (10 X 2=20) Answer all the questions

PART B (5 X 5=25) Answer all the questions

PART C (3 X 10=30) Answer any three questions

Semester I	Internal Mark	External Marks:75		
COURSE	COURSE TITLE	CATEGORY	Hrs	CREDITS
CODE			/Week	
23PCH1CC1	ORGANIC REACTION	CORE	6	5
	MECHANISM-I			

Course Objective

- > To learn the basic concepts of aromaticity and stereochemistry of various organic molecules.
- > To understand the feasibility and the mechanism of various organic reactions.
- > To comprehend the techniques in the determination of reaction mechanisms.
- > To understand the concept of stereochemistry involved in organic compounds.
- To correlate and appreciate the differences involved in the various types of organic reaction Mechanisms.

Prerequisites

Aromaticity, oxidation, reduction and symmetry

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive			
Number	On the successful completion of the course, students will be able to	Level			
CO1	Recall and summarize the fundamentals of reaction intermediates, electrophilic and nucleophilic substitution reactions, aromaticity, and stereochemistry.				
CO2	Interpret the concept to Huckels theory, thermodynamic and kinetic requirements of reactions: conformation analysis and substitution reactions	К3			
CO3	Categorize the determination of intermediates, aromaticity, configuration and reactivity of aliphatic and aromatic compounds towards substitution reaction.	K4			
CO4	Evaluate aromatic character, stereo analysis, pathway of reaction mechanism.	K5			
CO5	Predict the intermediate, conditions and product of substitution mechanism.	K6			

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	2

"1"- Slight (Low) Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High) Correlation

"-"indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	CONGNITIVE L EVEL
Ι	Methods of Determination of Reaction	18	CO1,	K1, K2, K3,
	Mechanism: Reaction intermediates-transition		CO2,	K4, K5, K6
	state-energy profile diagrams - Thermodynamic		CO3, CO4,	
	and kinetic requirements of reactions –		CO5	
	Hammond's postulate - Methods of			
	determining mechanism: non-kinetic methods -			
	product analysis - determination of			
	intermediates – isolation - detection and			
	trapping. Cross-over experiments - isotopic			
	labelling - isotope effects and stereo chemical			
	evidences. Kinetic methods - relation of rate			
	and mechanism- Effect of structure on			
	reactivity- Hammett and Taft equations -			
	Linear free energy relationship - partial rate			
	factor- substituent and reaction constants.			
Π	Aromaticity: Aromatic character: Huckel's	18	CO1,	K1, K2, K3,
	theory of aromaticity - three, four, five, six,		CO2, CO3.	K4, K5, K6
	seven and eight membered rings- other		CO4,	
	systems with aromatic sextet- concept of homo		CO5	
	aromaticity and anti-aromaticity- Craig'srule -			
	applications - consequences of aromaticity			
	non-alteration in bond length -Huckel's MO			
	calculation - Electron occupancy in -NMR			
	concept of aromaticity and anti-aromaticity.			
III	Stereochemistry and Conformational	18	CO1,	K1, K2, K3,
	Analysis: Stereoisomerism-optical activity and		CO2, CO3,	K4, K5, K6
	chirality – types of molecules exhibiting optical		CO4,	
	activity – R, S and E, Z configuration -		005	

	absolute configuration – chirality in molecules with non-carbon stereo centres (N, S and P) – molecules with more than one chiral centre. Biphenyls, allenes, spiranes and analogues- Atropisomerism- Helicity and chirality-			
	Resolution-methods of resolution -			
	Conformations of mono and di substituted			
	cyclohexane system and decalin. Quantitative			
	correlation between conformation and			
	reactivity.			
IV	Aromatic and Aliphatic Electrophilic	18	CO1, CO2.	K1, K2, K3, K4, K5, K6
	Substitution:		CO3,	,,,
	Aromatic electrophilic substitution: Orientation		CO4, CO5	
	and reactivity of di- and polysubstituted		000	
	phenol, nitrobenzene and			
	halobenzene. Reactions involving nitrogen			
	electrophiles: nitration, nitrosation and			
	diazonium coupling; Sulphur electrophiles:			
	sulphonation - Halogen electrophiles:			
	chlorination and bromination- Carbon			
	electrophiles: Friedel- Crafts alkylation,			
	acylation and arylation reactions- Aliphatic			
	electrophilic substitution Mechanisms: S_E1 , S_E2			
	and S_E i-Mechanism and evidences.			
V	Aromatic and Aliphatic Nucleophilic	18	CO1,	K1, K2, K3,
	Substitution: Aromatic nucleophilic		CO2, CO3.	K4, K5, K6
	substitution: Mechanisms - S_NAr , S_N1 and		CO4,	
	Benzyne mechanisms - Evidences - reactivity		CO5	
	Effect of structure - leaving group and			
	attacking nucleophile. Reactions: Oxygen and			
	Sulphur-nucleophiles -Bucherer and			

	Rosenmund reactions, von Richter, Sommelet-			
	Hauser and Smiles rearrangements - S_N1 , ion			
	pair, $S_N 2$ mechanisms and evidences. Aliphatic			
	nucleophilic substitutions at an allylic carbon,			
	aliphatic trigonal carbon and vinyl carbon.			
	Swain- Scott, Grunwald- Winstein relationship			
	- Ambident nucleophiles			
	Self-Study for Enrichment:		~~ .	
VI	(Not to be included for External	-	CO1, CO2	K1, K2, K3, K4
	Examination)		CO3	
	Rules of resonance-tautomerism -steric effects-			
	Enantiomers and diastereomers- Bredt's rule-			
	neighbouring group participation.			

Text Books

- Mukherji, S. M Singh. S. P. (2015). Reaction Mechanism in Organic Chemistry (Revised Edition): Trinity; New Delhi.
- 2. Kalsi. P.S. (1993). Stereochemistry. Wiley eastern limited; New Delhi.
- 3. Jagdamba Singh. (2016). Organic synthesis: Pragati Prakashan.
- 4. Bansal. R. K. (1975). Organic Reaction Mechanisms. Tata McGraw Hill.

Reference Books

- March and Smith. M. B March's Advance Organic Chemistry Reactions, Mechanisms and Structure, 7thEdition. (2013), Wiley, New York.
- 2. Finar. I. R,Organic Chemistry Vol.II 7th edition. (2009), Pearson, New Delhi.
- Nasipuri. D, Stereo chemistry of organic compounds Principles, 2ndEdition. (2002), New Age International and applications.
- Lowry, T. H. E and Richardson. K. S, Mechanism and Theory in Organic chemistry, 3rdedition. (1997), Benjamin Cummings Publishing, USA.

 Carey. F. A and Sundberg. R. J, Advanced Organic chemistry Part A and B,5thedition. (2007), Springer, Germany.

Web References

- 1. <u>https://openstax.org/books/chemistry-2e/pages/12-6-reaction-mechanisms</u>.
- 2. http://courses.washington.edu/medch562/pdf/MEDCH400_Stereochem.pdf
- 3. https://universe.bits-pilani.ac.in/uploads/Dubai/rusalraj/Substitution%20Reactions.pdf
- 4. <u>https://iscnagpur.ac.in/study_material/dept_chemistry/5.1_RRT_ARSN.pdf</u>.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. C. Rajarajeswari

Semester I	Internal Marks: 25	E	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	HRs/ WEEKS	CREDITS			
23PCH1CC2	STRUCTURE AND BONDING IN INORGANIC COMPOUNDS	CORE	6	5			

Course Objective

- To articulate the learning of solid state in chemistry
- The subject lays a foundation to clusters and organometallic compounds

Prerequisites

Clusters, Solid state, organometallic compounds, Band theory

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course students will be able to	Cognitive Level
CO1	Outline the geometry of inorganic compounds	K1, K2
CO2	Identify the nature of binding and packing of ions in solids	K3
CO3	Classify the structure of clusters, metal carbonyls and crystals	K4
CO4	Compare the structural features of various inorganic compounds	K5
CO5	Predict the radius ratio and defects of crystals	K6

Mapping with Programme Out comes

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	2	3	3	3	2	2
CO2	2	3	2	2	1	3	2	3	3	3
CO3	3	2	2	3	3	3	3	3	2	2
CO4	3	3	2	1	2	3	2	3	3	2
C05	3	2	3	2	2	3	3	2	3	2

"1" - Slight or No Correlation

"2" -(Moderate(/Medium) correlation

"3" - Substantial (High) Correlation

"-" – indicates No Correlation

	SILLADUS		~~~	
UNIT	CONTENT	HOURS	COs	COGNITI
				VE I EVEI
Т	Structure of main group compounds and clusters:	18	CO1	LEVEL K1
I	VB theory $-$ Effect of lone pair and electro negativity of	10	CO1 CO2	KI K2
	atoms (Bent's rule) on the geometry of the molecules.		CO3	K3
	Structure of silicatos applications of Pauling's rule of		CO4 CO5	K4 K5
	Structure of sincates - applications of Fauling's fute of		COS	K5 K6
	electrovalence - isomorphous replacements in sincates			
	– ortho, meta and pyro silicates – one dimensional, two			
	dimensional and three- dimensional silicates. Structure			
	of silicones, Structural and bonding in B-N(Boron			
	nitride, Borazine) S-N (S_4N_4 , S_2N_2 , (SN) _x), P-N (Di and			
	Triphosphazenes,), Poly acids – types, examples and			
	structures- Borane cluster: Structural features of closo,			
	nido, arachano and klado; carboranes, hetero and			
	metalloboranes; Wade's rule to predict the			
	structure of borane cluster.			
II	Organometallic Compounds:	18	CO1	K1 K2
	Hapticity of ligands- 18 Electron rule and its limitation-		CO2 CO3	K2 K3
	Classification of organometallic compounds – structure		CO4 CO5	K4 K5
	of methyl lithium, Zeise's salt and Ferrocene- Metal		005	K6
	carbonyls – EAN rule – Mono and poly nuclear			
	carbonyls – preparation, reactions and structure			
	$(Ni(CO)_4, Fe(CO)_5, Cr(CO)_6, Mn_2(CO)_{10},$			
	Co ₂ (CO) ₈ and Fe ₂ (CO) ₉ –			
	Bonding in metal Carbonyls – Metal-			
	ethylenic complexes - methods of formation- bonding-			
	chemical properties.			

Π	Solid state Chemistry – I Ionic crystals: Packing of ions in simple, hexagonal and cubic close packing, voids in crystal lattice, Radius ratio, Crystal systems and Bravis lattices, Symmetry operations in crystals, glide planes and screw axis; point group and space group; Solid state energetics: Lattice energy – Born-Lande equation - Kapustinski equation, Madelung constant.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
IV	Solid state Chemistry – II Structural features of the crystal systems: Rock salt, zinc blende &wurtzite, fluorite and anti-fluorite, rutile and anatase, cadmium iodide and nickel arsenide; Spinels -normal and inverse types and perovskite structures. Crystal Growth methods: From melt and solution (hydrothermal, sol-gel methods) – principles and examples.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Band theory and defects in solids Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser and phosphors; Linear defects and its effects due to dislocations.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6

VI (Not to be included for External Examination)		Self-Study for Enrichment		
High-valent metal Clusters and halideCO1K2,Clusters-Bragg's law, powder diffractionCO2K3pattern. X-ray diffraction and Electrondiffraction comparisonImage: Constant of the second seco	VI	(Not to be included for External Examination) High-valent metal Clusters and halide Clusters-Bragg's law, powder diffraction pattern. X-ray diffraction and Electron diffraction comparison	CO1 CO2	K2, K3

Text Books

- Greenwood. (1996). Chemistry of the Elements, United Kingdom, Elsevier Science & Technology Books.
- Kaesz, H., Adams, R., Shriver, D., Kaesz, H., Adams, R., Shriver, D.(1990). The Chemistry of Metal Cluster Complexes.
- Sharma, L. R., Puri, B. R., Sharma, L. R., Puri, B. R. (1976). Principles of Inorganic Chemistry: For B.Sc. and B.Sc. (Hons.) Classes of Indian Universities. India:S.Nagin.
- Cotton, F. A., Wilkinson, G., Cotton, F. A., Wilkinson. (2007). Advanced Inorganic Chemistry,6th Edition, India: Wiley India Pvt. Limited.
- 5. Keiter, E.A. (2006). Inorganic Chemistry: Principles of Structure and Reactivity. India: Pearson Education.
- Arthur, W. Adamson Paul, D. (1975). Fleischauer, Concepts of Inorganic Photochemistry. United Kingdom: Wiley.
- West, A. R., (2014). Solid state Chemistry and its applications, 2ndEdition (Students Edition), John Wiley & Sons Ltd.,.
- 8. Bhagi, A.K., Chatwal, G. R. (2001). A textbook of inorganic polymers, Himalaya Publishing House.
- 9. Smart, L., Moore E. (2012). Solid State Chemistry An Introduction, 4th Edition, CRC Press.
- 10. Purcell, K. F., Kotz, J. C. (1977). Inorganic Chemistry; W.B. Saunders company: Philadelphia.
- Huheey, J. E., Keiter, E. A., Keiter R. L. (1983). Inorganic Chemistry; 4th ed.; Harper and Row: NewYork.

Reference Books

- 1. Lee, J.D., (2008). ConciseInorganicChemistry,5th Edition. (2008).India:Wiley India Pvt. Limited.
- 2. Gurdeep Raj, (2020). Advanced Inorganic ChemistryVol-1, KrishnaPrakashan.
- Ferraudi, G. J., Ferraudi, G. J. (1988). Elements of Inorganic Photochemistry. United Kingdom: Wiley.
- 4. Pearson, R. G., Basolo, F., Pearson, R. G., Basolo, F. (1967). Mechanisms of Inorganic Reactions:A

Study of Metal Complexes in Solution. United Kingdom: Wiley.

- Sharma, R.K., Sharma, R. K. (2007). Inorganic Reaction mechanisms. India: Discovery Publishing House.
- 6. Douglas, D. E. McDaniel, D.H., Alexander, J. J. (1994). Concepts and Models in Inorganic Chemistry, 3rd Ed, John Wiley & Sons, Inc., New York.
- 7. Tilley, R. J. D., (2013). Understanding Solids The Science of Materials, 2nd edition, Wiley Publication.
- 8. Rao, C. N. R., Gopalakrishnan, J., (1997). New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press.

Web References

- 1. https://www2.chemistry.msu.edu/courses/cem151/chap24lect_2019.pdf
- 2. http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry.pdf
- 3. https://www.usb.ac.ir/FileStaff/2896_2019-4-18-0-9-32.pdf
- 4. https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf
- 5. https://www.chem.uci.edu/~lawm/11-16.pdf
- 6. https://www.usb.ac.ir/FileStaff/5269_2018-9-18-10-21-39.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. K. Shenbagam

Semester I	Internal Marks:25	External Marks:75			
COURSECODE	COURSETITLE	CATEGORY	Hrs /Week	CREDITS	
23PCH1CC3	MOLECULAR SPECTROSCOPY	CORE COURSE	6	5	

Course Objective

- > To understand, rotational and vibrational level transition in polyatomic molecules.
- To know the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions
- To interpret first and second order splitting pattern NMR signals of the molecules using correlation techniques such as COSY, HETCOR, NOESY.
- > To learn the principle of ESR, EPR and Raman spectroscopy.
- > To understand fragmentation pattern of molecules in Mass spectroscopy.
- > To predict the structure of molecules using various spectral data.

Prerequisites

Electromagnetic radiation, molecular energy level, non-Rigid rotor, selection rules for spectroscopy

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand principle of various spectral techniques involving molecular absorption and emission of electromagnetic radiations.	K1, K2
CO2	Apply NMR and MS spectroscopic techniques in solving structure of organic molecules.	K3
CO3	Explain the principle, rules to analyses, compare and identify the structure of organic molecules using various spectral techniques.	K4
CO4	Discriminate structural and stereoisomers of compound using NMR, ESR and mass spectral techniques.	K5
CO5	Evaluate energy of rotational levels, isotopic mass of the elements.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"–Slight (Low)Correlation

"3"-Substantial (High)Correlation

"2"–Moderate (Medium)Correlation

"-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	CONGNITIVE
I	Rotational and Raman Spectroscopy:		CO1	LEVEL K1
	Rotational spectra of diatomic and polyatomic	18	CO2	K2
	molecules- intensities of rotational spectral lines		CO3 CO4	K3 K4
	- isotopic substitution effect - non-rigid rotators		CO5	К5
	Raman effect - pure rotational Raman spectra of			
	linear and asymmetric top molecules - stokes and			
	anti-Stokes lines- Vibrational Raman spectra -			
	rule of mutual exclusion- rotational fine structure			
	O and S branches - Polarization of Raman			
	scattered photons.			
II	Vibrational Spectroscopy:	18	CO1	K1
	Vibrations of molecules - harmonic and		CO2 CO3	K2 K3
	anharmonic oscillators - energy expression -		CO4	K4
	vibrational wave functions – symmetry -		CO5	K5
	selection rules - energies of spectral lines - hot			
	bands - effect of isotopic substitution - Diatomic			
	vibrating rotorvibrational - rotational spectra of			
	polyatomic molecules - symmetry properties -			
	overtone - combination frequencies- P, Q and R			
	branches - parallel and perpendicular vibrations			
	of linear and symmetric top molecules.			
III	Electronic spectroscopy:	18	CO1	K1
	Electronic spectroscopy of diatomic molecules		CO2 CO3	K2 K3
	Frank-Condon principle - dissociation and pre-		CO4	K4
	dissociation spectra- $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and		005	СЛ
	their selection rules - Photoelectron Spectroscopy:			
	Principle - photoelectron spectra of simple			
	molecules - X-ray photoelectron spectroscopy			

	(XPS) - Lasers: Laser action population inversion			
	- properties of laser radiation examples of simple			
	laser systems.			
IV	NMR and Mass spectrometry:	18	CO1	K1
	NMR spectroscopy - Principle -Chemical shift,		CO2 CO3	K2 K3
	Factors influencing δ - shielding and deshielding.		CO4	K4
	spin-spin interactions- spin decoupling- Nuclear		CO5	K5
	over Hauser effect (NOE)- Factors influencing			
	coupling constants- 2D NMR - COSY, NOESY			
	Mass Spectrometry: Ionization techniques isotope			
	abundance- molecular ion -base peak meta stable			
	ions -fragmentation processes of organic			
	molecules- deduction of structure through mass			
	spectral fragmentation.			
V	ESR and Mossbauer Spectroscopy: ESR-	18	CO1	K1
	principle-selection rule- g value-hyperfine		CO2 CO3	K2 K3
	coupling parameter (A) -zero field splitting -		CO4	K4
	Kramer's degeneracy – isotropy and anisotropy in		CO5	K5
	g value- application of ESR to organic and			
	inorganic system (H, CH3, p-benzo semiquinone			
	and bis (salicylaldimine) copper (II) complex)-			
	Principle of Mossbauer spectroscopy: Doppler			
	shift - recoil energy. Isomer shift, quadrupole			
	splitting - magnetic interactions - applications:			
	high and low spin Fe and Sn compounds.			
× 71	Self-study: (Not for final examination)		CO1	171
VI	Problems based on joint application, PMR,	-	COI CO2	KI K2
	CMR, and Mass. (Including reaction sequences),			
	DEPT, INTEPT, Chemical spin decoupling of			
	rapidly exchangeable protons (OH, SH, COOH,			
	NH, NH2).			

Text Books

- 1. Banwell C.N (2017), Fundamentals of molecular Spectroscopy, 4th edition, McGraw Hill, New Delhi.
- 2. Silverstein. P. M and Western. F.X (2014), Spectroscopic Identification of Organic compounds, 8th edition, John Wiley, New York
- 3. Kalsi. P. S (2016), Spectroscopy of Organic Compounds, 7th edition, New Age International Publishers, New Delhi
- 4. William Kemp (2019), Organic spectroscopy, 3rd edition, Macmillan publisher Pvt, Bangalure.
- 5. Williams D.H and Fleming I, Spectroscopic Methods in Organic Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 6. Drago R. S, Physical Methods in Chemistry; Saunders: Philadelphia, 1992

Reference Books

- 1. Drago R.S (2012), Physical Methods in Inorganic Chemistry; Affiliated East-West press Pvt. Ltd, New Delhi.
- 2. Kaur. K, (2014), Spectroscopy, 16th edition, Pragati Prakashan Educational Publisher.
- 3. Sharma Y. R (2016), Elementary organic spectroscopy, revised 4th edition, S. Chand &Co Ltd, New Delhi.
- 4. Atkins P.W and de Paula J, Physical Chemistry, 7th Ed., Oxford University Press, Oxford, 2002.
- 5. Rahman A, Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag, New York, 1986.
- 6. Levine N.I, Molecular Spectroscopy, John Wiley & Sons, New York, 1974.

Web References

- 1. http://www.organic-chemistry.org/
- 2. http://www.organicworldwide.net/
- 3. http://www.ccdc.cam.ac.uk/products/csd/
- 4. <u>http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Chemistry%20Paper-__IX%20___Unit-_pdf</u>
- 5. <u>http://www.rcsb.org/pdb/home/home.do</u>
- 6. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
- 7. https://www.digimat.in/nptel/courses/video/104106122/L14.html

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. V. Sangu.

Semester I	Internal Marks: 40		Ex	ternal Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
24PCH1CC1P	ORGANIC CHEMISTRY-I (P)	CORE	6	5

Course Objectives

To perform the qualitative analysis of a given organic mixture and to carry out the preparation of organic compounds.

Pre-requisites

Separation of components, Qualitative analysis

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Apply the principles of separation in organic mixtures.	K1
CO2	Prepare the organic compounds by single stage method.	K2
CO3	Identify various functional group in organic compounds.	K3
CO4	Develop skills in separating techniques	K3
CO5	Analyze the nature of organic mixture containing two components.	K4

Mapping of CO with PO and PSO

CCOs 1	01	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO 1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	3	2	3	1	1	1	2	1
CO4	3	2	2	3	2	2	3	2	3	2
CO5	2	3	3	3	2	1	2	2	2	2

"1" – Slight (Low) Correlation

"3" - Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

I. QUALITATIVE ANALYSIS OF AN ORGANIC MIXTURE CONTAINING TWO

COMPONENTS

Mixtures containing two components are to be separated (pilot separation) and purified (bulk separation).

II PREPARATION OF ORGANIC COMPOUNDS (SINGLE STAGE)

- 1. Methyl-*m*-nitrobenzoate from methyl benzoate (nitration)
- 2. Glucose pentaacetate from glucose(acetylation)
- 3. Resacetophenone from resorcinol(acetylation)
- 4. Benzophenone oxime from benzophenone (addition)
- 5. o-Chlorobenzoic acid from anthranilic acid (Sandmayer reaction)
- 6. *p*-Benzoquinone from hydroquinone (oxidation)
- 7. Phenylazo-2-naphthol from aniline(diazotization)

Text Books

- 1. Mohan. J (2003), Organic Analytical Chemistry: Theory and Practice, Narosa
- 2. Ahluwalia. V. K Bhagat. P, And Agarwal. R (2005), Laboratory Techniques in Organic

Chemistry, I.K. International

Reference Books

- 1. Gnanaprakasam, N.S and Ramamurthy. G (1987), Organic Chemistry Lab Manual, S. V. Printers
- 2. Vogel. A. I Tatchell. A. R Furniss B.S Hannaford. A. Jand Smith P. W. G, (1989), Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall

Web References

- 1. https://authors.library.caltech.edu/25034/10/BPOCchapter9.pdf
- 2. http://do.chem.uni.wroc.pl/system/files/Preparatory%20classes.pdf.

Pedagogy

Demonstration and practical sessions

Course Designers

- Dr. P. Pungayee Alias Amirtham
- Dr. R. Subha

Semester I	Internal Marks: 40		Ex	xternal Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
24PCH1DSE1AP	ANALYTICAL INSTRUMENTATION TECHNIQUES (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3

Objectives

- Gain proficiency in the use of analytical pipettes, volumetric measurements, and analytical instruments.
- > Learn how to correctly use a UV/Vis spectrophotometer.
- ➢ Gain familiarity with a new technique.
- Perform quantitative analytical methods including titrations, pH measurements, spectrophotometry, and chromatography.

Prerequisites

Chromatography, qualitative analysis and spectroscopy

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Become familiar with fundamental concepts of instruments.	K1
CO2	Observe the application of Instrumentation Techniques	K2
CO3	Equipped with knowledge and skills in lab safety, preparation of solutions numerically.	K3
CO4	Develop the core skills to parse existing chromatographic protocols and identify the key factors influencing a chromatography experiment	K4
CO5	Acquire expertise in calibration techniques.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO	PSO3	PSO	PSO5	PO1	PO	PO3	PO	PO
		2		4			2		4	5
CO1	2	3	3	3	3	2	3	2	3	3
CO2	2	2	2	1	2	2	2	3	2	2
CO3	3	2	2	2	2	1	2	2	2	2
CO4	3	2	3	2	2	3	2	2	2	3
CO5	2	3	2	3	3	2	2	2	2	2

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

Syllabus

- 1. Use and calibration of volumetric equipment (volumetric flasks, pipette's and burette's).
- 2. Separation of monosaccharide present in a given mixture by paper chromatography.
- 3. Determination of chlorine in water using colorimetry.
- 4. Analysis of soil
 - i) Determination of pH of soil.
 - ii) Determination of total soluble salts by conductometry
- 5. Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.
- 6. Separation of a mixture of metals by TLC.
- 7. Determining the concentration of citric acid in soft drink using titration.
- 8. Determination of equilibrium constant by colorimetry.
- 9. Verification of Beer-Lambert's law by colorimetry.
- 10. Determination of ascorbic acid in lime juice by titration.
- 11. Spectrophotometric determination of iron in vitamin tablets.
- 12. Estimation of aspirin from tablet using titration method.
- 13. Determination of strength of commercial vinegar by conductometry.
- 14. Analysis of potassium permanganate by UV/visible spectrophotometer.
- 15. Estimation of sugar by titrimetric method.

Text Books

- 1. Fifield, F.W. (2011). Principles and Practice of Analytical Chemistry. United States: Springer US.
- 2. Lundanes, E., Reubsaet, L., Greibrokk, T., Lundanes, E., Reubsaet, L., Greibrokk, T. (2013). Chromatography: Basic Principles, Sample Preparations and Related Methods. Germany: Wiley.
- Franson, S., Mary, H. (2007). Standard Methods for the Examination of Water and Wastewater. United States: American Public Health Association.

Reference Books

- 1. Harris, D. C. (2012). Exploring Chemical Analysis: International Edition. United Kingdom: Macmillan Learning.
- 2. Dilts, R. V. (2010). Analytical Chemistry: Methods of Separation. United Kingdom: Van Nostrand.
- 3. Harris, D. C., Lucy, C. A. (2019). Quantitative Chemical Analysis. United States: W. H. Freeman.
- 4. Mikeš, O., Mike S, O., Chalmers, R. A. (2007). Laboratory Handbook of Chromatographic Methods. United Kingdom: Van Nostrand.

Web References

- 1. https://www.epa.gov/sites/default/files/2015-12/documents/9214.pdf
- https://chem.libretexts.org/Ancillary_Materials/Laboratory_Experiments/Wet_Lab_Experiments/Gen eral_Chemistry_Labs/Online_Chemistry_Lab_Manual/Chem_10_Experiments/11%3A_Titration_of_ Vinegar_(Experiment)
- 3. https://www.lacitycollege.edu/Departments/Chemistry/documents/Chemistry-101-Experiments-Documents/E12B_titration2016
- 4. https://www.uobabylon.edu.iq/eprints/publication_10_11891_250.pdf

Pedagogy

Table Work

Course Designer

Dr. G. Sivasankari

Semester I	Internal Marks: 25		External Marks: 75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
22PCH1DSE1BP	NANOSCIENCE AND NANOTECHNOLOGY (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3		

Course Objectives

- Covers the whole spectrum of nanomaterials ranging from overview, synthesis, properties, and characterization of nano phase materials to application including some new developments in various aspects.
- Provides introduction to the theory and practice on Nanomaterials and various techniques used for the fabrication and characterization of nanostructures.

Prerequisites

Precipitation, reduction and absorption methods.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Exhibit proficient knowledge of the Nanoscience and related fields	K1
CO2	Understand in broad outline of Nanoscience and Nanotechnology.	K2
CO3	Acquire an understanding the Nanoscience and Applications	K3
CO4	Apply principles of basic science concepts in understanding, analysis and prediction of matter at Nano scale.	К3
CO5	Synthesis nanomaterials and explore their application and the impact of nanomaterials on environment	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	2
CO2	2	3	2	3	2	3	2	1	3	2
CO3	2	3	3	2	3	1	1	2	2	1
CO4	3	2	2	3	2	2	3	2	2	2
CO5	2	3	3	3	2	1	2	2	2	2

"1" – Slight (Low) Correlation ¬"2" – Moderate (Medium) Correlation ¬

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

- 1. Synthesis of CuO nano particles by sonochemical method.
- 2. Synthesis of ZnO nano particles by sonochemical method
- 3. Synthesis of Carbon nano particles by Microwave Irradiation Method.
- 4. Characterization of nanoparticles by UV- Visible Spectrophotometer.
- 5. Synthesis of Silver Nanoparticles by Chemical reduction method and their UV-VIS absorption studies.
- 6. Synthesis of Iron Oxide Nanoparticles by Polyol method and their UV-VIS absorption studies.
- 7. Synthesis of ZnO Nanoparticles by Co-Precipitation Method.
- 8. Preparation of thiolated silver nanoparticles.
- 9. Synthesis of Nanoparticles from plant materials by Sono chemical Method.

Text Books

- Edelstein, A.S., Cammaratra, R.C. (2017). Nanomaterials: Synthesis, Properties and Applications, Second Edition. United Kingdom: Taylor & Francis.
- 2. Wiederrecht, G. (2010). Handbook of Nanofabrication. Italy: Elsevier Science.
- Altavilla, C., CilibertoE.(2017). Inorganic Nanoparticles: Synthesis, Applications, and Perspectives. United Kingdom: CRC Press.

Reference Books

- Fritzsche, W., Köhler, M., Fritzsche, W., Köhler, M. (2008). Nanotechnology: An Introduction to Nanostructuring Techniques. Germany: Wiley.
- Muller, A., A.K., Cheetham., Rao C.N.R. (2006). The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Germany: Wiley.

Web References

- 1. <u>https://www.researchgate.net/publication/229419482_Sonochemical_synthesis_size_controlling_an_d_gas_sensing_properties_of_NiO_nanoparticles</u>
- 2. https://www.sciencedirect.com/science/article/pii/S1569441018301445
- 3. https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj01360a
- 4. <u>https://www.researchgate.net/publication/231240704_UreaMelt_Assisted_Synthesis_of_NiNiO_Na_noparticles_Exhibiting_Structural_Disorder_and_Exchange_Bias_</u>

Pedagogy

Table Work

Course Designers

- 1. Dr. G. Sivasankari
- 2. Dr. R. Subha

Semester I	Internal Marks:25	External Marks:75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS		
22PCH1DSE1CP	BIOCHEMISTRY(P)	DISCIPLINE SPECIFIC ELECTIVE	6	3		

Course Objectives

- > To expertise the student to identify and isolate various biomolecules.
- To acquire training to estimate the quantity of biomolecules present by applying biochemical techniques.

Prerequisites

Chromatographic techniques, biomolecules and plant pigments.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recall and understand the techniques involved in isolation, separation and estimation of various biomolecules	K1 & K2
CO2	Develop and apply the skills in handling various chromatographic and colorimetric techniques	K3
CO3	Qualitatively and quantitatively analyze the biomolecules	K4
CO4	Exemplify in handling various chromatographic techniques of biomolecules.	K5
CO5	Interpret the importance of technical analysis required for various Biomolecules	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	3	2	2	3	2	2	3
CO2	3	3	2	3	3	3	3	2	2	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	2	3	3	3	3	2	2	3
CO5	3	3	3	3	3	2	3	3	3	3

"1"-Slight (Low) Correlation

"2"–Moderate (Medium)Correlation

"3"-Substantial (High) Correlation

"-"indicates there is no correlation.

Syllabus

I. EXTRACTION OF BIOMOLECULES

- 1. Starch from potato.
- 2. Casein from milk.
- 3. Oil from oil seeds.
- 4. Cellulose from plant material.

II. BIOCHEMICAL TECHNIQUES

- 1. Identification of amino acid by circular and ascending paper chromatography.
- 2. Separation of amino acids and carbohydrates in a mixture by paper chromatography.
- 3. Separation of lipids by thin layer chromatography.
- 4. Separation of a mixture of proteins and salt by column chromatography.
- 5. Separation of plant pigments using Chromatography techniques TLC, Paper chromatography.

III. QUALITATIVE ANALYSIS OF BIOMOLECULES

- 1. Carbohydrate-Glucose, Fructose, Sucrose, Lactose and Starch.
- 2. Proteins Precipitation reactions of proteins, Colour reactions of proteins, colour reactions of amino acids like tryptophan, tyrosine, cysteine, methionine, arginine, proline and histidine.
- 3. Lipids-solubility, acrolein test, Salkowski test, Lieberman-Burchard test.
- 4. Qualitative tests for nucleic acid.

IV. COLORIMETRIC ESTIMATION

- 1. Glucose by DNS method.
- 2. Protein by Biuret/Bradford and Lowry's method.
- 3. Uric acid.
- 4. Urea by DAM method.
- 5. Creatinine by Jaffe's method.
- 6. Phosphorous by Fiske and Subbarow's method.

Text Books

- Rajan, S. & Selvi Christy. R. (2018). Experimental Procedures in Life Sciences. CBS Publishers & Distributors.
- 2. Wilson, K. & Walker, J. (2000). Principles and Techniques of Practical Biochemistry. Fifth edition. Cambridge University Press.
- 3. Upadhyay & Upadhyay Nath (2016). Biophysical Chemistry: Principles and Techniques. Himalaya Publishing House.

Reference Books

- Hofmann, A. & Clokie, S. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. 8thedition. Cambridge University Press.
- 2. Wood, W. B.(1981).Biochemistry-A problem Approach. Addison Wesley.

Web References

- 1. <u>http://nec.edu.np/Publications/Chemistry_LAB_Manual/Experiment%204.pdf</u>
- 2. <u>https://www.mlsu.ac.in/econtents/1616_Biochemical%20Tests%20of%20Carbohy</u> <u>drate,</u>
 - %20protein,%20lipids%20and%20salivary%20amylase.pdf
- 3. <u>https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/files/2% 20</u> ESTIMATION% 20 OF%20PROTEIN%20BY%20LOWRY.pdf
- 4. https://orbitbiotech.com/estimation-of-reducing-sugars-by-dnsa-method/
- 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575183/
- 6. <u>http://atlas-</u> medical.com/upload/productFiles/208011/Creatinine%20Package%20Insert.pdf

Pedagogy

Demonstration and practical sessions

Course Designers

Dr. P. Pungayee Alias Amirtham

Semester II	Internal Marks	: 25	External Marks: 75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs. /	CREDITS		
			Week			
23PCH2CC4	PHYSICAL	CORE	6	5		
	CHEMISTRY - I					

Course Objectives

- > To under quantum mechanical operators, thermodynamic probability.
- > To understand and compare theories of chemical kinetics.
- > To learn symmetry operation and point group of simple molecules.
- > To predict the vibrational modes, hybridization using he concepts of group theory.

Prerequisites

Schrodinger equation, factors affecting rate of the reactions, probability, entropy, adsorption, absorption and adsorption isotherm.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive Level
Number	On the successful completion of the course, students will be able to	
CO1	Recall postulates of quantum theory- operator- thermodynamic	K1, K2
	probability- and types of adsorption.	
CO2	Solve Schrodinger equation, character table, various statistical	K3, K4
	models, theories of reaction rate and surface theories.	
CO3	Explain Hermitian of operators, theories of unimolecular reactions,	K4
	ensembles and microstates.	
CO4	Deduce wave equation for particle in a box, rigid rotor, harmonic	K5
	oscillator, classical and quantum statistics.	
CO5	Evaluate angular and radial function, character table, unimolecular	K5
	reactions and kinetic models for catalysis	

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	3	1	3
CO2	3	2	2	3	2	2	3	3	3	2
CO3	3	3	3	1	2	3	2	2	2	3
CO4	3	3	3	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	3	3

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Quantum Chemistry:	18	CO1	K1
	Quantum mechanical operators - linear and non-		CO2	K2
	linear operators - Hermitian operators - postulates		CO3	K3
	of quantum mechanics - time dependent and		CO4	K4
	independent Schrodinger wave equation - solution		CO5	K5
	of the Schrodinger equation for bounded states			
	such as particle-in-one dimensional - box -			
	harmonic oscillator - rigid rotor - solution of the			
	Schrodinger equation for the hydrogen atom -			
	radial - angular probability distributions - atomic			
	orbitals - electron spin.			
II	Group Theory:	18	CO1	K1
	Definition of a mathematical group - properties -		CO2	K2
	group multiplication table - cyclic groups -		CO3	K3
	subgroups - classes - symmetry elements -		CO4	K4
	symmetry operation - determination of point group		CO5	K5
	of simple molecules (H ₂ O, CO ₂ , NH ₃ , BF ₃ , HCHO,			
	C_2H_4 and XeF_4 like molecules) - definition of			
	reducible and irreducible representations - great			
	orthogonality theorem - consequences (statement			
	only proof not needed) - determinations of the			
	characters for irreducible representation of $C_2 v$ -			
	$C_{3}v$ point groups using the orthogonality theorem to			
	construct the character table.			
III	Chemical Kinetics:			
	Theories of reaction rates - Arrhenius theory - hard	18	CO1	K1
	- sphere collision theory of gas - phase reactions -		CO2	K2
	activated complex theory or absolute reaction rate		CO3	K3
	theory (ARRT) for ideal gas reactions (in terms of		CO4	K4
	partition functions) - relation between activated		CO5	K5

	complex theory and hard sphere collision theory -			
	thermodynamic formulations of activated complex			
	theory - Lindeman's - Hinshelwood theory of			
	unimolecular reactions.			
IV	Catalysis and surface phenomenon: Homogenous	18	CO1	K1
	and heterogeneous catalysis -effect of pH -		CO2	K2
	temperature on enzyme catalysis - kinetics of		CO3	K3
	heterogeneous catalysis - Langmuir - Hinshelwood		CO4	K4
	and Langmuir - Rideal - Eley mechanism -		CO5	K5
	adsorption - free energy relation at interfaces -			
	Gibb's adsorption isotherm - physisorption -			
	chemisorption - adsorption isotherms - Freundlich, -			
	Langmuir.			
V	Statistical Thermodynamics:	18	CO1	K1
	Thermodynamic probability - most probable		CO2	K2
	distribution - ensemble -postulates of ensemble		CO3	K3
	overlapping - canonical - grand canonical - micro		CO4	K4
	canonical ensembles - sterling approximation		CO5	K5
	derivation - Maxwell-Boltzmann distribution law -			
	Maxwell's distribution of molecular velocity -			
	Maxwell-Boltzmann statistics - applications - Bose-			
	Einstein - Fermi Dirac statistics - comparison of			
	MB, FD and BE statistics			
VI	Self-study: (Not for final examination)		CO1	K1
	Eigen value - eigen function - applications of		CO2	K2
	quantum mechanics -black body radiation -		CO3	K3
	photoelectric effect - hydrogen spectrum - need		CO4	K4
	for quantum mechanics - postulates.		CO5	K5

Text Books

- Prasad, R. K. (2006). Quantum Chemistry (3rd ed), New Delhi, New Age International Publishers.
- 2. Bhattacharya, P.K (2014), Group Theory and its Chemical Application, New Delhi, Himalaya Publishing House.
- 3. Laidler, K.J. (2003). Chemical Kinetics (3rd ed), India, Pearson Education.

- Gupta, M.C. (2003). Statistical Thermodynamics (2nd Ed), New Delhi, New Age International Publishers.
- Puri, Sharma & Pathania (2018) Principles of Physical Chemistry (47th Ed), Jalandhar, Vishal publication.

Reference Books

- 1. McQuarrie, D. A. (2015). Quantum Chemistry, India, Viva Books.
- Chandra, A.K. (1994), Introduction to Quantum Chemistry, (4th Ed.), India, Tata-McGraw-Hill.
- 3. Mahendra R. Awode (2002) Quantum Chemistry, (New Delhi), S. Chand and Co. Ltd.
- Raj, G. Bhagi, A. and Jain, V. (2010). Group Theory and Symmetry in Chemistry, (3rd Ed.,), India, Krishna Prakashan.
- 5. Gurdeep Raj. (2016), Advanced Physical Chemistry, (4th Ed), Meerut, Krishna prakashan media.
- Raman, K.V. (1990), Group theory and its applications to chemistry (3rd Ed), McGraw-Hill Education.

Web References

- 1. e-PG Pathshala P-02- Physical Chemistry- I (Quantum Chemistry)
- 2. <u>e-PG Pathshala P-06- Physical Chemistry- I (Statistical thermodynamics, chemical dynamics, electrochemistry)</u>
- 3. <u>https://www.bdu.ac.in/cde/SLM/M.Sc.%20Chemistry/Chemistry%20I%20Year/Physi</u> cal_Chemistry/Unit1.doc.
- 4. <u>https://youtu.be/ALwziZSRiqM</u>
- 5. <u>https://youtu.be/ACY-Wbudg0o</u>
- 6. <u>https://youtu.be/yO8v0nszUz8</u>
- 7. https://nptel.ac.in/courses/104101124
- 8. <u>https://ipc.iisc.ac.in/~kls/teaching.html</u>

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, and seminar

Course Designer

Dr. V. Sangu

Semester II	Internal Marks:40	External Marks: 60			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PCH2CC2P	ORGANIC CHEMISTRY -II (P)	CORE PRACTICAL	6	5	

Course Objectives

To perform the quantitative analysis of a given organic compounds and to

carry out the preparation of organic compounds.

Prerequisites

Hydrolysis, Acetylation, bromination, nitration and oxidation/ reduction

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the quantitative estimation and double stage preparation of organic compounds.	K2
CO2	Demonstrate the methods employed in the organic preparation	K2
CO3	Distinguish the crude and purified samples.	К3
CO4	Analyze the various types of organic reagents and reactions.	K4
CO5	Choose the purification techniques such recrystallisation and steam distillation.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	3	2	3	1	1	1	2	1
CO4	3	3	3	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	3	3

"1"–Slight (Low) Correlation

"2"-Moderate(Medium)Correlation

"3"-Substantial (High)Correlation "-"indicates there is no correlation

Syllabus

I QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS

- 1. Estimation of phenol
- 2. Estimation of aniline
- 3. Estimation of ketone
- 4. Estimation of glucose
- 5. Estimation of nitrobenzene
- 6. Estimation of glycine
- 7. Estimation of iodine value of oil

II PREPARATION OF ORGANIC COMPOUNDS (DOUBLE STAGE)

- 1. Acetylsalicylic acid from methyl salicylate (hydrolysis and acetylation)
- 2. 1,3,5-Tribromobenzene from aniline (bromination, diazotization and hydrolysis)
- 3. p-Nitroaniline from acetanilide (nitration and hydrolysis)
- 4. Benzilic acid from benzoin (rearrangement)
- 5. p-Aminobenzoic acid from p-nitrotoluene (oxidation and reduction)
- 6. Benzanilide from benzophenone (rearrangement)
- 7. m-Nitroaniline from nitrobenzene (nitration and reduction)

Text Books

- 1. Mohan.J (2003), Organic Analytical Chemistry: Theory and Practice, Narosa
- 2. Ahluwalia.V.K Bhagat.P & Agarwal.R (2005), Laboratory Techniques in Organic Chemistry, I.K. International

Reference Books

- 1. Gnanaprakasam, N.S &Ramamurthy.G(1987), Organic Chemistry Lab Manual,S.V.Printers
- Vogel.A.IT atchell. A.R, Furniss B.S, Hannaford.A. J &SmithP.W. G, (1989), Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall.

Web References

- 1. http://rushim.ru > books > praktikum > Mann
- 2. http://do.chem.uni.wroc.pl/system/files/Preparatory%20classes.pdf.

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. K. Shenbagam

Semester II	Internal Marks	s: 25	External Marks: 75			
COURSE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS		
CODE						
23PCH2CCC1A	ORGANIC	CORE CHOICE	6	4		
	REACTION MECHANISM-II	COURSE				

Course Objectives

- > To learn about the oxidising and reducing agent.
- > Enable the students to acquire surplus knowledge about the addition, elimination mechanism, pericyclic reactions and the chemistry behind the photolytic reactions.
- > Guide the students to know the role of heterocyclic compounds in drug development.

Prerequisites

Addition, Elimination, cycloaddition, photoreaction and Heterocycles.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Outline the synthesis, reactivity of organic compounds, nature of reagents, and fundamentals of photochemistry.	K1 & K2
CO2	Interpret the reaction mechanism of various organic reactions including photochemical, pericyclic, redox and heterocycles.	К3
CO3	Classify the different types of addition, elimination, photolytic reactions and heterocyclic compounds.	K4
CO4	Categorize the reaction pathways and naming reactions.	K5
CO5	Predict the mechanism and products of organic reactions.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	3	2	3	2	3	2	1	1	3
CO2	3	2	1	3	2	3	3	1	1	2
CO3	3	3	2	1	2	3	3	2	2	3
CO4	3	3	2	2	3	3	3	2	2	3
CO5	3	3	2	3	3	3	2	1	1	2
"1"	, - Slight	(Low) C	Correlatio	n	"2"	'-Mod	erate (N	ledium)	Correla	tion

"3" – Substantial (High) Correlation "-" Indicates there is No Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Addition and Elimination:	18	CO1,	K1, K2, K3,
	Addition to carbon - carbon multiple bonds -		CO2, CO4.	K4, K5
	electrophile - nucleophile - free radical addition -		CO5	
	addition to carbonyl - conjugated carbonyl system with			
	mechanisms - Knoevengal - Stobbe - Darzen's glycidic			
	ester condensation - Reformatsky reaction - elimination			
	reaction - mechanism of E1, E2, E1CB -			
	stereochemistry - Hoffmann's - Zaitsev's rules -			
	pyrolytic cis elimination - Chugaev reaction - Hoffmann			
	exhaustive methylation - Cope elimination - Bredt's			
	rule.			
II	Organic Photochemistry:	18	CO1,	K1, K2, K3,
	Fundamental concepts - energy transfer - characteristic		CO2, CO3.	K4, K5, K6
	of photoreaction - photoreduction- photooxidation $-$		CO4,	
	photosensitization - classification of photo reactions of		CO5	
	Ketones - enones - Norrish type I and II - Paterno-Buchi			
	reaction - photo-Fries rearrangement - photochemistry			
	of alkenes - aromatic compounds - Zimmerman's di-pi			
	methane rearrangement -reaction of unactivated centres-			
	photochemistry of α , β - unsaturated carbonyl			
	compounds - Barton Reaction.			
III	Pericyclic Reactions:	18	CO1,	K1, K2, K3,
	Concerted reactions- stereochemistry - orbital symmetry		CO2, CO3.	K4, K5, K6
	- correlation diagram - Frontier molecular orbital		CO4,	
	approach- Woodward-Hoffmann rules- electrocyclic		C05	
	reactions - cycloaddition reactions- selection rules -			
	sigmatropic rearrangements- selection rules with			
	examples- 1,3 and 1,5 hydrogen shifts - Cope - Claisen			
	rearrangements.			

IV	Reagents in Organic Synthesis:	18	CO1,	K1, K2, K3,
	Oxidation- Baeyer-Villiger-Jacobsen epoxidation - Shi		CO2,	K4, K5, K6
	epoxidation- Jones reagent-PCC-PDC- IBX-DMP-		CO3, CO4,	
	CAN-Cu(OAC) ₂ -Bi ₂ O ₃ -Swern oxidation- Sommelet		CO5	
	reaction- Elbs reaction- oxidative coupling -Prevost			
	reaction - Woodward modification - reduction-			
	palladium - platinum - rhodium - nickel based			
	heterogeneous catalysts for hydrogenation -Wilkinson's			
	catalyst -Noyori asymmetric hydrogenation- Luche			
	reduction- Red-Al- NaBH4 -NaCNBH3- trialkylsilanes			
	-trialkylstannane.			
V	Heterocycles:	18	C01,	K1, K2, K3,
	Nomenclature - synthesis - reactivity of aromatic		CO2, CO3.	K4, K5, K6
	heterocycles - pyrazole- isothiazole- triazole-		CO4,	
	pyrimidine- purines- triazines- pyridazines - pyrazines -		CO5	
	synthesis - reactivity of non-aromatic heterocycles -			
	tetra hydro furan- pyrrolidine -piperidine- oxirane-			
	oxetane- oxazole -imidazole.			
VI	Self-Study for Enrichment:	-	CO1,	K1, K2, K3,
	(Not to be included for External Examination)		CO2, CO3	K4
	Markovnikov's - Anti-Markovnikov's rule - syn-anti			
	addition - elimination - Jablonski diagram - thermal -			
	photochemical reactions - chemistry of simple			
	heterocycles.			

Text Books

- Pine S.H, Hendrickson J B, Cram and Hammond, (1980), Organic Chemistry, McGraw Hill, New York, 4th edition.
- March J, and Smith M.B,(2020), Advanced Organic Chemistry, Reactions, mechanisms and Structure, Wiley, 8th edition.
- Carey F A and Sundberg R J,(2007), Advanced Organic Chemistry, Part A and Part B, Springer,5th Corrected edition.
- 4. Bansal. R .K, (1990), Reaction mechanism in Organic Chemistry, Tata McGraw Hill.
- **5.** Finar I L, (2009), Organic Chemistry, Pearson Education Ltd., 6th edition.

Reference Books

- Peter sykes (2009), A guide book to mechanism in Organic Chemistry, Pearson Education, 6th edition.
- 2. Raj K Bansal. (2009), Heterocyclic Chemistry, New Age International Publishers. 4th edition.
- 3. Gurdeep. R. Chatwal, (2015), Reaction Mechanism and Reagents in Organic Chemistry, Himalaya Publishing House.

Web References

- 1. https://www.chemistrylearner.com/addition-reaction.html.
- 2. <u>http://www-oc.chemie.uni-regensburg.de/OCP/ch/chb/oc5/Photochemie-08.pdf.</u>
- 3. <u>https://edscl.in/pluginfile.php/2878/mod_resource/content/1/teachers%20notes.p</u> <u>df.</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

> Dr. A. Sharmila

Semester II	Internal Marks	s: 25	External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS	
CODE					
23PCH2CCC1B	CHEMISTRY OF	CORE CHOICE	6	4	
	NATURAL	COURSE			
	PRODUCTS				

Course Objectives

- By the end of this course, the student will be familiar with definition, isolation and uses of natural products.
- The students will be able to know the general properties and methods of preparation of natural products chemically and biosynthetically.

Prerequisites

Isolation, addition, elimination, substitution, oxidation, reduction reactions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement			
Number	On the successful completion of the course, students will be able to	Level		
C01	Differentiate the different types of alkaloids, terpenes, steroids,	K1		
	flavonoids and vitamins.			
CO2	Know the basic terms in natural product chemistry and their	K2		
	physiological significance.			
CO3	Evaluate the different methods of preparation of natural products.	K3		
CO4	Recognize the most important building blocks employed in the biosynthesis of natural products.	K4		
CO5	Elaborate general methods of structural elucidation of compounds of natural origin.	К5		

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation "-" Indicates there is No Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Alkaloids: Categorization of alkaloids- general methods of structural determination of alkaloids -synthesis - biogenesis of nicotine - quinine – morphine - atropine - sertonin.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Π	Terpenoids and Carotenoid: Classification of terpenoids - isoprene rules- structural elucidation - synthesis of geraniol- α -pinene - camphor - diterpenoids - carotenoid- introduction - structure - synthesis of β -carotene - lycopene.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Steroids: Introduction - nomenclature of steroids - Blanc's rule - Barbier-Wieland degradation -oppenauer oxidation - Diel's hydrocarbon - chemistry of cholesterol - ergosterol -Vitamin-D. Flavonoids and Isoflavonoids:	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
	Occurrence, nomenclature and general methods of structure determination, isolation - structure elucidation -synthesis of kaempferol - quercetin - cyanidin- genestein.	10	CO2, CO3, CO4, CO5	K4, K5
V	Vitamins: Classification - structure of water soluble - fat-soluble vitamins - plant and animal sources- vitamins as coenzymes-deficiency of vitamins and their effects.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment:(Not to be included for External Examination)Definition - isolation and purification of alkaloids- terpenes - flavonoids.	-	CO2, CO3	K2, K3

Text Books

- 1. Chatwal G.R, (1990), Natural Products Chemistry-Vol. I & II, Himalaya Bombay.
- 2. Agarwal, O.P, Goel Gorakhpur (1985), Chemistry of Natural Products-Vol. I & II:
- 3. Longmann E.L, London B.S, (2000), Organic Chemistry-Vol. I-II: I. L. Finar.
- Sujatha V. Bhat, Nagasampige B.A & Sivakumar M, (2006), Chemistry of Natural Products:, 2ndreprint, Springer.

Reference Books

- Dewick P.M (2009), Medicinal Natural Products: A Biosynthetic Approach", 2nd Edition, Wiley& Sons.
- Graham Solomons T.W, Craig B. Fryhle, Scott A. Snyder (2013), Organic Chemistry, 11thEdition, International Student Version, John Wiley &Sons. Himalaya Publishing House.

Web References

- 1. https://chemnote.weebly.com/uploads/2/5/8/6/25864552/alkaloids.pdf.
- 2. https://www.vedantu.com/biology/steroid.
- 3. <u>https://www.slideshare.net/TareqAspirant/a-short-note-on-vitamins</u>.
- 4. <u>https://www.tuscany-diet.net/2014/01/22/flavonoids-definition-structure-</u> classification.
- 5. https://www.intechopen.com/chapters/62573.
- 6. https://gcwgandhinagar.com/econtent/document/1588068142ch-1.pdf.

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. C. Rajarajeswari

Semester II	Internal Marks: 2	External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	Hrs. /	CREDITS
CODE			Week	
23PCH2CCC1C	MOLECULAR REARRANGEMENT	CORE CHOICE	6	4
		COURSE		

Course Objectives

- > To learn about the reactions intermediates involved in rearrangement reactions.
- > To learn about the basic concepts about the electrophilic and nucleophilic rearrangement reactions.
- > To learn the concept and mechanism of rearrangement reactions.

Prerequisites

Reaction intermediates, nitrenes, carbenes, electrophilic, nucleophilic, naming

reactions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Know the outline for determining nature of rearrangements.	K1, K2
CO2	Interpret the reaction mechanism in various organic reactions.	K2
CO3	Classify the different types of intermediates involving in organic rearrangement reactions.	К3
CO4	Recognize the technique of identifying reaction mechanism in various naming reactions.	K4
CO5	Predict the mechanism, different intermediates and product of molecular rearrangement reactions.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

3" – Substantial (High) Correlation "-" Indicates there is No Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIV
				E LEVEL
Ι	Molecular Rearrangements:	18	CO1,	K1, K2, K3,
	Introduction - intermolecular - intra molecular		CO2, CO3.	K4, K5
	rearrangement - intermediates - classification based on		CO4,	
	migration origin and migration terminus - rearrangement		C05	
	to electron - deficient carbon - Wagner - Meerwein			
	rearrangement - pinacol rearrangement - Wolff			
	rearrangement - benzyl - benzilic acid rearrangement -			
	allylic rearrangement - Sommelet - Hauser rearrangement			
	- Tiffeneau - Demjanov rearrangement.			
II	Rearrangement to electron-deficient nitrogen:	18	C01,	K1, K2, K3,
	Beckmann rearrangement - Schmidt rearrangement -		CO2, CO3.	K4, K5
	Hofmann rearrangement - Curtius rearrangement - Lossen		CO4,	
	rearrangement -Neber rearrangement - Stieglitz		CO5	
	rearrangement - rearrangements with acyl carbenes -			
	Arndt-Eistert Reaction - diazo ketone reactions.			
III	Rearrangement to electron-deficient oxygen: Baeyer -	18	CO1,	K1, K2, K3,
	Villiger oxidation - cumene hydroperoxide rearrangement		CO2, CO3.	K4, K5
	- phenol rearrangement - Dakin reaction - free radical		CO4,	
	rearrangements - sigmatropic rearrangement -		C05	
	classification - [1,2] shift - [1,3] shift - [3,3] shift -			
	Claisen rearrangement - Cope rearrangement.			
IV	Migration from N- to ring carbon rearrangement:	18	CO1,	K1, K2, K3,
	Hoffmann Martius rearrangement - Orton rearrangement -		CO2, CO3.	K4, K5
	benzidine - semidine rearrangement - Bamberger		CO4,	
	rearrangement - migration to electron rich carbon center -		C05	
	Fries rearrangement - Favorski rearrangement.			

V	Free radical rearrangement Introduction - addition - substitutions - fragmentations - homolysis and free radical displacement - Hunsdieker reaction - Birch reduction - acyloin condensation – Homobenzylic rearrangement - Barton rearrangement- Hoffmann-Loffler-Freytag reaction.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment:(Not to be included for External Examination)Aldol condensation - allylic rearrangement -Ullmannreaction - Sandmeyer reaction - Perkin reaction -photochemical reaction - thermal fission reaction -oxidation - reduction reaction.	_	CO1, CO2	K1 K2, K3

Text Books

- Tewari, .K.S, Vishil, N.K, & Mehotra N.S (2001), A text book of org. chem 1st edition, Vikas Publishing House Pvt Ltd., New Delhi.
- 2. Soni P.L (2005), Text Book of Organic chemistry, Sultans Chand, 1991, New Delhi.
- 3. Bahl & Arun Bahl (2005), Organic Chemistry, S. Chand and Sons, New Delhi.
- Agarwal O.P (2002), Chemistry of Organic Natural Products, Vol 1 and 2, Goel Pub. House.
- Gurdeep Chatwal (2002), Chemistry of Organic Natural Products, Vol 1 and 2, Goel Pub. House.

Reference Books

- Sharma, Y.R & Vig O.P (1997), Elementary organic absorption spectroscopy 1st edition, Goel Pulishers, Meerut.
- Morrison R.T & Boyd R.N (1992), Organic Chemistry, 6th edition, PHI Limited, New Delhi.
- Jerry March (1992), Advanced Organic Chemistry, 4th edition, John Wiley and Sons, New York.
- 4. Pine S.H (1987), Organic Chemistry, 5th edition, McGraw Hill International Edition, Chemistry Series, New York.

Web References

- 1.<u>https://tmv.ac.in/ematerial/chemistry/kpb/SEM_IV_Honours_Rearrangement%20final.</u> <u>pdf</u>.
- 2. <u>https://pt.slideshare.net/ranianjali/molecular-rearrangements-involving-electron-</u> deficient-nitrogen-as-an-intermediate.
- 3. https://tmv.ac.in/ematerial/chemistry/kpb/SEM_IV_Honours_Rearrangement.pdf.
- 4. <u>https://www.slideshare.net/RakeshAmrutkar/molecular-rearrangement-182395340</u>.
- 5. https://www.slideshare.net/VIKASMATHAD1/free-radicals-84891258.

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

Dr. K. Uma Sivakami

Semester II	Internal Marks:4	External Marks:60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH2CC3P	INORGANIC CHEMISTRY -I (P)	CORE PRACTICAL	6	5

Course Objectives

To perform the semi-micro qualitative analysis and to estimate the metal ions using

photoelectric colorimeter.

Prerequisites

Separation of cations and anions, qualitative analysis

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the preparation of original solution and separation of mixture into cations.	K2
CO2	Demonstrate the estimation of metal ions using spectrophotometer	K2
CO3	Identify the cations using appropriate test and reagents	К3
CO4	Differentiate various concentration terms and to draw calibration curve	K4
CO5	Apply the laws of absorption for calculating the concentration of unknown solution.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	2	2	2	1	1	2	2	1
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"-Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

Syllabus

1. Semi-micro qualitative analysis of a mixture containing two common cations (Pb, Bi, Ca, Cd, Fe, Cr, Al, Co, Ni, Mn, Zn, Ba, Sr, Ca, Mg,) and two less common cations (W, Tl, Se, Te, Mo, Ce, Th, Zr, Ti, V, U, Li).

2. Quantitative Estimation of copper, iron, nickel, chromium and manganese ions using photoelectric colorimeter

Text Books

- 1. Vogel.A.I (2000), Text Book of Quantitative Inorganic Analysis, Longman.
- 2. RamanujamV.V (1988), Inorganic Semimicro Qualitative Analysis, National Pubs.
- Svehla.G. (1987), Text Book of Macro and Semimicro Qualitative Inorganic analysis, Longman.
- 1. Vogel.A.IT atchell. A.R, Furniss B.S, Hannaford.A. J &SmithP.W. G, (1989), Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall.

Web References

- 1. <u>https://iscnagpur.ac.in/study_material/dept_chemistry/4.1_MIS_and_NJS_Manual_fo</u> <u>r_Inorganic_semi-micro_qualitative_analysis</u>
- 2. https://byjus.com/chemistry/systematic-analysis-of-cations
- 3. https://www.uou.ac.in/sites/default/files/slm/MSCCH-505L.pdf

Pedagogy

E-content, Demo, Hands on training

Course Designers

Dr. K. Shenbagam

Semester II	Internal Marl	ks: 25	External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS	
CODE					
23PCH2DSE2A	GREEN	DISCIPLINE	6	3	
	CHEMISTRY	SPECIFIC			
		ELECTIVE			

Course Objectives

- To know about twelve principles of green chemistry, eco-friendly synthesis using microwave, ionic liquid and phase transfer catalyst.
- > To know the synthesis of organic compounds in greener way.
- To gain knowledge about the use of environmentally friendly practices in reducing pollution.

Prerequisites

Pollution, hazardous chemicals, toxic chemicals. catalyst, condensation, substitution, elimination, oxidation, reduction.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive					
Number	On the successful completion of the course, students will be able to						
CO1	Describe the basics of green chemistry and organic synthesis.	K1					
CO2	Understand the importance of solvents, solid-state reactions, phase transfer catalyst and alternative energy sources.	K2					
CO3	Apply green synthesis for synthesizing different organic compounds.	K3					
CO4	Analyze the applications of green synthesis.	K4					
CO5	Create a new route for the synthesis of organic compounds.	K5					

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3	2	2	2	2	2
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

UNIT	CONTENT	HOURS	COs	COGNIT
				IVE
				LEVEL
Ι	Introduction to Green Chemistry: Introduction - need of green chemistry - twelve principles of green chemistry - planning a green synthesis - percentage atom utilization - evaluating the type of the reaction	18	CO 1, CO 2, CO 3, CO 4, CO 5	K1, K2, K3, K4, K5
	involved - selection of appropriate solvents - selection of starting materials - use of catalyst - international organizations promoting green chemistry.			
Π	Organic Synthesis in Green Solvents: Introduction, reactions in water - pericyclic reactions - Claisen rearrangement - Wittig-Horner reaction - Knoevenagel reactions - pinacol coupling - aldol condensation - benzoin condensation - Heck reaction - Wurtz reaction - Mannich reactions - organic synthesis in supercritical carbon dioxide - Diels-Alder reaction - Kolbe- Schmitt synthesis - reaction in ionic liquids - types - preparations - synthetic applications.	18	CO 1, CO 2, CO 3, CO 4, CO 5	K1, K2, K3, K4, K5
III	Organic synthesis using ionic liquids: Introduction - types of ionic liquids - preparation of ionic liquids - applications - conversion of epoxides to halohydrins - thiocyanation of alkyl halides - Biginelli reaction - synthesis of homoallylic amines - cyclic carbonates - tonalid - traseolide - 1-acetyl naphthalene - biotransformation in ionic liquids - transesterification reactions - ammoniolysis of carboxylic acids - synthesis of Z-aspartame.	18	CO 1, CO 2, CO 3 CO 4, CO 5	K1, K2, K3, K4, K5

IV	Alternate Energy Processes in Chemical Synthesis:	18	CO 1,	K1,
	Microwave assisted organic synthesis - introduction -		CO 2, CO 3	K2, K3
	reactions in water - Hofmann elimination - hydrolysis of		CO 4,	K4,
	benzyl chloride -benzamide - coupling reactions - reactions		CO 5	K5
	in organic solvents - Baylis - Hillman reaction –			
	esterification - Fries rearrangement - synthesis of chalcones			
	- ultrasound assisted organic synthesis - introduction -			
	homogenous sonochemical reactions - Curtius			
	rearrangement - organometallic reactions - addition			
	reactions - heterogenous liquid - liquid reactions - solid-			
	liquid reactions.			
V	Phase Transfer Catalysts:	18	CO 1,	K1,
	Introduction - mechanism of phase transfer reaction - types -		CO 2, CO 3	K2, K3.
	advantages of phase transfer catalyst - applications of phase		CO 4,	K4,
	transfer catalyst in organic synthesis - Darzen reaction -		CO 5	K5
	Michael addition - Benzoin condensation - Wittig reaction -			
	oxidation reactions using permanganate - chromate -			
	hypochloride -osmium tetraoxide - potassium ferricyanide -			
	peroxides - reduction reactions.			
VI	Self-Study for Enrichment:	-	CO 1,	K1,
	(Not to be included for External Examination)		CO 2	K2
	Properties of CO_2 - Phase diagram for CO_2 - Uses of CO_2 in			
	dry cleaning - instrumentation - types of sonochemical			
	reaction in ultrasound assisted green synthesis.			

Text Books

- 1. Kumar, V. (2007) An Introduction to Green Chemistry. Vishal Publishing Co. Jalandhar.
- 2. Ahluwalia. V. K. An Introduction to Green Chemistry. Narosa Publishing.
- 3. Anastas. P. T., and Warner, J. C. (2008). Green Chemistry. Oxford University Press.

Reference Books

- Ahluwalia. V. K., and Kidwai, M. (2007). New Trends in Chemistry. Anamaya Publishers. 2nd Edition.
- Ahluwalia. V. K., and Varma, R. S. (2009). Green Solvents. Narosa Publishing. 1st Edition.

Web References

- 1. <u>https://www.epa.gov/greenchemistry/basics-green-chemistry.</u>
- 2. https://pubs.rsc.org/en/content/articlelanding/2005/gc/b418069k.
- 3. <u>https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text=</u> The%20solid%2Dphase%20organic%20synthesis%20(SPOS)%20has%20emerge d%20as,chemistry%20to%20discover%20new%20hits.&text=In%20SPOS%2C3 %20the%20solid,to%20drive%20reactions%20to%20completion.
- 4. <u>https://www.organic-chemistry.org/topics/sonochemistry.shtm</u>.
- 5. https://www.sciencedirect.com/topics/chemistry/phase-transfer-catalyst.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

> Dr. S. Devi

Semester II	Internal Marks	:: 25	External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS	
CODE					
23PCH2DSE2B	FORENSIC CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE	6	3	

Course Objectives:

> To identify the physical and biological evidences.

- > To asset the various system of finger prints, forgery and natural origin.
- > To explore the processing and usage of explosives.

Prerequisites

Terminologies, fingerprint, counterfitting, explosions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement						
Number	er On the successful completion of the course, students will be able to						
CO1	Identify the fundamental principles and functions of forensic science.	K1					
CO2	Apply the principles of Spectroscopy in forensic science.						
CO3	Analyze the techniques involved in the field of forensics.	K3					
CO4	Appraise the role of chemistry and other branches in forensics.	K4					
CO5	Feasibility and evaluation of explosives.	K5					

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	2	2
CO3	2	3	3	3	3	2	3	3	3	2
CO4	3	3	2	3	2	3	2	2	2	2
CO5	2	3	1	2	3	3	3	3	2	3

"1" – Slight (Low) Correlation
"2" – Moderate (Medium) Correlation
"3" – Substantial (High) Correlation "-" Indicates there is No Correlation.

UNIT	CONTENT	HOUR	COs	COGNITIVE	
		S		LEVEL	
I	Introduction to Forensic Science: Functions of forensic science - historical aspects of forensic science - definitions - concepts in forensic science - scope of forensic science - need of forensic science - basic principles of forensic science - branches of forensic science - forensic science in international perspectives.	18	CO 1, CO 2, CO 3, CO 4, CO 5	K1,K2,K3, K4,K5	
Π	Chemistry of Forensic Investigations: Definition of physical evidence - classification of physical evidence - types of physical evidences - glass - soil - physical properties - comparing glass fragments - collection - preservation of glass evidence - forensic characteristics of soil - collection - preservation of soil evidence - fingerprints - fundamental principles of fingerprints - classification of fingerprints methods of detecting fingerprints - preservation of developed prints - document - voice examination - collection of handwriting exemplars - typescript comparisons - inks and papers - alterations - erasures - obliterations.	18	CO 1, CO 2, CO 3, CO 4, CO 5	K1, K2, K3, K4, K5	
III	Technological Methods in Forensic Science: Chromatographic methods - fundamental - principles - forensic applications of thin layer chromatography - gas chromatography - liquid chromatography - spectroscopic methods - fundamental principles - forensic applications of ultraviolet - visible spectroscopy - infrared spectroscopy - atomic absorption spectroscopy - atomic emission spectroscopy - mass spectroscopy - X-ray spectrometry - colorimetric analysis - Lambert-Beer law.	18	CO 1, CO 2, CO 3 CO 4, CO 5	K1,K2,K3, K4,K5	

IV	Forgery and Counterfeiting:	18	CO 1,	K1,K2,K3,
	Detecting forgery in bank cheques / drafts - educational		CO 2,	K4,K5
	records (mark lists, certificates) using UV-light - alloy		CO 3, CO 4,	
	analysis using AAS to detect counterfeit coins - checking		CO 5	
	silverline water mark in currency notes - jewellery -			
	detection of gold - purity in 22 carat ornaments - detecting			
	gold plated jewels - authenticity of diamonds - natural -			
	synthetic - glassy.			
V	Explosive and Explosion:	18	CO 1,	K1,K2,K3,
	Introduction - classification of explosives - primary -		CO 2,	K4,K5
	secondary or high explosive - detonator pyro technique		CO 3, CO 4	
	secondary of high explosive - deconator pyro teeninque		CO 4, CO 5	
	propellant IEDs - firing mechanism of IEDs - evaluation -			
	assessment of explosion.			
VI	Self-Study for Enrichment:	-	CO 1,	K1,K2,K3,
	(Not to be included for External Examination)		CO 2,	K4
	Role of Forensic scientist in Post blast investigation -		CO4	
	collection of samples - explosion effects - technical report			
	frame work.			

Text Books

- 1. Eckert G. William, (1996), Introduction to forensic sciences, New york, washington, CRC, Press.
- 2. Kemp, W. (1991) Organic Spectroscopy, 3rd Edition, Macmillan, Hampshire.
- 3. Henry, C. (2006) Physical Evidence in Forensic Science.
- 4. Nanda, B.B. and Tewari, R.K. (2001) Forensic Science in India: A vision for the twenty first century Select Publisher, New Delhi.

Reference Books

- Tiwari, R. K., & Nanda, B. K. (2014) Forensic Science in India: A vision for the 21st Century.
- 2. Nordby, J. J., & James, S. H. (2019). An Introduction to Scientific and Investigative Techniques
- 3. James, S. H., & Nordby, J.J. (2003) Forensic Science: An introduction to scientific and investigative techniques CRC Press.

Web References

- 1. <u>https://digitalcommons.njit.edu/cgi/viewcontent.cgi?article=1432&context=chemsyllabi</u>.
- 2. https://www.aknu.edu.in/Academics/links/AAF/PG2021 22/M.Sc.%20FSc%20Chem%20&%20Tox.pdf
- 3. https://www.routledge.com/Introduction-to-Forensic-Chemistry/Elkins/p/book/9781032094632.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

➢ Dr. R. Subha

Semester II	Internal Marks	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs. /	CREDITS
			Week	
23PCH2DSE2C	ANALYTICAL	DISCIPLINE	6	3
	CHEMISTRY	ELECTIVE COURSE		

Course Objectives

- > To acquire the knowledge of basic principles and theory behind analytical techniques.
- > To know the separation of chemical compounds from mixtures.
- > To gain knowledge about the application of analytical techniques to analysis chemical compounds.

Prerequisites

Adsorption, elution, solubility, electromagnetic radiation.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe the basic concepts of data analysis, chromatography, electroanalytical	K1
	methods, thermal methods and flame photometry.	
CO2	Understand the theory of various analytical techniques.	K2
CO3	Illustrates the instrumentation, experimental and purification details of analytical	K3
	techniques.	
CO4	Compare various analytical techniques based on their principle	K4
	and applications.	
CO5	Evaluate the applications of data analysis, chromatography,	K5
	electroanalytical methods, thermal methods and flame photometry.	

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	2	2
CO4	3	3	2	2	3	3	3	2	2	2
CO5	3	3	2	3	3	3	3	3	2	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Introduction to Analytical Chemistry:	18	CO1,	K1, K2, K3,
	Analytical chemistry - role of analytical chemistry -		CO2,	K4, K5
	classification - advantages - limitations of analytical		CO3,	
	methods - safety in laboratory - errors - types - definitions		CO4,	
	of relative error - absolute error - significant figures -		CO4	
	mean - median - standard deviation - sensitivity -			
	detection limits - precision - accuracy - confidence limit -			
	test of significance - Q - test, F - test - T - test -			
	minimization of errors.			
II	Chromatography I:	18	CO1,	K1, K2, K3,
	Chromatography - introduction - definition - types -		CO2,	K4, K5
	principles - theories - experimental details - advantages -		CO3,	
	limitations - applications of paper chromatography - thin		CO4,	
	layer chromatography - liquid - liquid partition		CO5	
	chromatography - column chromatography.			
III	Chromatography II:	18	CO1,	K1, K2, K3,
	Introduction, principle, instrumentation, advantages,		CO2,	K4, K5
	limitations and applications of gas chromatography, gel		CO3,	
	permeation chromatography, silver impregnated ion		CO4,	
	exchange chromatography. Principle, instrumentation		CO5	
	and applications of high performance liquid			
	chromatography, gas chromatography - mass			
	spectroscopy.			
IV	Purification techniques:	18	C01,	K1, K2, K3,
	Purification of solid organic compounds -		CO2,	K4, K5
	recrystallization - use of miscible solvents - use of drying		CO3,	
	agents - properties - sublimation - experimental		CO4,	
	techniques of distillation - fractional distillation -		CO5	
	distillation under reduced pressure – extraction - use of			
	immiscible solvents - solvent extraction - chemical			
	methods of purification.			

V	Thermal Methods and Flame Photometry:	18	CO1,	K1, K2, K3,
	Thermogravimetry - Introduction - principle -		CO2,	K4, K5
	instrumentation - derivative thermogravimetry analysis -		CO3,	
	factors affecting TGA - applications of TGA for		CO4,	
	quantitative analysis of calcium carbonate - copper		CO5	
	sulphate pentahydrate - calcium oxalate hydrate -			
	differential thermal analysis - Introduction - principle of			
	working - factors affecting DTA - applications - flame			
	photometry - introduction - principles - instrumentation -			
	advantages - limitations - applications.			
VI	Self-Study for Enrichment	-	CO1,	K1, K2, K3
	(Not to be included for External Examination)		CO2,	
	Methods of expressing accuracy and precision -		CO3	
	fractional distillation - column chromatography -			
	chemical methods of purification - gas chromatography -			
	applications of TGA.			

Text Books

- 1. Skoog. D. A., West. D. M., & Holler. H. J. (1992). Fundamentals of Analytical Chemistry.
- Chatwal, G. R., and Anand. S. (1999). Instrumental Method of Analysis. Himalya Publishing House, 13th reprint.
- 3. Srivastava. A. k., and Jain, P. C. Instrumental Approach to Chemical Analysis.
- 4. Allen J. Bard and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications.

Reference Books

1. Skoog, D. A., Holler, F. J., & Crouch, R. (2006). Principles of Instrumental Analysis. 6th Edition.

2. Vogel's Textbook of Quantitative Chemical Analysis, Pearson Education. 6th Edition.

3. Kaur, H. Instrumental Methods of Chemical Analysis. Pragati Edition.

Web References

- 1. https://www.simplilearn.com/data-analysis-methods-process-types-article.
- 2. https://www.britannica.com/science/chromatography.
- 3. <u>https://microbenotes.com/high-performance-liquid-chromatography-hplc/</u>
- 4. <u>https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_</u> Modules (Analytical Chemistry)/Instrumentation and Analysis/Cyclic Voltammetry.
- 5. https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

1. Dr. G. Sivasankari

2. Dr. S. Devi