# **CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)**

Nationally Accredited with 'A+' Grade by NAAC

# PG AND RESEARCH DEPARTMENT OF

## MATHEMATICS



# B.Sc., MATHEMATICS AUTONOMOUS SYLLABUS (2025-2026 and ONWARDS)

# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

#### **VISION**

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

#### **MISSION**

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

# **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)**

| PEOs | Statements                                                                                                                                                                                                                        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEO1 | LEARNING ENVIRONMENT                                                                                                                                                                                                              |
|      | To facilitate value-based holistic and comprehensive learning by<br>integrating innovative learning practices to match the highest quality<br>standards and train the students to be effective leaders in their chosen<br>fields. |
| PEO2 | ACADEMIC EXCELLENCE                                                                                                                                                                                                               |
|      | To provide a conducive environment to unleash their hidden talents and<br>to nurture the spirit of critical thinking and encourage them to achieve their<br>goal.                                                                 |
| PEO3 | EMPLOYABILITY                                                                                                                                                                                                                     |
|      | To equip students with the required skills in order to adapt to thechanging global scenario and gain access to versatile career opportunities in multidisciplinary domains.                                                       |
| PEO4 | PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY                                                                                                                                                                                     |
|      | To develop a sense of social responsibility by formulating ethics and<br>equity to transform students into committed professionals with a strong<br>attitude towards the development of the nation.                               |
| PEO5 | GREEN SUSTAINABILITY                                                                                                                                                                                                              |
|      | To understand the impact of professional solutions in societal and<br>environmental contexts and demonstrate the knowledge for an overall<br>sustainable development.                                                             |

# PROGRAMME OUTCOMES FOR B.Sc Mathematics, B.Sc Physics, B.Sc Chemistry PROGRAMME

After completing a B.Sc., programme, a learner will be able to

| PO NO. | On completion of D.S. Methometics / D.S. Dhusies / D.S. Chemistry        |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------|--|--|--|--|--|--|
| PU NO. | On completion of B.Sc Mathematics / B.Sc Physics / B.Sc Chemistry        |  |  |  |  |  |  |
|        | Programme, the students will be able to                                  |  |  |  |  |  |  |
| PO1    | DOMAIN KNOWLEDGE                                                         |  |  |  |  |  |  |
|        | Analyse, design and develop solutions by applying from fundamental       |  |  |  |  |  |  |
|        | concepts of basic sciences and expertise in discipline.                  |  |  |  |  |  |  |
| PO2    | PROBLEM SOLVING                                                          |  |  |  |  |  |  |
|        | Ability to think abstractly, to evaluate and concentrates effectively on |  |  |  |  |  |  |
|        | problem-solving, as well as knowledge of global challenges.              |  |  |  |  |  |  |
| PO3    | CREATIVE THINKING AND TEAM WORK                                          |  |  |  |  |  |  |
|        | Develop prudent decision-making skills and mobility to work in teams     |  |  |  |  |  |  |
|        | to solve multifaceted problems.                                          |  |  |  |  |  |  |
| PO4    | EMPLOYABILITY                                                            |  |  |  |  |  |  |
|        | Self-study acclimatize them to observe effective interactive practices   |  |  |  |  |  |  |
|        | for practical learning enabling them to be a successful science          |  |  |  |  |  |  |
|        | graduate.                                                                |  |  |  |  |  |  |
| PO5    | LIFE LONG LEARNING                                                       |  |  |  |  |  |  |
|        | Assure consistent improvement in the performance and arouse interest     |  |  |  |  |  |  |
|        | to pursue higher studies in premium institutions.                        |  |  |  |  |  |  |

## PROGRAMME SPECIFIC OUTCOMES FOR B.Sc

### **MATHEMATICS**

| PSO<br>NO. | The Students of B.Sc Mathematics will be able to                                                      | POs<br>Addressed |
|------------|-------------------------------------------------------------------------------------------------------|------------------|
| PSO1       | Procure a precise understanding of the mathematical concepts.                                         | PO1, PO3         |
| PSO2       | Excel by enhancing interpersonal skills, overcoming procedural challenges and intending career paths. | PO3, PO4         |
| PSO3       | Recognize, strengthen and analyse mathematical problems in order to acquire better conclusion.        | PO4, PO5         |
| PSO4       | Manipulate numerical abilities across a variety of domains.                                           | PO2, PO5         |
| PSO5       | Develop and desire to learn more about advanced mathematics and its applications.                     | PO5              |



#### CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS B.Sc MATHEMATICS PROGRAMME STRUCTURE

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS-LOCF) (For the candidates admitted from the Academic year 2025-2026 Onwards)

| ter      | ť    |                                                    |                                                    |            | Hrs.<br>ek           | its     |       | Exar | n     | al    |
|----------|------|----------------------------------------------------|----------------------------------------------------|------------|----------------------|---------|-------|------|-------|-------|
| Semester | Part | Course                                             | se Course Title` Course Code                       |            | lnst. Hrs.<br>/ week | Credits | Hrs.  | Ma   | arks  | Total |
| Se       |      |                                                    |                                                    |            | Ir                   |         | Щ     | Int  | Ext   |       |
|          |      |                                                    | தமிழ் இலக்கிய<br>வரலாறு- I                         | 25ULT1     |                      |         |       |      |       |       |
|          | I    | Language Course                                    | Hindi Ka Samanya Gyan Aur<br>Nibandh               | 23ULH1     | 6                    | 3       | 3     | 25   | 75    | 100   |
|          | -    | – I (LC)                                           | Poetry, Grammar and History of Sanskrit Literature | 23ULS1     | 0                    | U       | U     |      | , 0   | 100   |
|          |      |                                                    | Foundation Course: Paper I-<br>French I            | 23ULF1     |                      |         |       |      |       |       |
|          | II   | English Language<br>Course – I (ELC)               | General English-I                                  | 23UE1      | 6                    | 3       | 3     | 25   | 75    | 100   |
| Ι        |      | Core Course – I<br>(CC)                            | Algebra and Trigonometry                           | 23UMA1CC1  | 4                    | 4       | 3     | 25   | 75    | 100   |
|          | III  | Core Course – II<br>(CC)                           | Differential Calculus                              | 23UMA1CC2  | 5                    | 4       | 3     | 25   | 75    | 100   |
|          | 111  | First Allied Course<br>- I (AC)                    | Mathematical Statistics                            | 23UMA1AC1  | 5                    | 4       | 3     | 25   | 75    | 100   |
|          |      | First Allied Course<br>– II (AP)                   | Programming Language<br>using MATLAB (P)           | 23UMA1AC2P | 2                    | 2       | 3     | 40   | 60    | 100   |
|          | IV   | Ability<br>Enhancement<br>Compulsory<br>Course – I | UGC Jeevan Kaushal<br>Universal Human Values       | 25UGVE     | 2                    | 2       | -     | 100  | -     | 100   |
|          |      | (AECC)                                             |                                                    |            |                      |         |       |      |       |       |
|          |      |                                                    |                                                    | Total      | 30                   | 22      |       |      |       | 700   |
|          | E    | xtra Credit Course                                 | SWAYAM                                             |            | As pe                | er UG   | iC Re | comn | nenda | tion  |

#### Note:

Part-I-Language-Tamil/Hindi/French/Sanskrit

Part – II- English

#### List of Allied Courses:

Allied Course I- Mathematical Statistics

Allied Course II- Computer Science

| Part | Course                           | No. of  | Hours/ | Credits | Total   |
|------|----------------------------------|---------|--------|---------|---------|
|      |                                  | Courses | Course |         | Credits |
| Ι    | Tamil/ Other Language            | 4       | 6      | 12      | 12      |
| II   | English                          | 4       | 6      | 12      | 12      |
|      | Core (Theory)                    | 13      | 4/5    | 13*4=52 |         |
|      | Core (Theory)                    | 2       | 6      | 2*5=10  |         |
|      | Core Practical                   | 1       | 2      | 1*2=2   | 98      |
|      | Cyber Security                   | 1       | 5      | 1*4=4   |         |
| III  | Project Work                     | 1       | 4      | 4       |         |
|      | Internship                       | 1       | -      | 2       |         |
|      | First Allied                     | 3       | 5/4/3  |         |         |
|      | Second Allied                    | 3       | 5/4/3  | 3*3=9   |         |
|      | DSE                              | 2       | 5      | 2*3=6   |         |
|      | GEC                              | 2       | 2      | 2*2=4   |         |
|      | SEC                              | 2       | 2      | 2*2=4   |         |
| IV   | AECC-I -Universal                | 1       | 2      | 2       |         |
|      | Human Values                     |         |        |         |         |
|      | AECC-II-Environmental            | 1       | 2      | 2       | 17      |
|      | Studies                          |         |        |         | 17      |
|      | AECC-III-Innovation              | 1       | 2      | 1       |         |
|      | and Entrepreneurship             |         |        |         |         |
|      | AECC-IV-Health and               | 1       | -      | 1       |         |
|      | Wellness<br>AECC-V- Professional | 1       | 2      | 2       |         |
|      | Skills                           | 1       | Z      | Z       |         |
|      | AECC-VI- Gender                  | 1       | 1      | 1       |         |
|      | Studies                          |         |        |         |         |
| V    | Extension Activities             | 0       |        | 1       | 01      |
|      |                                  | 45      |        | 140     | 140     |

The Internal and External marks for Theory and practical papers are as follows:

| Subject   | Internal Marks | External Marks |
|-----------|----------------|----------------|
| Theory    | 25             | 75             |
| Practical | 40             | 60             |

#### FOR THEORY:

The passing minimum for CIA shall be 40% out of 25 marks [i.e. 10 marks].

The passing minimum for University Examinations shall be 40% out of 75 marks [ i.e. 30 marks]. **FOR PRACTICAL:** 

The passing minimum for CIA shall be 40% out of 40 marks [i.e. 16 marks].

The passing minimum for University Examinations shall be 40% out of 60 marks [ i.e. 24 marks].

# I SEMESTER

#### **CORE COURSE – I (CC)**

#### ALGEBRA AND TRIGONOMETRY

#### (2023-2024 Onwards)

| Semester I     | Internal M                     |                      | External     |         |
|----------------|--------------------------------|----------------------|--------------|---------|
| COURSE<br>CODE | COURSE TITLE                   | Marks:75<br>CATEGORY | Hrs<br>/Week | CREDITS |
| 23UMA1CC1      | ALGEBRA<br>AND<br>TRIGONOMETRY | CORE                 | 4            | 4       |

### **Course Objective**

- Basic ideas on the Theory of Equations, Matrices and Number Theory.
- Knowledge to find expansions of trigonometry functions, solve theoretical and applied problems.
- Understanding of how Hyperbolic functions can be used as a powerful tool in solving problems in science.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

|        | CO Statement                                         | Cognitive |
|--------|------------------------------------------------------|-----------|
| CO     | On the successful completion of the course, students | Level     |
| Number | will be able to                                      |           |
| CO1    | Define and interpret on reciprocal equations         | K1, K2    |
| CO2    | Illustrate the sum of binomial, exponential and      | K3        |
|        | logarithmic series                                   |           |
| CO3    | Compute Eigen values, eigen vectors, verify Cayley - | K3        |
|        | Hamilton theorem and diagonalize a given matrix.     |           |
| CO4    | Determine the powers and multiples of trigonometric  | K4        |
|        | functions in terms of sine and cosine.               |           |
| CO5    | Evaluate the relationship between circular and       | K5        |
|        | hyperbolic functions and the summation of            |           |
|        | trigonometric series.                                |           |

#### Mapping of CO with PO and PSO

| COs        | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1        | 3    | 3    | 2    | 3    | 2    | 3   | 3   | 3   | 2   | 2   |
| CO2        | 3    | 3    | 3    | 2    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO3        | 3    | 3    | 3    | 3    | 3    | 3   | 2   | 2   | 2   | 2   |
| <b>CO4</b> | 3    | 2    | 3    | 3    | 2    | 3   | 3   | 3   | 2   | 2   |
| CO5        | 2    | 2    | 3    | 2    | 2    | 3   | 3   | 2   | 2   | 2   |

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

### Syllabus

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOURS | COs                                 | COGNITIVE<br>LEVEL             |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------------|
| Ι    | Reciprocal Equations - Standard form - To<br>increase or decrease the roots of a given equation by a<br>given quantity- Removal of terms- Horner's method –<br>related problems.                                                                                                                                                                                                                                                                                                   | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| II   | Binomial Series– The following are the<br>deductions from the Binomial Series - Approximations<br>using Binomial Series- The Exponential Series – The<br>Logarithmic series- related problems.                                                                                                                                                                                                                                                                                     | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| III  | Inverse matrix -Characteristic equation – Eigen<br>values and Eigen Vectors-Similar matrices - Cayley –<br>Hamilton Theorem (Statement only) - Finding powers of<br>square matrix, Inverse of a square matrix up to order 3,<br>Diagonalization of square matrices - related problems.                                                                                                                                                                                             | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| IV   | Expansions of $\cos n\theta$ and $\sin n\theta$ - Expansion of<br>tan $n\theta$ in powers of $\tan \theta$ - Expansion of $\tan (A+B+C+)$<br>- Powers of sines and cosines of $\theta$ in terms of functions of<br>multiples of $\theta$ , Expansions of $\cos^{n}\theta$ , $\sin^{n}\theta$ ,<br>$\sin^{n}\theta\cos^{n}\theta$ when n is a positive integer - Expansions of<br>sin $\theta$ and $\cos \theta$ in a series of ascending powers of $\theta$ -<br>related problems. | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| V    | Hyperbolic functions – Relation between<br>circular and hyperbolic functions - Inverse hyperbolic<br>functions - Logarithm of complex quantities - related<br>problems.                                                                                                                                                                                                                                                                                                            | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| VI   | Self Study for Enrichment:<br>(Not included for End Semester Examination)<br>Symmetric function of the roots - Partial<br>Fractions- Rank of a matrix - To resolve into factors the<br>expression $x^n - a^n, x^n + a^n$ - Summation of<br>trigonometric series.                                                                                                                                                                                                                   | -     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |

### **Text Books**

- Manicavachagom Pillay, T.K, Natarajan T, Ganapathy K S (2018). Algebra, Volume I. S.Viswanathan (Printers & Publishers), Pvt. Ltd.
- Sudha S (1998). Algebra, Analytical Geometry(2D) and Trigonometry. Emerald Publishers.

- Manicavachagom Pillay, T.K, Natarajan T, Ganapathy K S (2015). Algebra, Volume II. S.Viswanathan (Printers & Publishers), Pvt. Ltd.
- Narayanan, S, Manicavachagom Pillay, T.K (2013). *Trigonometry*. S.Viswanathan (Printers & Publishers), Pvt. Ltd.

#### **Chapters and Sections**

- UNIT-I Chapter VI: Sections 16-17,19, 30 [1]
- UNIT-II Chapter I: Sections 1.1-1.5 [2]
- UNIT-III Chapter II: Sections 8, 16 [3]
- UNIT- IV Chapter III: Sections 1-5 [4]
- UNIT- V Chapter IV: Fully [4]
  - Chapter V : Section 5 [4]

#### **Reference Books**

- 1. David C. Lay, *Linear Algebra and its Applications*, 3rd Ed., Pearson Education Asia, Indian Reprint, 2020.
- 2. Frank Ayres JR, *Theory and Problems of Plane and Spherical Trigonometry*, Schaum's Outline Series McGraw-Hill Book Company, 1954.
- 3. Vittal P.R, Malini V, *Algebra, Analytical Geometry and Trigonometry*, Margham Publications, 2010.

#### Web References

- 1. https://www.youtube.com/watch?v=0HwGGTdrBzg
- 2. <u>https://www.youtube.com/watch?v=BydVprh9NgQ</u>
- 3. <u>https://www.youtube.com/watch?v=r-b4m2-yCt0</u>
- 4. <u>https://www.youtube.com/watch?v=IcBXhQNx4fY</u>
- 5. <u>https://www.youtube.com/watch?v=ZjBcmEeUWXg</u>

#### Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

#### **Course Designer**

Dr. R.Divya

### CORE COURSE – II (CC) DIFFERENTIAL CALCULUS

#### (2023-2024 Onwards)

| Semester I | Internal Marks: 25 | ]        | External 1 | Marks:75 |
|------------|--------------------|----------|------------|----------|
| COURSE     | COURSETITLE        | CATEGORY | Hrs        | CREDITS  |
| CODE       |                    |          | /Week      |          |
| 23UMA1CC2  | DIFFERENTIAL       | CORE     | 5          | 4        |
|            | CALCULUS           |          |            |          |

#### **Course Objective**

- **Explore** the basic skills of the students with mathematical methods formatted for their major concepts and train them in basic Differentiation.
- Analyze mathematical statements and expressions.
- Evaluate the fundamental concepts of differentiation, successive differentiation, and their applications.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                 | Cognitive<br>Level |  |
|--------|--------------------------------------------------------------|--------------------|--|
| Number | 1 ,                                                          |                    |  |
|        | will be able to                                              |                    |  |
| CO1    | Explain the concepts of Calculus.                            | K1, K2             |  |
| CO2    | Classify the problem models in the respective area.          | K3                 |  |
| CO3    | Solve various types of problems in the corresponding stream. | K3                 |  |
| CO4    | Identify the properties of solutions in the core area.       | K3                 |  |
| CO5    | Discover the applications of Calculus.                       | K4                 |  |

#### Mapping of CO with PO and PSO

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|------------|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3          | 3   | 2   | 2   | 2   |
| CO2 | 3    | 2    | 3    | 3    | 3    | 3          | 3   | 3   | 2   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3          | 3   | 3   | 3   | 3   |
| CO4 | 3    | 2    | 3    | 3    | 2    | 3          | 3   | 2   | 2   | 3   |
| CO5 | 3    | 2    | 3    | 3    | 2    | 3          | 3   | 3   | 3   | 2   |

"1" – Slight (Low) Correlation  $\neg$  "2" – Moderate (Medium) Correlation  $\neg$  "3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

#### Syllabus

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                             | HOURS | COs                                 | COGNITIVE<br>LEVEL      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-------------------------|
| Ι    | SuccessiveDifferentiation:Introduction (Review of basicconcepts) - The $n^{th}$ derivative -Standard results - Fractionalexpressions - Trigonometricaltransformation - Formation ofequations involving derivatives -Leibnitz formula for the $n^{th}$ derivativeof a product - A complete formal proofby induction. | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| Π    | PartialDifferentiation:Partialderivatives–Successivepartialderivatives–Function of a function rule–Totaldifferentialcoefficient–Totaldifferentialcoefficient–Specialcase–ImplicitFunctions.                                                                                                                         | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| III  | <b>Partial Differentiation (Continued):</b><br>Homogeneous functions – Partial<br>derivatives of a function of two<br>functions – Maxima and Minima of<br>functions of two variables – Lagrange's<br>method of undetermined multipliers.                                                                            | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| IV   | <b>Envelope:</b> Method of finding the<br>envelope – Another definition of<br>envelope – Envelope of family of<br>curves which are quadratic in the<br>parameter – Family of curves will<br>contain two parameters and the two<br>parameters are connected by a relation.                                           | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| V    | <b>Curvature:</b> Definition of Curvature –<br>Circle, Radius and Centre of Curvature<br>–Cartesian formula for the radius of<br>curvature – The coordinates of the<br>centre of curvature – Evolutes and<br>Involute – Radius of Curvature when<br>the curve is given in Polar Co-ordinates                        | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |
| VI   | Self -Study for Enrichment:<br>(Not included for End Semester<br>Examination)<br>Meaning of Derivative : Geometrical<br>interpretation– Feynman's method of<br>differentiation – Taylor's expansion<br>of $f(x,y)$ – p-r equation : pedal<br>equation of a curve.                                                   | _     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4 |

#### **Text Book**

1. Narayanan.S Manicavachagom Pillay.T.K. (2019). *Calculus Volume-I*. Ananda Book Depot.

#### **Chapters and Sections**

| Chapter III  | Sections 1.1-1.6, 2.1, 2.2                |
|--------------|-------------------------------------------|
| Chapter VIII | Sections 1.1-1.5                          |
| Chapter VIII | Sections 1.6, 1.7, 4, 5                   |
| Chapter X    | Sections 1.1-1.4                          |
| Chapter X    | Sections 2.1-2.6                          |
|              | Chapter VIII<br>Chapter VIII<br>Chapter X |

#### **Reference Books**

- Rawat.K.S.(2006). An Differential Calculus.1<sup>st</sup> Edition, Daryaganj, Newdelhi-2:AdhyayanPulishers and distributors, j m d House, Murarlal stre.
- 2. Arumugam. S and Issac. (2014). Calculus. New Gamma Publishing House.
- Bali. N.P. (2010). *Differential Calculus*. Laxmi Publications (P) Ltd. New Delhi.

#### Web References

- 1. <u>https://www.youtube.com/watch?v=s8hVridQ5IA</u>
- 2. <u>https://freevideolectures.com/course/4224/nptel-integral-vector-calculus/34</u>
- 3. <u>https://www.youtube.com/watch?v=IQJ0UiM91Z4</u>
- 4. <u>https://www.youtube.com/watch?v=AXqhWeUEtQU</u>
- 5. <u>https://www.youtube.com/watch?v=j5VGo1n8KBY&list=PLpklqhIbn1jrI</u> <u>bgS6UckW39WE04bAFjOS</u>
- 6. https://archive.nptel.ac.in/courses/111/104/111104095/

#### Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, Seminar, Assignment and Quiz.

#### Course Designer

Dr.L.Mahalakshmi

### FIRST ALLIED COURSE -I (AC)

### MATHEMATICAL STATISTICS

#### (2023-2024 Onwards)

| Semester I  | Internal Marks:2 | External Marks:75 |          |         |
|-------------|------------------|-------------------|----------|---------|
| COURSE CODE | COURSE TITLE     | CATEGORY          | Hrs/Week | CREDITS |
| 23UMA1AC1   | MATHEMATICAL     | ALLIED            | 5        | 4       |
|             | STATISTICS       |                   |          |         |

#### **Course Objectives**

- **Enable** in-depth knowledge of probability.
- **Explore** the concepts of some statistical data.
- Analyse the properties of discrete and continuous distributions.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                                        | Cognitive |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will                                                                           | Level     |
|        | be able to                                                                                                                          |           |
| CO1    | Define the basic concepts in probability, some special                                                                              | K1        |
|        | distributions, and sampling distributions.                                                                                          |           |
| CO2    | Explain the properties of probability and the theory of                                                                             | K2        |
|        | sampling distributions to find solutions of real-life                                                                               |           |
|        | problems.                                                                                                                           |           |
| CO3    | Solve problems in probability, some special distributions and sampling distributions.                                               | K3        |
| CO4    | Examine the given data and interpret the results                                                                                    | K4        |
| CO5    | Analyze probability, and various distributions in the case<br>of solid conclusions about the values of the population<br>parameter. | K4        |

### Mapping of CO with PO and PSO

| Cos        |   | PSO2 |   | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|---|------|---|------|------|-----|-----|-----|-----|-----|
| CO1        | 3 | 3    | 3 | 3    | 3    | 3   | 3   | 2   | 2   | 2   |
| CO2        | 3 | 2    | 3 | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO3        | 3 | 3    | 2 | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| <b>CO4</b> | 3 | 2    | 3 | 3    | 2    | 3   | 3   | 2   | 2   | 3   |
| CO5        | 3 | 2    | 3 | 3    | 2    | 3   | 3   | 3   | 3   | 2   |

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation  $\neg$  "-" indicates there is no correlation.

# Syllabus

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOURS | COs                                 | COGNITIVE |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-----------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                     | LEVEL     |
| I    | Theory of Probability:<br>Introduction – Short History – Definitions of<br>Various Terms – Mathematical or Classical or<br>'a Priori' Probability –Statistical or Empirical<br>Probability –Mathematical Tools: Preliminary<br>Notion of sets–Sets and Elements of Sets –<br>Operations on Sets –Algebra of Sets-<br>Axiomatic approach to Probability–Random<br>Experiment (Sample Space) – Event–Some<br>Illustrations–Algebra of Events–Probability:<br>Mathematical Notion – Probability Function –<br>Laws of Addition of Probabilities–Extension<br>of General Law of Addition of Probabilities–<br>Law of Multiplication or Theorem of<br>Compound Probability-Independent Events–<br>Pair wise Independent Events–Mutually<br>Independent Events– Baye's theorem. | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | КЗ,       |
| Π    | Random Variables and DistributionFunctions:Random Variable–Distribution Function–DiscreteProperties of Distribution Function–DiscreteRandom Variable –Probability Mass Function– Discrete Distribution Function– ContinuousRandom Variable –Probability DensityFunction–Various Measures of CentralTendency, Dispersion, Skewness and Kurtosisfor Continuous Probability Distribution –Continuous Distribution Function – JointProbability Mass Function and Marginal andConditional Probability Function–JointProbability Distribution Function–JointProbability Distribution Function–JointProbability Distribution Function–JointProbability Distribution Function–JointDensity Function, Marginal Density Function-The Conditional Probability Density Function.      | 15    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K2,       |

| III | Mathematical Expectation                                      |    |      |       |
|-----|---------------------------------------------------------------|----|------|-------|
|     | Mathematical Expectation – Addition                           |    |      |       |
|     | Theorem of Expectation – Multiplication                       |    |      |       |
|     | Theorem of Expectation – Co-variance –                        |    | CO1, | K1,   |
|     | Expectation of a Linear Combination of                        |    | CO2, | -     |
|     | Random Variables –Variance of a Linear                        |    | CO3, | · ·   |
|     | Combination of Random Variables –                             | 15 | CO4, | -     |
|     | Expectation of a Continuous random variable                   |    | CO5  |       |
|     | <ul> <li>Conditional Expectation &amp; Conditional</li> </ul> |    |      |       |
|     | Variance.                                                     |    |      |       |
| IV  | Special Discrete Probability Distributions:                   |    |      |       |
|     | Introduction – Discrete uniform                               |    |      |       |
|     | Distribution – Bernoulli Distribution:                        |    |      |       |
|     | Moments of Bernoulli Distribution-Binomial                    |    | CO1, | K1,   |
|     | Distribution: Moments of Binomial                             |    | CO2, | K2,   |
|     | Distribution –Recurrence Relation for the                     |    | CO3, | -     |
|     | Moments of Binomial Distribution -                            |    | CO4, | · · · |
|     | Factorial Moments of Binomial                                 | 15 | CO5  |       |
|     | Distribution-Mean Deviation about Mean of                     |    |      |       |
|     | Binomial Distribution-Mode of Binomial                        |    |      |       |
|     | Distribution – Moment Generating Function                     |    |      |       |
|     | of Binomial Distribution – Additive Property                  |    |      |       |
|     | of Binomial Distribution.                                     |    |      |       |
| V   | Special Continuous Probability                                |    |      |       |
|     | Distributions:                                                |    |      |       |
|     | Introduction – Normal Distribution:                           |    |      |       |
|     | Normal Distribution as a Limiting Form                        |    | CO1, | K1,   |
|     | of Binomial Distribution-Chief                                |    | СО2, | K2,   |
|     | Characteristics of the Normal Distribution-                   | 15 | СОЗ, | КЗ,   |
|     | Mode of Normal Distribution-Median of                         |    | CO4, | K4    |
|     | Normal Distribution-M.G.F. of Normal                          |    | CO5  |       |
|     | Distribution-Cumulant Generating Function                     |    |      |       |
|     | (c.g.f.) of Normal Distribution-Moments of                    |    |      |       |
|     | Normal Distribution -A Linear Combination                     |    |      |       |
|     | of Independent Normal Variates -Fitting of                    |    |      |       |
|     | Normal Distribution.                                          |    |      |       |
| VI  | Self-Study for Enrichment: (Not included                      |    | CO1, | K1,   |
|     | for End Semester Examinations)                                |    | СО2, | K2,   |
|     | Extension of Multiplication Law of                            | -  | СО3, | K3,   |
|     | Probability- Independent Random Variables                     |    | CO4, | K4    |
|     | -Generating Functions- Poisson distribution                   |    | CO5  |       |
|     | -Exponential Distribution.                                    |    |      |       |

- 1. Gupta.S.C. & Kapoor.V.K (2018), *Elements of Mathematical Statistics*, Sultan Chand & Sons, New Delhi.
- 2. Gupta. S.C & Kapoor.V.K (2014), *Fundamentals of Mathematical Statistics*, Sultan Chand & Sons, New Delhi.

#### **Chapters and Sections**

| UNIT-I   | Chapter 4: Section 4.1 to 4.8 (omit 4.7.1) [1]               |
|----------|--------------------------------------------------------------|
| UNIT-II  | Chapter 5: Sections 5.1 to 5.5.3, 5.5.5 [1]                  |
| UNIT-III | Chapter 6: Sections 6.1 to 6.8 [1]                           |
| UNIT-IV  | Chapter 8: Sections 8.1 to 8.3, 8.4 (8.4.1 to 8.4.7) [2]     |
| UNIT-V   | Chapter 9: Sections 9.1 and 9.2 (9.2.1 to 9.2.8, 9.2.14) [2] |
|          |                                                              |

#### **Reference Books**

- 1. Pillai.R.S.N & Bhagavathi (2008) *Statistics, Theory and Practice*, S.Chand & Sons.
- 2. Bhishma Rao.G.S.S (2011), *Probability and Statistics*, Scitech Publications (India) Pvt Ltd.
- 3. Veerarajan.T (2010), *Probability, Statistics and Random Processes*, Tata McGraw Hill Education Private Limited.

#### Web References

- 1. <u>https://www.youtube.com/watch?v=ZKkiCC6uCaU&list=PLpEFfNAthorfHz</u> <u>VYKNRFgtWJp2R1vTZfi</u>
- 2. <u>https://www.youtube.com/watch?v=jmqZG6roVqU</u>
- 3. <u>https://www.youtube.com/watch?v=gHBL5Zau3NE</u>
- 4. <u>https://www.youtube.com/watch?v=3PWKOiLK41M</u>
- 5. <u>https://www.youtube.com/watch?v=dOr0NKyD310</u>
- 6. <u>https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/uniform-distribution/</u>

#### Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

#### **Course Designers**

- 1. Dr. S. Sasikala
- 2. Dr. R. Radha

FIRST ALLIED COURSE -- II (AP)

#### **PROGRAMMING LANGUAGE USING MATLAB (P)**

| Semester I | Internal Marks: 4 | External Marks: 60 |       |         |
|------------|-------------------|--------------------|-------|---------|
| COURSE     | COURSE            | CATEGORY           | Hrs   | CREDITS |
| CODE       | TITLE             |                    | /Week |         |
| 23UMA1AC2P | Programming       | ALLIED             | 2     | 2       |
|            | Language Using    | PRACTICAL          |       |         |
|            | MATLAB (P)        |                    |       |         |

#### (2023-2024 Onwards)

#### **Course Objective**

- **Apply** MATLAB as a simulation tool.
- **Compute** mathematical solutions using MATLAB and develop interdisciplinary skills.
- **Determine** syntax, semantics, data-types and library functions of numerical computing.

#### **Course Outcomes**

### Course Outcome and Cognitive Level Mapping

| СО     | CO Statement                                                                                                                    | Cognitive |
|--------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will                                                                       | Level     |
|        | be able to                                                                                                                      |           |
| CO1    | Explain fundamental concepts of MATLAB.                                                                                         | K2        |
| CO2    | Illustrate a great numbers of MATLAB commands and<br>how to use them in programming and in many<br>applications of Mathematics. | К2        |
| CO3    | Compute simple program for a given problem in MATLAB coding.                                                                    | К3        |
| CO4    | Determine the result and the outcome of any command or script.                                                                  | K4        |
| CO5    | Deduce Mathematical solutions using MATLAB tools.                                                                               | K5        |

#### Mapping of CO with PO and PSO

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 2   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

#### Listings:

- 1. Operations using Matrices (Addition, Subtraction, Multiplication, Transpose and Inverse)
- 2. Basic plotting of variables (Simple and multiple data set).
- 3. Sorting of given data.
- 4. Finding the sum of 'n' numbers, sum of square of 'n' numbers, sum of 'n' odd numbers.
- 5. Finding the roots of a polynomial equation.
- 6. Solving system of equations using matrices.
- 7. Finding the Eigen vectors and Eigen values.
- 8. Generating Fibonacci series.
- 9. Vector operations.
- 10. Evaluation of integrals.
- 11. Finding the derivatives of given order.
- 12. Operations on sets.
- 13. Finding rank of a matrix.
- 14. Solving ordinary differential equations.

#### Web References

- 1. <u>https://www.youtube.com/watch?v=EF4wmV5xBM0</u>
- 2. <u>https://www.youtube.com/watch?v=XsrhAO3r3VY</u>
- 3. <u>https://www.youtube.com/watch?v=aEjeuj5jfLU</u>
- 4. <u>https://www.youtube.com/watch?v=ZBafH5fss1E</u>
- 5. <u>https://www.youtube.com/watch?v=XtiAC4adozQ</u>
- 6. <u>https://www.youtube.com/watch?v=kt8QSkt-M6c</u>
- 7. <u>https://www.youtube.com/watch?v=pi6Dkvs6rP4</u>
- 8. <u>https://www.youtube.com/watch?v=YzEp0jiVyYs</u>
- 9. <u>https://www.youtube.com/watch?v=LFoutvnfP6A</u>
- 10. <u>https://youtu.be/rgWPw21E90A</u>
- 11. https://youtu.be/CUdL4-tJy58

#### Pedagogy

Power point presentations, Live Demo, Hands on Training.

#### **Course Designer**

Dr. C. Saranya