CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH 'A+' GRADE BY NAAC TIRUCHIRAPPALLI

PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

M. Sc. COMPUTER SCIENCE SYLLABUS 2025-2026 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

VISION

To create an ambience for a quality academic erudition which drives technologically adept, innovative and globally competent graduates with ethical values

MISSION

- To have a breath of knowledge across the subject areas of Computer Science
- To professionally enrich the students for successful career in Academic, Industry and Research
- To promote and inculcate ethics and code of professional practice among students

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning
PEO1	practices to match the highest quality standards and train the students to be effective leaders in
	their chosen fields.
	ACADEMIC EXCELLENCE
PEO2	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of
1 E 0 2	critical thinking and encourage them to achieve their goal.
	EMPLOYABILITY
PEO3	To equip students with the required skills in order to adapt to the changing global scenario and
1 203	gain access to versatile career opportunities in multidisciplinary domains.
	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform
PEO4	students into committed professionals with a strong attitude towards the development of the
	nation.
	GREEN SUSTAINABILITY
PEO5	To understand the impact of professional solutions in societal and environmental contexts and
1 EO3	demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc. COMPUTER SCIENCE PROGRAMME

	Programme Outcome
PO NO.	On completion of M.Sc. Computer Science
	The students will be able to
	DOMAIN KNOWLEDGE
PO 1	Acquire the in-depth computing knowledge both conceptual and applied pertaining to
	the core discipline
	PROBLEM SOLVING
PO 2	Procure knowledge-based skills to satisfy the needs of society and the industry by
	providing hands on experience of various technologies in Computer Science
	INNOVATION AND CRITICAL THINKING
PO 3	Critically evaluate global issues, recognize the need and identify sustainable solutions
	through research capabilities towards Nation building initiatives
	LIFE LONG LEARNING
PO 4	Capable of upgrading and advancing knowledge through innovation and technology as
	evidenced by current developments
	LEADERSHIP AND TEAMWORK
PO 5	Work in collaborative environment through applications of scientific reasoning and
	communicate effectively to the stakeholders

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc COMPUTER SCIENCE PROGRAMME

PSO NO.	Programme Specific Outcomes Students of M.Sc. Computer Science will be able to	PO s Addressed
PSO 1	Identify, formulate and develop solutions for computational challenges	PO 1 PO 2
PSO 2	SO 2 Inculcate broad knowledge in core areas of Computer Science and emerging technologies in related domains	
PSO 3	Integrate computing knowledge on crafting innovative solutions and to provide a gateway for research.	
PSO 4	Develop analytical and technical skills to enhance employment potential and entrepreneurship	PO 3 PO 4 PO 5
PSO 5	SO 5 Imbibe professional and ethical skills to become a competent citizen for the betterment of society	

Cauvery College for Women (Autonomous), Trichy

PG & Research Department of Computer Science
M.Sc. Computer Science

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS-LOCF)

(For the Candidates admitted from the Academic year 2025-2026 and onwards) Semester I

ı				·S		Exam				
este	Course	Course Title	Course Code	Hrs. ek	dits	Hrs.	. Marks			
Semester				Inst. H / week	Credits		Int.	Ext.	Total	
		Analysis & Design of Algorithms	23PCS1CC1	6	5	3	25	75	100	
	Core Course – II (CC)	Object Oriented Analysis and Design & C++	23PCS1CC2	6	5	3	25	75	100	
I	Core Course –III (CC)	Mathematical and Logical Computing	24PCS1CC3	6	5	3	25	75	100	
	Core Practical - I (CP)	Algorithm and OOPS (P)	23PCS1CC1P	6	5	3	40	60	100	
	Discipline Specific	A. Advanced Software Engineering	23PCS1DSE1A							
	Elective Course-I	B. Advanced Computer Architecture	23PCS1DSE1B	6	3	3	25	75	100	
	(DSE)	C. Advanced Database Systems	23PCS1DSE1C							
	Total					-	-	-	500	
		15 Days INTEDNOUID	15 Days INTERNSHIP during Samestar Holidays							

15 Days INTERNSHIP during Semester Holidays

Courses & Credits for M.Sc. Computer Science Programme

S. No.	Courses	No of Courses	No. of Credits	Marks
1.	Core Course– (CC)	8	40	800
2.	Core Choice Course– (CCC)	3	12	300
3.	Core Practical - (CP)	4	19	400
4.	Discipline Specific Elective- (DSE)	3	9	300
5.	Generic Elective Course - (GEC)	2	4	200
6.	Project	1	4	100
7.	Internship	1	2	100
	Total	22	90	2200

The Internal and External marks for theory and practical courses are as follows:

Course	Internal Marks	External Marks
Theory	25	75
Practical	40	60
Project	-	100
Internship	25	75

For Theory courses:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e. 30 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Practical courses:

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. 24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project Work:

a) The passing minimum not less than 50% out of 100 marks

For Internship:

a) The passing minimum not less than 50% in the aggregate.

Semester: I	Internal Marks: 25		External Mars: 75		
COURSE	COURSE TITLE CATEGORY		HOURS /	CREDITS	
CODE	COURSE IIILE	CATEGORY	WEEK	CREDITS	
23PCS1CC1	ANALYSIS & DESIGN OF ALGORITHMS	CORE	6	5	

- To learn the Elementary Data Structures and algorithms
- To understand the basics of an algorithm, their analysis and design
- To inculcate the knowledge of Basic Traversal and Search Techniques, Greedy method, Divide and Conquer method, Dynamic programming and Backtracking

Prerequisite

Basic concepts of data structures and algorithms

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Get knowledge about algorithms and determine their time complexity	K1
CO2	Demonstrate specific search and sort algorithms using divide and conquer technique	К2
CO3	Apply different methods to analyze the algorithm performance	К3
CO4	Compare the concept of various algorithm technique	K4
CO5	Explore the algorithm technique on Real time applications	K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	1	3	2
CO2	3	3	3	2	3	3	3	2	3	3
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	2	1	2
CO5	3	3	3	3	3	3	3	2	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"-indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: - Algorithm Definition and Specification - Space complexity - Time Complexity - Asymptotic Notation. Elementary Data Structures: Stacks and Queues - Binary Trees - Binary Search Trees - Heaps - Heap sort - Graphs.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Basic Traversal And Search Techniques: Techniques for Binary Trees – Techniques for Graphs. Divide and Conquer: General Method – Binary Search – Merge Sort– Quick Sort.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	The Greedy Method: General Method – Knapsack Problem – Minimum Cost Spanning Trees: Prim's Algorithm – Kruskal Algorithm – Optimal storage on Tapes – Single Source Shortest Paths.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4,
IV	Dynamic Programming: General Method – Multistage Graphs – All Pair Shortest Path – Optimal Binary Search Trees – 0/1 Knapsack – Traveling Sales person Problem –Flow Shop Scheduling.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4,
V	Back tracking: General Method – 8-Queens Problem – Sum of Subsets – Graph Coloring– Hamiltonian Cycles. Branch And Bound:-The Method–Traveling Sales person.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4,
VI	Self Study for Enrichment: (Not included for End Semester Examination) NP Hard and NP Complete Problems: Basic Concept — COOK's theorem — NP Hard Graph Problems — NP Hard Code Generation.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

1. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekan.(2017). Fundamentals of Computer Algorithms. 2ndEdition, University Press.

Reference Books

- 1. Alfred V. Aho, John E Hopcraft, Jefffrey D. Ullman.(2004). *Data Structures and Algorithms*. Pearson Education.
- 2. Goodrich. Data Structures & Algorithms in Java. 3rd Edition, Wiley.
- 3. Skiena.(2008). The Algorithm Design Manual. 2nd Edition, Springer.
- 4. Anany Levith.(2003). Introduction to the Design and Analysis of algorithm. Pearson Education Asia.
- 5. Robert Sedgewick, Phillipe Flajolet.(1996). *An Introduction to the Analysis of Algorithms*. Addison-Wesley Publishing Company.

Web References

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://www.tutorialspoint.com/design and analysis of algorithms/index.htm
- 3. https://www.javatpoint.com/daa-tutorial

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Ms.P.Muthulakshmi

Semester: I	Internal Ma	rks: 25	Mars: 75	
COURSE	COURSE TITLE	CATEGORY	HOURS /	CREDITS
CODE		CHILOGHI	WEEK	CREDITS
	OBJECT			
23PCS1CC2	ORIENTED	CORE	6	5
	ANALYSIS AND			
	DESIGN &C++			

- To Present the object model, classes and objects, object orientation, machine view and model management view
- To learn the basic functions, principles and concepts of object oriented analysis and design
- To understand C++ language with respect to Object Oriented Analysis and Design

Prerequisites

Basics of Programming and Object Oriented Programming Concepts

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand the concept of Object Oriented development and modeling techniques	K1, K2
CO2	Gain knowledge about the various steps performed during object design	K2, K3
CO3	Abstract object-based views for generic software systems	К3
CO4	Link OOAD with C++ language	K4,K5
CO5	Apply the basic concepts of OOPs and familiarize to write C++ program	K5, K6

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	2
CO2	3	2	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" -indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
-	The Object Model: The Evolution of the Object	18	CO1,	K1,
I	Model – Elements of the Object Model – Applying		CO2,	K2,
	the Object Model. Classes and Objects: The		CO3,	K3,
	Nature of an Object – Relationships among		CO4,	
	Objects- The Nature of Class - Relationship		CO5	K5, K6
	among Classes – The Interplay of Classes and Objects.			
II	Introduction to C++-Input and Output in C++- C++	18	CO1,	K1,
	Declarations - Control Structures.		CO2,	K2,
			CO3,	K3,
			CO4, CO5	K4,
			COS	K5, K6
	Functions in C++ - Classes and Objects in C++-	18	CO1,	K1,
III	Constructors and Destructors—Operator	10	CO1,	K1, K2,
	Overloading and Type Conversion.		CO3,	K3,
	c verteating and Type converten		CO4,	K4,
			CO5	K5,
				K6
	Inheritance – Pointers and Arrays-C++ And	18	CO1,	K1,
IV	Memory: the new and Delete operators –		CO2,	K2,
	Polymorphism and Virtual Functions.		CO3,	K3,
			CO4,	K4,
			CO5	K5, K6
	Applications with Files Execution Handling	18	CO1,	K0 K1,
T 7	Applications with Files-Exception Handling – Working with Strings - Overview of Standard	10	CO1,	· ·
V	Template Library (STL).		CO2,	K3,
	Template Elotaly (STE).		CO4,	K4,
			CO5	K5,
				K6
	Self-StudyforEnrichment:	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Classification: The Importance of Proper		CO3,	K3,
V I	Classification –Identifying Classes and Objects –		CO4, CO5	K4,
	Key Abstractions and Mechanisms.			K5, K6
	Notation: The Unified Modeling Language –			120
	Component Diagrams-Deployment Diagrams-Use			
	Case Diagrams-Activity Diagrams-Class			
	Diagrams-Object Diagrams.			

Text Books

- 1. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, BobbiJ. Young, Jim Conallen, Kelli A. Houston. (2014). *Object Oriented Analysis and Design with Applications*. 3rdEdition, Pearson Education. (Unit: I)
- 2. Ashok N.Kamthane.(2009), *Object-Oriented Programming with ANSI & TurboC++*, 7th *Impression*, Pearson Education Limited.(Unit:II V)

Reference Books

- 1. Balagurusamy (2003), Object Oriented Programming with C++, Second Edition, TMH
- 2. Yashwant Kanetkar .(2019). Let Us C++, Third Edition, BPB.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc19 cs48/preview
- 2. https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-cs19/
- 3. https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_analysis.htm

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Ms. K. Pradeepa

Semester I	Internal Marks:	25	ExternalMarks:75			
COURSE CODE	COURSETITLE	CATEGORY	HOURS /	CREDITS		
			WEEK			
24PCS1CC3	MATHEMATICAL AND LOGICAL COMPUTING	CORE	6	5		

- Explore the basic concepts of Discrete Mathematics, Graph Theory.
- Acquire the knowledge of Fundamentals in combinatorics.
- Analyze the method of logical reasoning to solve variety of problems.

Prerequisite

Basic Knowledge in Relations, Functions and Graph Theory.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Define the various concepts in Relations, Combinatorics and Graphs.	K1
CO2	Understand the different terminologies of functions, Predicate Calculus, Recurrence Relations and Graphs and Fuzzy sets.	K2
CO3	Analyze the problems in different aspects and give solutions in their respective streams.	К3
CO4	Examine some methodologies for the related area in an effective manner.	K4
CO5	Apply the notions to distinct problems and get solutions in a easy way.	K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2	3	2	2	2	3
CO2	2	2	3	2	2	2	2	2	2	3
CO3	3	2	3	2	2	3	2	2	3	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	2	2	2	3	3	2	3	3	2	2

[&]quot;1" - Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOU RS	COs	COGNITIVE LEVEL
I	Relations: - Binary Relations-Operations on Relations- Propertie of Binary Relations in a Set—Equivalence Relations and Partia Orderings— Representation of a Relation by a Matrix Representation of a Relation by a Digraph. Functions: -More of Functions- Some Important Functions.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Foundations:Logic- Predicate Calculus:Well Formed formulas Truth Table of Well Formed Formula -Tautology, Contradiction and Contingency-Equivalence of Formulas-Algebra o Propositions- Normal Forms of Well -Formed Formulas-Rules o Inference for Propositional Calculus.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Combinatorics:- Permutations-Combinations-Permutations with Repetitions- Combinations with Repetitions -Permutations of set with indistinguishable objects. Recurrence Relations: Formulation as Recurrence Relations-Solving Recurrence Relation by Iteration Solving Recurrence Relations- Solving Linear Homogeneou Recurrence Relations of Order Two.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Graphs -Connected Graphs –Examples of Special Graphs-Eule Graphs-Hamiltonian Circuits and Paths.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
V	From Classical(Crisp) Sets to Fuzzy Sets: Fuzzy sets: Basic types – Fuzzy sets: Basic Concepts. Fuzzy Sets Versus Crisp Sets: Additional Properties of α – cuts. Operations on Fuzzy Sets: Types of Operations – Fuzzy Complement.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Hashing Functions-Functionally Complete Sets- Solving Linear Non homogeneous Recurrence Relations-Crisp sets: An Overview	-	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5

Text Books

- 1. Chandrasekaran. N, and Umaparvathi. M(2015), *Discrete Mathematics*, PHI Learning Private Limited, New Delhi.
- 2. George. J. Klir and Bo Yuan(2013), Fuzzy Sets And Fuzzy Logic, Prentice Hall ofIndia, NewDelhi.

Chapters and Sections

UNIT-I Chapter 5: Sections 5.1- 5.5, 5.8, 5.9[1]

UNIT-II Chapter 1: Section1.1[1]Chapter 2:Sections2.1-2.5, 2.7, 2.8[1] UNIT-IIIChapter 3: Sections3.1-3.5[1]Chapter 6: Sections6.1-6.4[1]

UNIT- IV Chapter 10: Sections 10.1-10.4[1]

UNIT- V Chapter 1: Sections 1.3, 1.4 [2] Chapter 2: Sections 2.1 [2]

Chapter 3: Sections 3.1, 3.2 [2]

Reference Books

1. Tremblay, J.P. & Manohar, R. (1997). *Discrete Mathematical Structures with Applications to Computer Science*, Tata McGraw-HillPublishing CompanyLimited, NewDelhi.

- 2. Ralph,P.Grimaldi.(2002). Discrete and Combinatorial Mathematics, Pearson Asia Education.
- 3. NarsinghDeo.(1997). *Graph Theory With Applications To Engineering & Computer Science*. PrenticeHallofIndia, NewDelhi.
- 4. Ganesh, G.J.M. (2006). *Introduction To Fuzzy Sets And Logic*, Prentice-HallofIndia, NewDelhi.

Web References

- 1. https://www.youtube.com/results?search_query=negation+of+the+statement
- 2. https://www.youtube.com/results?search_query=permutation
- 3. https://www.youtube.com/results?search_query=graph+theory+definitions+and+examples
- 4. https://www.youtube.com/results?search_query=trees+in+graph+theory
- 5. https://discrete.openmathbooks.org/pdfs/dmoi-tablet.pdf
- 6. https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Dr. S. Saridha

Semester: I	Internal Mar	ks: 25	External Mars: 75			
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS		
23PCS1CC1P	ALGORITHM AND OOPS (P)	CORE	6	5		

- To learn the applications of the data structures using various techniques
- To understand C++ language with respect to Object Oriented Analysis and Design (OOAD) concepts
- T build application of OOPS concepts

Prerequisites

Basic understanding of C++ Programming

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Identify and apply the suitable data structure for the given real world problem	K2, K3
CO2	Able to understand and implement OOPS concepts.	K2,K3
CO3	Apply the concepts of Stack, Queue, Tree, List using C++	K3
CO4	Analyze the concepts of sorting and searching algorithms using relevant data structures.	K4
CO5	Interpret and Solve problem involving graphs, trees and heaps	K6

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	2
CO2	3	2	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" - Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" -indicates there is no Correlation.

Exercises

- 1. Write a program to solve the Tower of Hanoi using recursion.
- 2. Write a program to traverse through Binary Search Tree using traversals.
- 3. Write a program to perform various operations on Stack using Linked list.
- 4. Write a program to perform various operations in a circular queue.
- 5. Write a program to sort an array of elements using Quick sort.
- 6. Write a program to solve the number of elements in ascending order using Heap sort.
- 7. Write a program to solve the knapsack problem using Greedy method
- 8. Write a program to search an element in a tree using Divide & Conquer strategy.
- 9. Write a program to place the 8 queens on an 8 x 8 matrix so that no two queens Attack.
- 10. Write a C++ program to perform Virtual Function
- 11. Write a C++ program to perform Parameterized Constructor
- 12. Write a C++ program to perform Friend Function
- 13. Write a C++ program to perform Function Overloading
- 14. Write a C++ program to perform Single Inheritance
- 15. Write a C++ program to perform Employee Details using files.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc19 cs48/preview
- 2. https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented analysis.htm
- 3. https://www.geeksforgeeks.org/c-plus-plus/?ref=shm
- 4. https://www.tutorialspoint.com/cplusplus-program-to-implement-stack-using-linked-list
- 5. https://webeduclick.com/cpp-program-tower-of-hanoi-using-recursion/

Pedagogy

Power Point Presentation, Live Demonstration

Course Designer

Ms. S.Saranya

Semester: I	Internal Mai	rks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS	
23PCS1DSE1A	ADVANCED SOFTWARE ENGINEERING	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- To learn the concepts of Software Engineering
- To provide the idea of decomposing the given problem into Analysis, Design, Testing and Maintenance phases
- To inculcate knowledge on Software Project Management, Software Design & Testing

Prerequisites

Basics of Software Engineering & Software Project Management

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

СО	CO Statement	Cognitive Level
Number		
CO1	Understand about Software Engineering process	K1, K2
CO2	Make use of Software Project Management Skills, Design	К3
	and Quality Management	110
CO3	Analyze on Software Requirements and Specification	K4
CO4	Analyze and Compare Software Testing, Maintenance and Software Re-Engineering	K4, K5
	Design and conduct various types and levels of software	
CO5	quality or a software project	K5, K6

COs	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	2	2	3	3	3	2	2	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: The Problem Domain – Software Engineering Challenges - Software Engineering Approach. Software Processes: Software Process – Characteristics of a Software Process – Software Development Process Models – Other software processes.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
II	Requirements Analysis and Specification: Requirements Gathering and Analysis- Software Requirements Specification (SRS) - Formal System Specification - Axiomatic Specification - Algebraic Specification. Software Quality Management: Software Quality-Software Quality Management System-ISO 9000 - SEI Capability Maturity Model.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Software Project Management: Responsibilities of a Software Project Manager – Project Planning – Metrics for Project Size Estimation – Project Estimation Techniques – Empirical Estimation Techniques – COCOMO – Halstead's Software Science – Staffing Level Estimation – Scheduling– Organization and Team Structures – Staffing – Risk Management – Software Configuration Management.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Software Design: Outcome of the Design Process - Characteristics of a good software design - Cohesion and Coupling -Layered Arrangement of Modules- Function Oriented Design - Object Oriented Design. Function Oriented SoftwareDesign: Structured Analysis-Structured Design-Detailed Design-Design Review.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Software Testing: Basic concepts and Terminologies – Design Test Cases: Functional testing– Structural testing – Levels of testing: Unit testing, Integration Testing and System Testing – Debugging–Program Analysis tools-Some General Issues Associated with Testing: Regression testing. Software Maintenance: Characteristics of Software Maintenance – Software Reverse Engineering – Software Maintenance Process Models: Software Re-engineering.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self-Study for Enrichment: (Not included for End SemesterExaminations) Requirement engineering -Strategy of Design- IEEE Recommended Practice for Software Design Descriptions - Reliability Estimation. Case Study: Student Result Management System.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

Text Books

- 1. Pankaj Jalote, (2005). *An Integrated Approach to Software Engineering*, 3rd Edition, Springer Science + Business Media. (Unit: I)
- 2. Rajib Mall,(2018). Fundamentals of Software Engineering, 5thEdition, PHI Learning Private Limited. (Unit: II V)

Reference Books

- 1. K.K.Aggarwal and Yogesh Singh,(2005). *Software Engineering*. Revised 2nd Edition, New Age International Publishers.
- 2. R.S.Pressman(2010). A Practitioner's Approach-Software Engineering. McGraw-Hill Higher Education.
- 3. Carlo Ghezzi.M, Jazayeri, D.Mandrioli (2010). Fundamentals of Software Engineering, PHI Publication

Web References

- 1. https://www.javatpoint.com/software-engineering-tutorial
- 2. https://onlinecourses.swayam2.ac.in/cec20 cs07/preview
- 3. https://onlinecourses.nptel.ac.in/noc19 cs69/preview
- 4. https://www.google.co.in/books/edition/FUNDAMENTALS_OF_SOFTWARE_ENGINEER ING FIF/-
- 5. https://www.google.co.in/books/edition//pJc3xKQfD-MC?hl=en&gbpv=1

Pedagogy

Chalk & Talk, PPT, Group Discussion, Seminar and Assignment

Course Designer

Dr.K.Reka

Semester: I	Internal Ma	arks: 25	External	Marks: 75
COURSE CODE	COURSE TITLE CATEGORY		HOURS / WEEK	CREDITS
23PCS1DSE1B	ADVANCED COMPUTER ARCHITECTURE	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To understand the micro-architectural design of processors
- To learn about the various techniques used to obtain performance improvement and power savings in current processors
- To gain knowledge in distributed and Parallel Computing Architecture

Prerequisites

Basic Knowledge about Microprocessor

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Remember and Understand the computer architecture	K1, K2
CO 2	Interpret and Experiment with different pipelined processor	K2, K3, K5
CO 3	Organize and Analyze the architectural features of advanced processors	K3, K4
CO 4	Examine and Evaluate the cache and memory related issues in multiprocessors	K4, K5
CO 5	Assess the historical and current developments in computer architecture and adopt to the needs	K5, K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	2	3	2	3	2	2	3
CO3	2	3	2	3	2	3	3	3	3	3
CO 4	3	3	3	2	3	3	3	3	2	2
CO 5	2	3	3	3	2	2	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Fundamentals of Quantitative Design and Analysis: Classes of Computers - Defining Computer Architecture-Trends in Technology, Power, Energy and Cost - Dependability- Measuring, Reporting, and summarizing Performance - Quantitative Principles of Computer Design	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
II	Instruction-Level Parallelism: Concepts and Challenges – Basic Compiler Techniques for Exposing ILP – Reducing Branch Costs with Advanced Branch Prediction - Overcoming Data Hazards with Dynamic Scheduling-Hardware-Based Speculation - Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
III	Data-Level Parallelism in Vector SIMD and GPU Architectures: Vector Architecture - SIMD Instruction Set Extensions for Multimedia -Graphics Processing Units- Detecting and Enhancing Loop-Level Parallelism	19	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
IV	Thread-Level Parallelism: Centralized Shared-Memory Architectures-Performance of Symmetric Shared-Memory multiprocessor-Distributed Shared-Memory and Directory-Based Coherence-Synchronization-Models of Memory Consistency	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Warehouse-scale Computers to Exploit Request Level and Data-Level Parallelism:Programming Models and Workloads for Warehouse-Computer Architecture of Warehouse-Scale Computers – The Efficiency and cost of Warehouse-Scale Computers	17	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5,
VI	Self Study for Enrichment (Not included for End Semester Examinations) Historical Perspectives Quantitative Design and Analysis: Limitations of Instruction-Level Parallelism and Its Exploitation-Fallacies and pitfalls of Data-Level Parallelism in Vector-Cross Cutting Issues in Thread - Level Parallelism-Using Energy Efficiency inside the server.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

Text Book

1. John L Hennessey, David A Patterson (2019). Computer Architecture A Quantitative Approach. Sixth Edition, Morgan Kaufmann Elsevier.

Reference Books

- 1. KaiHwang, FayeBrigg(2000). *Computer Architecture And Parallel Processing*. International Edition, McGraw-Hill.
- 2. SimaD, FountainT, KacsukP(2000). Advanced Computer Architectures: A Design Space Approach. Addison Wesley.

Web References

- 1. www.cs.iiie.edu.in/
- 2. https://passlab.githlub.io/CSE565/note

Pedagogy

Chalk and talk & Seminar

Course Designer

Ms. A. Jabeen

Semester: I Internal Marks: 25			External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS	
23PCS1DSE1C	ADVANCED DATABASE SYSTEMS	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- To inculcate knowledge in Transaction Management with ACID properties
- To learn about advanced concepts of Database Management System
- To gain Knowledge in Information retrieval using XML and Internet Databases

Prerequisites

Basic knowledge about Relational Database Management Systems.

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Remember and Understand the concepts of databases	K1, K2
CO2	Demonstrate and make use of different kinds of databases	K2, K3
CO3	Identify and analyze databases for real life applications	K3, K4
CO4	Compare and evaluate the performance of databases based on its transaction and concurrency control feature	K4, K5
CO5	Interpret and develop parallel, distributed, object oriented And advanced databases for handling real time data	K5, K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	2	3	3	3	2	2	3
CO3	2	3	2	3	2	3	3	3	3	3
CO4	3	3	3	2	3	2	3	3	2	2
CO5	2	3	3	3	2	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Transactions Management: Transaction Concepts – A	18	CO1,	K1,
	Simple Transaction Model - Transaction Atomicity and		CO2,	K2,
Ι	Durability - Transaction Isolation- Serializability		CO3,	K3,
1	Transaction Isolation and Atomicity. Concurrency		CO4,	K4,
	Control: Lock based Protocols – Deadlock Handling –		CO5	K5,
	Multiple Granularity – Timestamp - Based Protocols –			K6
	Validation - Based Protocols.	1.6	CO1	V 1
	Parallel Databases: I/O Parallelism – Interquery	16	CO1,	K1,
	Parallelism - Intraquery Parallelism - Intraoperation		CO2,	K2,
77	Parallelism-Interoperation Parallelism- Query		CO3,	K3,
II	Optimization - Design of Parallel Systems - Parallelism		CO4,	K4,
	on Multicore Processors		CO5	K5,
		20	001	K6
	Distributed Databases: Homogeneous and	20	CO1,	K1,
	Heterogeneous Databases – Distributed Data Storage -		CO2,	K2,
III	Distributed Transactions - Commit Protocol -		CO3,	K3,
	Concurrency Control in Distributed Databases-		CO4,	K4,
	Availability - Distributed Query Processing-		CO5	K5,
	Heterogeneous Distributed Databases-Cloud Based			K6
	Databases - Directory Systems	1.0	001	TZ 1
	Object Based Databases: Complex Data Types –	18	CO1,	K1,
***	Structured types and Inheritance in SQL – Table		CO2,	K2,
IV	Inheritance - Array and Multiset Types in SQL -		CO3,	K3,
	ObjectIdentity and Reference Types in SQL -		CO4,	K4,
	Implementing O-R features-Object Relational Mapping		CO5	K5,
	- Object-Oriented versus Object-Relational.	1.0	001	K6
	XML: Extensible Markup Language: Structured,	18	CO1,	K1,
	Semi Structured and Unstructured Data – XML		CO2,	K2,
V	Hierarchical (Tree) Data Model – XML Documents,		CO3,	K3,
,	DTD, XML Schema - Storing and Extracting XML		CO4,	K4,
	documents from Databases – XML Languages - Extracting		CO5	K5,
	XML documents from RelationalDatabases.			K6
	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Case Studies: SQL - MYSQL - Oracle - PostgreSQL-		CO3,	K3,
	NOSQL -DynamoDB- MongoDB.		CO4,	K4,
			CO5	K5,
				K6

Text Books

- 1. Abraham Silberschatz., Henry F. Korth. S. Sudarshan (2013). *Database System Concepts*.6thEdition, McGraw Hill.(Unit I IV)
- 2. Ramez Elmasri, Shamkant. B. Navathe (2015). *Fundamentals of Database Systems*. 6th Edition, Pearson Education.(Unit V)

Reference Books

- 1. Thomas Connolly, Carolyn Begg. (2015). *Database Systems, A Practical Approach to Design, Implementation and Management*. 6thEdition, Pearson Education.
- 2. Raghu Ramakrishnan, Johannes Gehrke. (2007). *Database Management System*. 3rd Edition, McGraw Hill Higher Education.

Web References

- 1. https://www.exploredatabase.com/p/advanced-database-concepts
- 2. https://www.wideskills.com/introduction-to-database

Pedagogy

Chalk and talk, Lecture, Discussion, Quiz, Demonstration, and PPT

Course Designer

Ms.R. Sridevi