CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

NATIONALLY ACCREDITED (III CYCLE) WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI – 18

PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

AUTONOMOUS SYLLABUS

M.Sc Computer Science

2020-2021

onwards

M.Sc Computer Science

PROGRAMME OUTCOMES

- Ability to identify, formulate and develop solutions for computational challenges
- Inculcate broad knowledge in core areas of Computer Science and emerging technologies in IT
- Develop Analytical and Technical skills to enhance employment potential
- Capable of integrating knowledge and to provide a gateway for research

PROPOSED SYLLABUS FOR THE YEAR 2020-2021 Onwards

Cauvery College for Women (Autonomous), Trichy-18

PG & Research Department of Computer Science

M.Sc Computer Science

(For the Candidates admitted from the Academic year 2020-2021 and onwards)

Semester				Inst.Hrs/ week	Credits		Exam		
S	Course	Title	Course Code	Ins			Ma	rk	Total
						Hrs	Int.	Ext.	
I		Mathematical Foundation	19PCS1CC1	6	5	3	25	75	100
	Core Course – I (CC)	for Computer Science						, .	
	Core Course – II (CC)	Design and Analysis of	19PCS1CC2	6	5	3	25	75	100
	, ,	Algorithms							
	Core Course – III(CC)	Web Technologies	19PCS1CC3	6	5	3	25	75	100
	Core Practical –I (CP)	Web Technologies Lab	19PCS1CC1P 19PCS1CC4	6	4	3	40	60	100
	Core Course –IV (CC)	Distributed Operating System	19PCS1CC4	6	5	3	25	75	100
				30	24				500
		Total	Langagaga				2-		
	Core Course – V (CC)	Data Mining and Warehousing	19PCS2CC5	6	5	3	25	75	100
	Core Practical–II (CP)	Data Mining Lab and MatLab	19PCS2CC2P	6	4	3	40	60	100
	Core Course - VI (CC)	Artificial Intelligence	19PCS2CC6	6	5	3	25	75	100
II		Network Security /	19PCS2EC1A/						
	Elective Course-I (EC)	Soft Computing/	19PCS2EC1B/	6	4	3	25	75	100
		Advanced Computer Architecture	19PCS2EC1C						
		Bioinformatics/	19PCS2EC2A/						
	Elective Course-II (EC)	Advanced Database	19PCS2EC2B/	6	4	3	25	75	100
	, ,	System / Software Project Management	19PCS2EC2C						
	Extra Credit Course	SWAYAM ONLINE	To be Fixed Later	As ner	UGC I	Recon	nmenda	tion	
	Lixita Credit Course	COURSE	10 be 1 hed Euter	ns per		tecon	imenaa	tion	
		Total		30	22				500
		Computer Science for	100000000		-	2		100	100
	Core Course –VII (CC)	Competitive	19PCS3CC7	6	5	3	-	100	100
		Examinations	10000000			2	2.5	7.5	100
	Core Course –VIII (CC) Core Practical–III (CP)	Big Data Analytics	19PCS3CC8	6	5	3	25	75	100
III	, ,	Python and R Lab Blockchain /	19PCS3CC3P 19PCS3EC3A/	6	4	3	40	60	100
	Elective Course-	Parallel Processing/	19PCS3EC3A/	6	4	3	25	75	100
	III (EC)	Compiler Design	19PCS3EC3C						
		Robotic Process	19PCS3EC4A/						
		Automation/							
	Elective Course-	Machine Learning/	19PCS3EC4B/	6	4	3	25	75	100
	IV (EC)	IoT	19PCS3EC4C						
	Extra Credit Course SWAYAM ONLINE To Be Fixed Later					s per U			
		COURSE				Re	ecomme	endatio	
		Total	Liongsissi	30	22	_			500
	Core Course –IX (CC)	Cloud Computing	19PCS4CC9	6	5	3	25	75	100
	Core Course – X (CC)	Digital Image Processing	19PCS4CC10	6	5	3	25	75	100

	•								2000
	TOTAL								500
	Project	Project	19PCS4PW	6	4	-	-	1	100
	Elective Course- V(EC)	Wireless Sensor Networks/ MANET/ Mobile Computing	19PCS4EC5A/ 19PCS4EC5B/ 19PCS4EC5C	6	4	3	25	75	100
IV	Core Practical – IV (CP)	FOSS Lab	19PCS4CC4P	6	4	3	40	60	100

Note:

Total No. of Core Papers - 10
Total No. of Practicals - 4
Total No. of Elective Papers - 5
Extra Credit Course - 2
No. of Projects - 1

The internal and external marks for theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	40	60

Separate passing minimum is prescribed for Internal and External

For Theory:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks)
- **b)** The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e. 30 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Practical:

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
- **b)** The passing minimum for End Semester Examinations shall be 40% out of 60marks (i.e. 24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For PROJECT:

Marks for Dissertation: 80 Marks Marks for Viva Voice: 20 Marks Total Marks : 100 Marks

Semester I	Internal Marks: 25				ternal I	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS1CC1	MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE	CORE	90	6	-	5

To enable the students to learn the basic concepts of Discrete Mathematics, Graph Theory, Fuzzy set Theory and combinatorics.

Syllabus:

UNIT I (12 HOURS)

Statements and notation- connectives- Tautologies- Equivalence of formulas- Theory of inference for the statement calculus.

UNIT II (18 HOURS)

Partial ordering- Partially Ordered Set: representation and Associated Terminology Lattices and Boolean Algebra-Lattices as partially ordered sets- Definition and examples- Some properties of lattices — Boolean Algebra- Definition and examples — Sub algebra, direct product and homomorphism. Fundamental principles of counting: Permutations- Combinations: The Binomial theorem- combinations with repetition- Relations and functions- The Pigeonhole principle — the principle of Inclusion and Exclusion: The principle of Inclusion- Recurrence relations- First order linear Recurrence Relation.

UNIT III (20 HOURS)

Definition of a Graph – finite & infinite graphs – incidence, degree isolated & pendent Vertices – isomorphism –sub graphs – walks, paths & circuits –Connected & disconnected graphs – components –Euler graphs - Operations on Graphs –More on Euler graphs –Hamiltonian paths & circuits.

UNIT IV (20 HOURS)

Trees –properties of trees –pendent vertices in a tree – distances & centers in a tree – Rooted & binary trees – Spanning trees –Fundamental circuits – Finding all spanning trees of a Graph – Spanning trees in a weighted graph.

UNIT V (20 HOURS)

From Classical Sets to Fuzzy Sets, Fuzzy Sets Verses Crisp Sets: Fuzzy Sets: Basic types- Fuzzy sets: Basic Concepts – Additional Properties of α – cuts – Extension Principle for fuzzy sets. Operations on Fuzzy Sets: Types of operations – Fuzzy complements – Fuzzy Intersections: t-Norms – Fuzzy Unions: t- Conorms – Combinations of Operations.

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1	Tremblay J. P., Manohar.R.	Discrete Mathematical Structures With ApplicationsTo Computer Science	Tata McGraw- Hill Publishing Company Limited, New Delhi	1997
2	Narsingh Deo	Graph Theory With Applications To Engineering & Computer Science	Prentice Hall of India,New Delhi	1997

3	G.J.Klir , B.Yuan	Fuzzy Sets Logic And fuzzy	Prentice Hall of India, New Delhi	2001
4	Ralph, P. Grimaldi	Discrete And CombinatorialMathematics	Pearson Asia Education	Reprint 2002

Reference Books:

S.NO	AUTH ORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	G.J. M.Ganesh	Introduction To Fuzzy Sets And Logic		
2	Dr.S. Arumugam, Dr. S.Ramachandran	Invitation To Graph Theory	Scitech Publications India Pvt Limited, Chennai	2001
3	Seymour Lipschutz, Marc Laris Lipson	Schuam's Outlines Discrete Mathematics	Tata McGraw- Hill Publishing Co., Ltd., New Delhi	1999

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge Level
Number		
CO1	Explain the concepts of Permutation	K2
CO2	Apply the concepts of connectives, theory of inference for the statement calculus and fuzzy set theory	K3
CO3	Examine basic terminologies in graph to draw various kinds of graphs	K4
CO4	Differentiate the theory of Boolean Algebra and Lattices	K4
CO5	Develop the concepts of trees	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	M	S
CO3	S	S	M	S
CO4	S	S	M	S
CO5	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy

Chalk and Talk, Group discussion, Seminar, Assignment.

Course Designer

Dr. S. Saridha

	Semester I	Internal Marks: 25			External Marks:75		
COURSE CODE		COURSE TITLE	CATEGORY	L	T	P	CREDITS
	19PCS1CC2	DESIGN AND ANALYSIS OF ALGORITHMS	CORE	90	6	-	5

- To learn the techniques for effective problem solving in computing
- Apply important algorithmic design paradigms and methods of analysis
- Analyze the asymptotic performance of algorithms to show the efficiency of the algorithm
- Write rigorous correctness proofs for algorithms
- Demonstrate a familiarity with major algorithms and data structures

Syllabus

UNIT I (15 HOURS)

Introduction: Algorithm Definition – Algorithm Specification – Performance Analysis. Elementary Data Structures: Stacks and Queues – Trees – Dictionaries – Priority Queues – Sets and Disjoint Set Union – Graphs-Analysis.

UNIT II (20 HOURS)

Divide and Conquer: The General Method – Binary search -Merge Sort – Quick Sort – Selection sort-Heap sort -Analysis. The Greedy Method: General Method - Container Loading- Knapsack Problem - Tree Vertex Splitting – Job Sequencing with Deadlines - Minimum Cost Spanning Trees - Optimal Storage on Tapes – Optimal Merge Patterns - Single Source Shortest Paths-Analysis.

UNIT III (20 HOURS)

Dynamic Programming: The General Method – Multistage Graphs – All-Pairs Shortest Paths – Single-Source Shortest Paths - Optimal Binary Search Trees -String Editing - 0/1 Knapsack - Reliability Design - The Traveling Sales person Problem - Flow Shop Scheduling – Analysis.

UNIT IV (20 HOURS)

Basic Traversal and Search Techniques: Techniques for Binary Trees – Techniques for Graphs – Connected Components and Spanning Trees – Biconnected Components and DFS- Analysis. Backtracking: The General Method – The 8-Queens Problem – Sum of Subsets – Graph Coloring – Hamiltonian Cycles – Knapsack Problem Branch and Bound: The Method - 0/1 Knapsack Problem.- Analysis.

UNIT V (15 HOURS)

NP-HARD and NP-COMPLETE PROBLEMS: Basic concepts-NP-HARD Graph problems-NP-HARD scheduling problems-NP-HARD Code generation problems-Analysis

S.NO	TITLE	AUTHOR	PUBLICATION/EDITION	YEAR
1	Fundamentals of	Ellis Horowitz, Sartaj	Universities Press, Second	2015
	Computer	Sahni and Sanguthevar	Edition	
	Algorithms	Rajasekaran		

Reference Books:

S.NO	TITLE	AUTHOR	PUBLICATION/EDITION	YEAR
1	Data structures and	V.Aho,	Pearson Education, 4 th	2009
	Algorithms	Hopcropft,	Edition	
		Ullman		
2	Introductionto the	Anany Levitin	Third Edition,Pearson	2012
	Design and Analysis of		Education	
	Algorithms			
3	Design & Analysis of	Gajendra	Khanna Publishers;4	2015
	Algorithms	Sharmah	edition	

Web References

- 1. http://nptel.ac.in/courses/106101059/
- 2. http://nptel.ac.in/courses/106101060/
- 3. http://www.personal.kent.edu/~rmuhamma/Algorithms/algorithm.html
- 4. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-toalgorithms-fall-2011/lecture-videos/
- 5. http://cs.uef.fi/pages/franti/asa/notes.html

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge level
CO1	Design algorithms for various computing problems.	К3
CO2	Analyze the time and space complexity of algorithms.	K4
CO3	Critically analyze the different algorithm design techniques for a given problem	K5
CO4	Assess/Compare the efficiency of the algorithm	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	M	M	S
CO2	S	M	S	S
CO3	S	S	S	S
CO4	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy

Chalk&talk, Assignment, PPT, Seminar, E-Content.

Course designer:

Ms. K.Sangeetha

Semester I	Internal Marks: 25			Ext	ernal N	Aarks:75
COURSE CODE	COURSE TITLE CATEGORY L		T	P	CREDITS	
19PCS1CC3	WEB TECHNOLOGIES	CORE	90	6	-	5

- This Subject is useful for Making own Web page and how to host own web site on internet. Along with that Students will also learn about the protocols involve in internet technology
- To initiate PHP language for server side scripting, To establish XML and processing of XML Data with Java, To introduce Server side programming with Java Servlets and JSP, To commence Client side scripting with Javascript and AJAX,
- To analyse the basics involved in publishing content on the World Wide Web, To transform graduates with potential in computational into experts in information technology that the industry requires from time to time

Syllabus:

UNIT I (16 HOURS)

Web Essentials - Clients, Servers, and Communication. The Internet-Basic Internet Protocols - The World Wide Web-HTTP request message-response message-Web Clients - Web Servers-. Markup Languages: An Introduction to HTML History-Versions-Basic HTML Syntax and Semantics- Some Fundamental HTML Elements-Relative URLs-Lists-tables- Frames-Forms.

UNIT II (18 HOURS)

Style Sheets - CSS -Introduction to Cascading Style Sheets-Features-Core Syntax-Style Sheets and HTML Style Role Cascading and Inheritance-Text Properties-Box Model Normal Flow Box Layout-Beyond the Normal Flow-Other Properties.

UNIT III (16 HOURS)

Client- Side Programming - The JavaScript Language-History and Versions Introduction JavaScript in Perspective-Syntax Variables and Data Types-Statements- Operators- Literals-Functions-Objects-Arrays-Built-in Objects-JavaScript Debuggers.

UNIT IV (20HOURS)

Server-Side Programming - Java Servlets- Architecture -Overview-A Servlet- Generating Dynamic Content-Life Cycle-Parameter Data-Sessions-Cookies- URL Rewriting - Data Storage Servlets and Concurrency. RMI Architecture - Working With RMI - Application Development With RMI - Created Distributed Application Development With RMI.

UNIT V (20 HOURS)

Representing Web Data - XML-Documents and Vocabularies-Versions and Declaration—Namespaces JavaScript and XML: Ajax-DOM based XML processing Event-oriented Parsing: SAX-Transforming XML Documents- Selecting XML Data: XPATH-Template based Transformations: XSLT-Displaying XML Documents in Browsers.

S.NO	BOOK TITLE	AUTHOR	PUBLICATIONS
1.	Web Technologies-A Computer	Jeffrey C.Jackson	Pearson
	Science Perspective	-	Education, 2009.

Reference Books:

S.NO	BOOK TITLE	AUTHOR	PUBLICATIONS
1.	"Programming the World Wide	Robert. W. Sebesta	Fourth Edition, Pearson
	Web		Education, 2007
2.	Internet & World Wide Web How	Deitel, Deitel,	ThirdEdition,Pearson
	To Program	Goldberg	Education,2006
3.	Core Web Programming	Marty Hall and Larry	Second Edition, VolumeI
		Brown	and II, Pearson
			Education, 2001
4.	Developing Web Applications	Bates	Wiley, 2006
5.	The Complete Reference – JAVA	Herbert Schildt	7 th Edition, TMH,2012

Web References:

- 1. www.w3schools.com
- 2. www.geeksforgeets.org/web-technology/
- 3. www.guide.freecodecamp.org
- 4. <u>www.alphadevx.com</u>

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Understand the processing of XML Data with Java	K2
CO2	Apply suitable scripting languages for Client side and Server side programming	К3
CO3	Analyze the basics involved in publishing content on the World Wide web	K4
CO4	Assess oneself to get employment with this practical hands on training.	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S

S- Strong; M-Medium; L-Low

Pedagogy:

Chalk and talk, PPT, Group Discussion, Quiz, Seminar

Course Designer:

Ms.S.Udhayapriya

Semester I	Internal Marks: 40			Exte	rnal Ma	arks:60
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS1CC1P	WEB TECHNOLOGIES LAB	CORE	90	•	6	4

To provide fundamental concept of Internet, JavaScript, XML, Servlet with a view to developing professional software development skills.

Syllabus:

- 1. Develop your college web portal using HTML.
- 2. To develop a Style Sheet using Link, Table, Box, List and Positioning.
- 3. Write a JavaScript code block, which checks the contents entered in a form's text element. If the text entered is in the lower case, convert to uppercase.
- 4. Write a JavaScript code block, which validates a username and password.
 - a) If either the name or password field is not entered display an error message.
 - b) The fields are entered do not match with default values display an error message.
 - c) If the fields entered match, display the welcome message.
- 5. Write a program in Java to implement a Client/Server application using RMI.
- 6. Write a program in Java to create a Cookie and set the expiry time of the same.
- 7. Write a program in Java to create Servlet to count the number of visitors to a webpage.
- 8. Write a program in Java to create a form and validate a password using Servlet.
- 9. Write a XML program for job listing in HTML.

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Recognize the usage of HTML Tags	K2
CO2	Demonstrate the usage of Java Script	K3
CO3	Experiment the client/server application using RMI	K4
CO4	Develop web application using XML, Servlet	K5

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	S	M
CO3	S	S	S	S
CO4	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy: Demonstration

Course Designer: Ms.S.Udhayapriya

Semester I	Inter	Internal Marks: 25			xternal	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS1CC4	DISTRIBUTED OPERATING SYSTEM	CORE	90	6	-	5

- To understand about the distributed computing system models, file models and the architecture of DSM.
- To know how to solve the security problems.

Syllabus:

UNIT I (12 HOURS)

Fundamentals: What is Distributed Operating System-Evolution of Distributed Computing system —Distributed Computing System models-Why are Distributed Computing Systems gaining popularity-What is a Distributed Computing System-Issues in Designing Distributed Computing System —Introduction to Distributed Computing Environment. Introduction to Computer Networks-Network types-LAN-WAN-Communication protocols- Internetworking-ATM Technology.

UNIT II (18 HOURS)

Message Passing: Introduction – Desirable features -Issues in IPC Message Passing-Synchronization-Buffering – Multi datagram Messages-Encoding and Decoding-Process Addressing – Failure Handling-Group Communication.

UNIT III (20 HOURS)

Distributed Shared Memory: Introduction – General Architecture of DSM system- Design and Implementation Issues of DSM – Granularity-Structure of Shared Memory- Replacement strategy-Thrashing-Heterogeneous DSM – Advantages. Synchronization: Introduction Clock Synchronization – Event Ordering – Mutual Exclusion – Deadlock-Election Algorithm.

UNIT IV (20 HOURS)

Distributed File System: Introduction-Desirable features- File models -File Accessing Models-File Sharing Semantics – File Caching Schemes – File Replication-Fault Tolerance- Atomic Transactions-Design Principles.

UNIT V (20HOURS)

Security: Introduction – Potential Attacks to Computer system –Cryptography- Authentication-Access Control- Digital Signatures – Design Principles.

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS / EDITION	YEAR OF PUBLICATION
1.	Pradeep K Sinha	Distributed Operating Systems	PHI	2012

ReferenceBooks:

S.NO	AUTHOR	AUTHOR TITLE OF THE PUBL BOOK / ED		YEAR OF PUBLICATION	
1	Andrew S Tanenbaum	Distributed Operating Systems	РНІ	2007	

WebReferences:

- 1. http://www.darshan.ac.in/Upload/DIET/Documents/CE/2160710 Distributed

 Operating System GTU Study Material 2017 22042017 033831AM.pdf
- 2. http://www.coda.cs.cmu.edu/ljpaper/lj.html
- 3. http://www.windowsnetworking.com/articles_tutorials/Windows2003-Distributed- File-System.html

Course Outcome

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Understand the architecture of DSM	K2
CO2	Determine the difficulties of distributed memory management	K3
CO3	Compare centralized and distributed system	K4
CO4	Predict effective synchronization techniques to be performed to run a task in a distributed system	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	M	S
CO3	S	S	S	S
CO4	S	S	S	S

S-Strong M-Medium L-Low

Pedagogy: Chalk and talk and Seminar

Course Designer: Ms.K.Pradeepa

Semester II Internal Marks: 25			External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS2CC5	DATA MINING AND WAREHOUSING	CORE	90	6	1	5

- Able to understand the basic concepts of data mining
- Provides an overview of various applications of data mining
- Gain knowledge about various data mining techniques like classification, clustering, association rule mining

Syllabus:

UNIT-I (16 HOURS)

Introduction: What is Data mining? – Data mining on what kind of data – Data mining functionalities (What kinds of Patterns can be mined) – Major Issues in Data mining –Data mining Trends and Research Frontiers: Mining Complex Data types – Other Methodologies – Data mining Applications – Data mining Trends.

UNIT-II (16 HOURS)

Data Pre-Processing: Data Cleaning – Data Integration - Data Reduction – Data Transformation and Data Discretization. Mining Frequent Patterns, Associations: Basic concepts – Frequent Itemset Mining Methods.

UNIT-III (18 HOURS)

Advanced Pattern Mining: Pattern Mining - A Road Map – Pattern Mining in Multilevel, Multidimensional Space. Data Warehousing: Basic Concepts – Data Warehouse Modeling - Data Warehouse Design and usage - Data Warehouse Implementation.

UNIT-IV (20 HOURS)

Classification: Basic concepts- Decision Tree Induction - Bayesian Classification - Rule Based Classification - Model Evaluation and Selection- Techniques to improve Classification Accuracy - Advanced Methods: Classification by Back Propagation - Support Vector Machines - Lazy Learners: K-Nearest-Neighbor Classifiers.

UNIT-V (20 HOURS)

Cluster analysis: Basic concepts and methods – Cluster analysis - Partitioning methods

- Hierarchical Methods - Density Based Methods - Grid Based Methods. Advanced Cluster Analysis: Clustering High Dimensional data. Outlier Detection: Outlier and outlier analysis.

S.NO	AUTHOR	TITLE OF THE		PUBLISHER/	YEAR OF
		воок		EDITION	PUBLICATION
1.	Jiawei Han, Micheline Kamber,	Data Concepts	Mining: and	Morgan Kaufman Publishers, Third Edition	2012
	Jian Pei	Techniques			

Reference Books:

S.NO	AUTHOR	TITLE OF THE	PUBLISHER/	YEAR OF
		воок	EDITION	PUBLICATION
1.	Margaret	Data Mining	Pearson Education	2006
	H.Dunham	Introductory and		
		AdvancedTopics		
2.	C.S.R. Prabhu	Data Warehousing:	PHI Learning	2008
		Concepts, Techniques,	Private Ltd. Second	
		Products and	Edition	
		Applications		
3.	K.P. Soman,	Insight into Data	PHI	2008.
	Shyam Diwakar, V.	Mining Theory and		
	Ajay	Practice		

Web References:

- 1. www.tutorialride.com/data-mining/data-mining-tutorial.htm
- 2. https://hanj.cs.illinois.edu/bk3/bk3 slidesindex.htm
- 3. www.guru99.com/datawarehouse-architecture.htm
- 4. www.tutorialpoint.com/dwh/dwh_data_warehousing.htm

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge
Number		Level
CO1	Recognize basic concepts of data mining	K2
CO2	Review data mining techniques like classifications, clustering, association rule mining, prediction and related algorithm	К3
CO3	Assess the methods and techniques appropriate for the task	K5

Mapping with Programme Outcomes

On the successful completion of the course, students will be able to:

COs	PO1	PO2	PO3	PO4	
CO1	S	S	M	S	
CO2	S	S	S	S	
CO3	S	S	S	S	

S-Strong; M-Medium; L-Low

Pedagogy: Chalk and Talk, Discussion, Lecture

Course Designer: Ms. S. Udhayapriya

Semester II	Internal Marks: 40			External Marks:60		
COURSE CODE COURSE TITLE CAT		CATEGORY	L	T	P	CREDITS
19PCS2CC2P	DATA MINING LAB AND MATLAB	CORE	90	•	6	4

- Provides rich implementation experience in data mining techniques
- Able to preprocess and Visualize data using Weka tool
- Gain knowledge to develop application using Matlab

WEKA Tool:

Preprocessing

Association rules

Classification

Clustering

Data Visualization

Experimenter

Knowledge Flow

MATLAB:

Basic Operations

Regression

Classification Ensemble

Basic graphic applications

Web References:

- 1. https://www.tutorialride.com/
- 2. https://www.slideshare.net/
- 3. https://in.mathworks.com/

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge
Number		Level
CO1	Demonstrate the features of data mining tools	K3
CO2	Analyze the performance of various classification and clustering algorithm	K4
CO3	Interpret Regression techniques using MATLAB	K6
CO4	Apply Basic graphic applications in MATLAB	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	\mathbf{M}	S	S	S
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	M	S

S- Strong; M-Medium; L-Low

Pedagogy: Demonstration

Course Designer: Ms.S. Udhayapriya

Semester II	Internal Marks: 25			External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS2CC6	ARTIFICIAL INTELLIGENCE	CORE	90	6	•	5

- To foster the development and understanding of Artificial Intelligence and its applications worldwide
- To promote interdisciplinary exchanges between Artificial Intelligence and other fields of information processing
- To gain knowledge based on information through learning

Syllabus:

UNIT I (18 HOURS)

Introduction to Artificial Intelligence and Problem solving: Definition - AI problems-What is AI Technique- Defining the problem as state space search- Production systems. Heuristic Search techniques: Best-First Search— Constraint Satisfaction-Means-End Analysis.

UNIT II (18 HOURS)

Knowledge Representation Issues: Representations and mappings -Approaches to Knowledge representations. Using Predicate Logic: Representing simple facts in logic-Representing Instance and ISA relationships - Computable functions and predicates - Resolution.

UNIT III (20 HOURS)

Representing knowledge using rules: Procedural Vs Declarative knowledge – Logic programming- Backward vs Forward Reasoning. Statistical Reasoning: Probability and Baye's Theorem- Bayesian Networks-Dempster-Shafer Theory.

UNIT IV (18 HOURS)

Learning from Observations: Forms of Learning-Inductive Learning-Learning Decision tree-Ensemble Learning.

UNIT V (16 HOURS)

Knowledge in Learning: A Logical formulation of Learning- Knowledge in Learning-Explanation based learning-Learning using Relevance Information.

S.NO	AUTHOR	TITLE OF THE	PUBLISHER/	YEAR OF
		ВООК	EDITION	PUBLICATION
1	Elaine Rich, Kevin Knight, Shivashankar B Nair (Unit 1–3)	Artificial Intelligence	Tata McGraw Hill, 3 rd edition	2009
2	Stuart Russel, Peter Norvig (Unit 4- Unit 5)	Artificial Intelligence- A Modern Approach	Pearson Education, 3r ^d edition	2010

References Books:

S.NO	AUTHOR	TITLE OF THE	PUBLISHER/	YEAR OF
		воок	EDITION	PUBLICATION
1	Rajendra	Introduction to	PHI Learning Pvt Ltd,	2014
	Akerkar	Artificial Intelligence	2 nd edition	
2	Ben Coppin	Artificial	Jones and Bartlett	2004
		Intelligence		
		Illuminated		

Web References:

- 1. http://www.formal.stanford.edu/jmc/whatisai/
- 2. http://www.sciencedaily.com/news/computers_math/artificial_intelligence/

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Apply the basic knowledge representation and learning methods	K3
CO2	Examine techniques for handling incomplete and uncertain models	K4
CO3	Formulate a system for solving a particular problem	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	M	S
CO2	S	S	S	S
CO3	S	S	S	S

S- Strong; M-Medium; L -Low

Pedagogy Chalk and Talk, PPT, Discussion, Assignment, Quiz, Case study

Course designer Dr.P.Rajeswari

Semester II	Internal Marks: 25		arks: 25 External Marks:75		arks:75	
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS2EC1A	NETWORK SECURITY	ELECTIVE	90	6	-	4

- Overview the principles of cryptography and Network Security
- Inculcate the classical and advanced encryption standards and technique
- Gain knowledge in establishing IP security

Syllabus:

UNIT I (18 HOURS)

Introduction: Security Trends - The OSI Security Architecture - Security Attacks - Security Services - A model for network Security. Classical Encryption Techniques: Symmetric Cipher Model - Substitution Techniques - Transposition Techniques - Steganography.

UNIT II (20 HOURS)

Block Ciphers and the DES: Block cipher Principles - The DES - The Strength of DES - Differential and Linear Crypt Analysis. Public key cryptography and RSA: Principles of Public Key Cryptosystems – The RSA Algorithm.

UNIT III (20 HOURS)

Digital Signatures and Authentication Protocols: Digital Signatures - Authentication

Protocols - Digital Signature Standard. Authentication Applications: Kerberos - X.509

Authentication Service, Public-Key Infrastructure. Email Security: Pretty Good Privacy - S/MIME.

UNIT IV (20 HOURS)

IP Security: IP Security Overview - IP Security Architecture - Authentication Header - Encapsulating Security Payload. Web Security: Security Considerations - SSL and TLS-SET.

UNIT V (12 HOURS)

System Security: Intruders - Intrusion Detection - Password Management. Malicious Software: Viruses and Related Threats. Firewalls: Design Principles - Trusted systems.

Text Books:

S.NO	AUTHOR	TITLE OF THE	PUBLISHER	YEAR OF
		воок	/ EDITION	PUBLICATION
1	William Stallings	Cryptography and Network Security - Principles and Practices	Prentice Hall of India, 4th edition	2007

References Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER/	YEAR OF
			EDITION	PUBLICATION
1	Atul Kahate	Cryptography and Network Security	Tata McGraw Hill, New Delhi	2006
2	Charles P Pfleeger, Shari Lawrence Pfleeger	Security in Computing	Pearson education, New Delhi	2006

Web References:

- $1. \ https://www.open.edu/openle arn/science-maths-technology/computing-and-ict/systems-computer/network-security/$
- 2. scs.carleton.ca/~paulv/5900wBooks.html
- 3. https://en.wikipedia.org/wiki/Network_security
- 4. https://www.slideshare.net/HatemMahmoud/network-security-applications-4562405
- 5. https://www.intechopen.com/books/security-enhanced-applications-for-information-systems/cybersecurity-in-the-real-world

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Understand cryptography, network security concepts with its applications	K2
CO2	Apply security principle in system design	K3
CO3	Analyze network security protocols	K4
CO4	Detect network security threat	K5
CO5	Design the code to implement a cryptographic algorithm	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	S	S
CO3	S	S	S	M
CO4	S	S	S	S
CO5	S	S	S	M

S-Strong; M-Medium; L-Low

Pedagogy: Chalk and Talk, PPT, Discussion, Assignment

Course designer: Ms.D.Radhika

Semester II	Internal Marks: 25			External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS2EC1B	SOFT COMPUTING	ELECTIVE	90	6	-	4

- To educate the concepts of neural networks and the role of neural networks in intelligent systems
- To provide the basic knowledge in fuzzy
- To apply fitness function using genetic algorithm

Syllabus:

UNIT I (20 HOURS)

Neural Networks: Fundamentals of Neural Networks – Basic Concepts of Neural Networks – Model of an Artificial Neuron – Neural Network Architecture – Characteristics of Neural Network – Learning Methods – Taxonomy of Neural Network Architecture – Back Propagation Network – Architecture of Back Propagation Network – Back Propagation Learning.

UNIT II (20 HOURS)

Neural Network Associative Memory: Auto Correlations – Hetero Correlations – Exponential BAM – Associative Memory for Real Coded Pattern Pairs – Adaptive Resonance Theory – Introduction – ART1 – ART 2 – Applications.

UNIT III (20 HOURS)

Fuzzy Set Theory: Crisp Sets – Fuzzy Sets – Crisp Relations – Fuzzy Relations – Fuzzy Systems: Crisp Logic – Predicate Logic – Fuzzy Logic – Fuzzy Rule Based System – Defuzzification Method - Applications.

UNIT IV (20 HOURS)

Genetic Algorithms: History – Basic Concepts – Creation of off Springs – Working Principle – Encoding – Fitness Function – Reproduction Genetic Modeling – Inheritance Operators – Cross Over – Inversion and Deletion – Mutation Operator – Applications – Advances in Genetic Algorithm .

UNIT V (10 HOURS)

Hybrid System: Integration of Neural Network – Fuzzy Logic – Genetic Algorithm- Hybrid System – Neural Network – Fuzzy Logic – Genetic Algorithm Weight Determination – Application – Fuzzy Back Propagation Network – Language Recognition Type Fuzzy Members – Fuzzy Neuron – Fuzzy Back Propagation Architecture – Learning in Fuzzy Back Propagation – Applications – Knowledge Base Evaluation.

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER / EDITION	YEAR OF PUBLICATION
1.	S.Rajasekaran and G.A.Vijayalakshmi Pai	Neural Networks, Fuzzy Logic and Genetic Algorithms Synthesis and Applications	Prentice Hall India Learning Private Limited	2011

Reference Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER / EDITION	YEAR OF PUBLICATION
1.	Vinoth Kumar and	Neural Network and	S.K. Katria	2012
	R. Saravana Kumar	Fuzzy logic	& Sons	
2.	Haykin Simon	Neural Networks and	3/e, Prentice	2011
		Learning Machines	Hall of India	
3.	Tang, Tan and Yi	Neural Networks:	Springer	2010
		Computational Models	Verlag	
		and Application	Publications	

Web References:

- 1. <u>www.tutorialspoint.com/</u> neural networks
- 2. www.sciencedirect.com/ fuzzyset
- 3. https://in.geeksforgeeks.org/geneticalgorithm

Course Outcomes

On the successful completion of the course, students will be able to:

CO NUMBER	00 521122112	
CO1	Describe the concepts of soft computing and their applications	K1
CO2	Discuss supervised and unsupervised learning in neural networks	K2
CO3	Apply soft computing techniques for small applications	K3
CO4	Analyze various soft computing techniques suitable for real time	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	S	S
CO3	S	S	S	M
CO4	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy: Lectures, Demonstration

Course Designer: Mrs.R.Rita Jenifer

Semester II	Internal Marks: 25		Ext	ternal M	larks:75	
COURSE CODE	COURSE TITLE CATEGORY L		T	P	CREDITS	
19PCS2EC1C	ADVANCED COMPUTER ARCHITECTURE	ELECTIVE	90	6	-	4

- To understand the micro-architectural design of processors
- To learn about the various techniques used to obtain performance improvement and power savings in current processors
- To gain knowledge in distributed and Parallel Computing Architecture

Syllabus:

UNIT I (10 HOURS)

Review of Fundamentals of CPU, Memory and IO – Trends in Technology, Power, Energy and Cost, Dependability – Performance Evaluation.

UNIT II (20 HOURS)

ILP Concepts – Pipelining Overview – Compiler Techniques for Exposing ILP – Dynamic Branch Prediction – Dynamic Scheduling – Multiple Instruction Issue – Hardware Based Speculation – Static Scheduling – Multi-Threading – Limitations of ILP – Case Studies.

UNIT III (20 HOURS)

Vector Architecture – SIMD Extensions – Graphics Processing Units – Loop Level Parallelism.

UNIT IV (20 HOURS)

Symmetric and Distributed Shared Memory Architectures – Performance Issues – Synchronization – Models of Memory Consistency – Case Studies: Intel I7 Processor, SMT & CMP Processors.

UNIT V (20 HOURS)

Cache Performance – Reducing Cache Miss Penalty and Miss Rate – Reducing Hit Time – Main Memory and Performance – Memory Technology. Types of Storage Devices – Buses – RAID – Reliability, Availability and Dependability – I/O Performance Measures.

AUTHOR	TITLE OF THE BOOK	PUBLISHER / EDITION	YEAR OF PUBLICATION
John L Hennessey,	Computer	Morgan	2012
David A Patterson	Architecture A	Kaufmann	
	Quantitative	Elsevier, Fifth	
	Approach	Edition	
	John L Hennessey,	John L Hennessey, David A Patterson Architecture A Quantitative	AUTHOR BOOK EDITION John L Hennessey, David A Patterson Architecture A Quantitative Elsevier, Fifth

ReferenceBooks:

S.NO	AUTHOR	TITLE OF THE	PUBLISHER /	YEAR OF
		BOOK	EDITION	PUBLICATION
1.	Kai Hwang,	Computer Architecture	Mc Graw-Hill	2000
	Faye Brigg	And Parallel	International	
		Processing	Edition	
2	Sima D, Fountain T, Kacsuk P	Advanced Computer Architectures: A Design Space Approach	Addison Wesley	2000

WebReferences:

- 1. www.cs.iiie.edu.in/
- 2. https://en.m.Wikipedia.org / Wiki/ instruction level parallelism
- 3. https://passlab.githlub.io/CSE565/note

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Review Instruction level parallelism	K2
CO2	Analyze the Performance of different level parallelism techniques	K4
CO3	Manage Cache and Memory Related Issues in Multi- Processors	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	S	S
CO3	M	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy: Chalk and talk and Seminar

Course Designer: Ms.R. Rita Jenifer

Semester II	Internal Marks: 25			Ext	ternal M	larks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS2EC2A	BIOINFORMATICS	ELECTIVE	90	6	-	4

- To get the basic knowledge of bioinformatics
- To analyze and use tools and databases for text mining
- To gain deeper knowledge on FAST and BLAST

Syllabus

UNIT I (15 HOURS)

Introduction-Historical Overview- Bioinformatics Applications- Bio informatics Major Databases- Molecular Biology.

UNIT II (18 HOURS)

Sequence Visualization- Structure Visualization- Statistical Concepts- Micro Arrays- Imperfects Data- Quantitative Randomness- Data Analysis- Tool Selective and Statistics of Alignment-Clustering and Classification.

UNIT III (20 HOURS)

Methods & Technology Overview- Infrastructure, Pattern Recognition & Discovery- Machine Learning- Text Mining & Tools- Dot Matrix Analysis- Substitution Matrix- Dynamic Programming- Word Methods, Multiple Sequence Alignment- Tools for Pattern Matching.

UNIT IV (20 HOURS)

Drug Discovery- Fundamentals- Protein Structure- System Biology- Collaboration & Communications-Standards and Issues.

UNIT V (17 HOURS)

Introduction- Working with FASTS-Working with BLAST, FASTA & BLAST Algorithms & Comparison.

	S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER / EDITION	YEAR OF PUBLICATION
	1.	Bioinformatics-	S.C.Rastogi, P.Rastogi,	PHI,4 th Edition	2013
		Methods	N.Mendiratta		
L		&Application			
	2.	Bioinformatics	Bryan Bergeron	Pearson	2002
		Computing		Education,	
				1 st Edition	

Reference Books:

S.NO	AUTHOR	TITLE OF	PUBLISHER /	YEAR OF
		THE BOOK	EDITION	PUBLICATION
1.	Elementary	Imtiyaz Alam	Pharma Book	2005
	Bioinformatics	Khan	syndicate	
2.	Environmental	Indu Shekhar	IK International	
	Biotechnology	Thakur (IST)	publication,2 nd	
			Edition,2002	

Web References:

- 1. https://en.wikipedia.org/wiki/Bioinformatics
- 2. https://academic.oup.com/bioinformatics/pages/instructions_for_authors
- 3. https://blast.ncbi.nlm.nih.gov/Blast.cgi
- 4. https://www.slideshare.net/RIZWANABBAS3/bioinformatics-on-internet

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Define molecular biology and bioinformatics applications	K1
CO2	Discuss the sequences using data analysis tool	K2
CO3	Sketch the data mining and pattern matching tools	К3
CO4	Summarize the molecular modeling and simulation technologies and software that are used to study a wide range of molecular phenomena in biology and medicine	K5
CO5	Interpret the BLAST and FASTA algorithms to find the similarity between protein and DNA sequences.	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S
CO5	S	S	M	S

S-Strong; M-Medium; L-Low

Pedagogy: Chalk and Talk, Lecture, Demonstration, PPT, Discussion, Quiz

Course Designer: Ms D.Radhika

Semester II	Internal Marks: 25				xternal	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS2EC2B	ADVANCED DATABASE SYSTEM	ELECTIVE	90	6	-	4

- Overview the advanced concepts of Database Management System
- Information retrieval using NoSQL database
- Incorporate transaction management with ACID properties

Syllabus

Unit I (16 HOURS)

Parallel Database: Introduction - Architecture for Parallel Databases - Parallel Query Evaluation - Parallelizing Individual Operations - Parallel Query Optimization.

Unit II (20 HOURS)

Distributed Database - Distributed DBMS Architectures - Storing Data in a Distributed DBMS - Distributed Catalog Management - Distributed Query Processing - Updating Distributed Data Distributed Transaction - Distributed Concurrency Control - Distributed Recovery.

Unit III (18 HOURS)

Object Database System: Motivating Example - Structured Data Types - Operations on Structured Data - Encapsulation and ADTs - Inheritance - Object, OIDs and Reference Types - Database Design for ORDBMS - ORDBMS Implementation Challenges - OODBMS - Comparing RDBMS, OODBMS, and ORDBMS.

Unit IV (18 HOURS)

Transactions: Transaction Concepts - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery - Concurrency - Need for Concurrency - Locking Protocols - Two Phase Locking - Intent Locking - Deadlock-Serializability - Recovery Isolation Levels.

Unit V (18 HOURS)

Advanced Databases Information retrieval: Introduction - Indexing for Text Search - Web Search Engines- Managing Text in a DBMS - Data Model for XML - XQuery. Spatial data management: Types of Spatial Data and Queries - Applications Involving Spatial Data. NoSQL databases: Introduction - Column oriented stores- Key -Value stores - Document databases - Graph databases. Introduction to Map reduce and Hadoop.

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER	YEAR OF
			S /EDITION	PUBLICATION
1	Ramez	Fundamentals of Database	Pearson /	2007
	Elmasri	Systems	Addison Wesley,	
	Shamkant		4 th Edition	
	B. Navathe			
2	Thomas Connolly	Database Systems, A	Pearson	2003
	and Carlolyn Begg	Practical Approach to	Education, 3rd	
		Design, Implementation	Edition	
		and Management		

ReferenceBooks:

S.NO	AUTHOR	TITLE OF THE	PUBLISHERS/	YEAR OF
		BOOK	EDITION	PUBLICATION
1	Abraham Silberschatz, Henry F. Korthand S. Sudharshan	Database System Concepts	Tata McGraw Hill, 5 th Edition	2006
2	Raghu Ramakrishnan , Johannes Gehrke	Database Management System	McGraw Hill Higher Education, 3 rd Edition	2007
3	G.K.Gupta	Database Management systems	Tata McGraw Hill Private Limited	2011
4	Shashank Tiwari	Professional NoSQL	John Wiley & Sons	2011

Web References:

- 1. web.cs.wp.edu
- 2. www.commonlounge.com

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Understand the concepts of parallel database and query	K2
CO2	Apply distributed transaction and concurrency control	К3
CO3	Test various queries ORDBMS and OODBMS	K4
CO4	Combine Advanced databases like Spatial and XML databases for handling data	K5
CO5	Deduct applications with Map Reduce concept	К6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	M	S
CO3	S	S	S	S
CO4	S	S	S	S
C05	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy: Chalk and talk, Lecture, Discussion, Quiz, Demonstration, PPT

Course Designer: Ms.G.Sujatha

Semester II	Internal Marks: 25			E	xterna	al Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS2EC2C	SOFTWARE PROJECT MANAGEMENT	ELECTIVE	90	6	-	4

- Overview the key aspects of a software project and planning
- Prepare and managing software cost
- Understand the concept of risk engineering and continuous process improvement

Syllabus

Unit I (15 HOURS)

Software Management Renaissance: Conventional Software Management – Evolution of Software Economics – Improving Software Economics – The Old Way and the New.

Unit II (15 HOURS)

A Software Management Process Framework: Live-Cycle Phases – Artifacts of the Process – Model-Based Software Architectures – Work Flows of the Process – Check Points of the Process.

Unit III (20 HOURS)

Software Management Disciplines – I: Iterative Process Planning – Project Organizations and Responsibilities – Process Automation.

Unit IV (20 HOURS)

Software Management Disciplines – II: Project Control and Process Instrumentation – Tailoring the Process.

Unit V (20 HOURS)

Risk Management: Introduction – Risk – Categories of risk – A framework for dealing with risk – Risk Identification – Risk assessment – Risk Planning – Risk Management – Evaluating risks to schedule – Applying the PERT Technique – Monte Carlo Simulation – Critical Chain Concepts.

Text Books:

S.NO	AUTHOR	TITLE OF BOOK	THE	PUBLISHERS / EDITION	YEAROF PUBLICATION
1.	Walker Royce	Software Management	Project	Addison-Wesley	2006

Reference Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS / EDITION	YEAR OF PUBLICATION
1.	Bob Hughes,	Software Project	Tata McGraw	2012
	Mike Cotterell,	Management	Hill,	
	Rajib Mall		Fifth Edition	

Web References:

- 1. http://sigc.edu/department/mca/studymet/SoftwareProjectManagment.pdf
- 2. http://www.pvpsiddhartha.ac.in/dep_it/lecture%20notes/SPM/unit4.pdf
- 3. http://www.pvpsiddhartha.ac.in/dep-it/lecture%20notes/SPM/unit5.pdf
- 4. https://www.tutorialride.com/software-engineering/risk-management-in-software-engineering.htm

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Discuss software development project plans	K2
CO2	Apply schedule and cost techniques to determine a basis of estimate	К3
CO3	Differentiate software life cycle support and the role of the software engineering supervisor	K4
CO4	Formulate software project management practices within an organization and recommend practical improvements based upon evaluation.	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	S	M
CO3	S	S	S	M
CO4	S	S	S	M

S– Strong; M–Medium; L – Low

Pedagogy: Chalk and talk, Lecture, Discussion, Quiz, Demonstration, PPT

Course Designer: Mrs.N.Agalya

Semester III	Internal Marks: -			External Marks:100		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY L		T	P	CREDITS
19PCS3CC7	COMPUTER SCIENCE FOR COMPETITIVE EXAMINATIONS	CORE	90	6	-	5

- To understand the need for preparing competitive exams
- To study the basic concepts of core subjects in computer science
- To inculcate the knowledge of implementation of various concepts

Syllabus

UNIT I (18 HOURS)

Mathematical Logic: Propositional and Predicate Logic - Normal Forms- Predicates and Quantifiers-Rules of Inference-Sets and Relations: Probability - Group Theory – Graph Theory – Optimization-**Digital Logic:** Number systems- Boolean Algebra and Minimization of functions-Combinational Circuits – Sequential Circuits.

UNIT II (18 HOURS)

Computer Organization and Architecture: Machine Instruction and Addressing Modes – ALU & Data Path, CPU Control Design – Memory & I/O Interface – Instruction Pipeline – Cache and Main Memory, Secondary Storage – Microprocessor-Computer Graphics: 2-D Geometrical Transforms and Viewing- 3-D Object Representation, Geometric Transformations and Viewing- Software Engineering: Software Process Models – Software Requirements – Software Design – Software Quality – Estimation and Scheduling of software projects – Software Testing – Software Configuration Management.

UNIT III (18 HOURS)

Database Management Systems: Basic concepts – Data Modeling – SQL – Normalization-Data models – Data Warehousing and Data Mining-Operating System: Basics of operating system - Process Management – Threads – CPU Scheduling – Deadlocks – Memory Management – Storage Management – File and Input/output Systems – Security – Linux – Distributed Systems-Data Structures and Algorithms: Linked Lists, Stacks and Queues – Trees-Searching - Sorting – Hashing - Asymptotic Analysis – Algorithm design techniques: Greedy Approach, Dynamic Programming Divide and Conquer – Graph Search, Minimum Spanning trees, Shortest paths – Complexity Theory.

UNIT IV (18 HOURS)

Theory of Computation: Finite Automata and Regular Languages—Context Free Languages and Push down Automata—Recursive Enumerable sets and Turing Machines — Syntax & Semantic Analysis-**Compiler Design:** Lexical Analysis and Parsing — Syntax Directed Translation-Intermediate code generation — Code optimization-**Data Communication and Computer Networks:** Concept of Layering — Network Types & Models — Functions of OSI & TCP/IP Layers—Flow and Error Control techniques, switching — IPV4/IPV6, routers and routing algorithms — TCP/UDP and sockets, congestion controls. Application Layer Protocols (WWW, DNS, SMTP, POP, FTP, and HTTP)—Network Security: authentication, basics of public key, cryptography, digital signatures and certificates, firewalls.

UNIT V (18 HOURS)

Number Systems- Series Completion -Coding & Decoding- Problems on Ages - Blood Relation - Probability - Permutation & Combination - Data Interpretation - ICT (Information and Communications Technology-Logical Reasoning & Non - Verbal Reasoning.

Case Study: **Programming Languages-** Programming in C- Object Oriented Programming – Programming in C++/JAVA - Web Programming.

Reference Books

		T	ı	1
S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAROF PUBLICATION
1.	Dr.R.S.Aggarwal,	Quantitative Aptitude for Competitive Examinations	S.Chand Publishing	2017
2.	Dr.R.S.Aggarwal,	A modern Approach to verbal & Non-verbal Reasoning	S.Chand Publishing	2020
3.	R.Gupta	UGC – NET/SET Computer Science & Applications	R.Gupta	2015
4.	Surbhi Sharma,Kailasah Chandra Gurunani	UGC NET Computer Science and Applications	Arihant Publication	2018
5.	Trishna Knowledge Systems	GATE Computer Science and Information Technology-GATE 2020	Pearson	2019

Web References

- 1. https://www.careerbless.com/aptitude/qa/home.php
- 2. https://www.sawaal.com/aptitude-reasoning/quantitative-aptitude-arithmetic-ability-questions-and-answers.html
- 3. https://www.indiabix.com/non-verbal-reasoning/questions-and-answers/
- 4. https://www.geeksforgeeks.org/ugc-net-cs-preparation/
- 5. http://www.netugc.com/ugc-net-solved-question-papers-in-computer-science- and-applications
- 6. https://gatecse.in/
- 7. https://gateoverflow.in/

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge
Number		Level
CO1	Explain concepts of computer science core subjects	K2
CO2	Apply the knowledge to solve various types of problems	K3
CO3	Examine various computer science concepts on real time applications	K4
CO4	Develop a scientific aptitude and sense of reasoning	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	\mathbf{S}	S	S
CO3	S	S	S	M
CO4	S	S	S	M

S-Strong; M-Medium; L-Low

Pedagogy Chalk and Talk, PPT, Discussion, Group discussion, Assignments, Workshops

Course Designer Ms.R.Ramya

Semester III	Internal Marks: 25				External Marks:75		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY L		T	P	CREDITS	
19PCS3CC8	BIG DATA ANALYTICS	CORE	90	6	-	5	

- To provide knowledge about Big data Analytics
- To study the basic concepts on Data Science & Analytical Technologies
- To understand about Hadoop &MAPREDUCE fundamentals
- To inculcate knowledge about MongoDB & Cassandra

Syllabus

Unit I (12 HOURS)

Types of Digital Data: Classification of Digital Data - Characteristics of Data-Evolution of Big Data-Definition of Big Data-Challenges with Big Data- Characteristics of Big Data-Other characteristics of data - Need for Big Data.

Unit II (18 HOURS)

Big Data Analytics: Characteristics of Big Data analytics- Need for Big Data analytics-Classification of analytics-Greatest challenges that prevent businesses from capitalizing on Big Data —Importance of Big Data analytics — Data science-Data scientist- Terminologies used in Big Data environments-Analytics tools.

Unit III (20 HOURS)

Big data Technology: NoSQL - Hadoop. Introduction to Hadoop: Introducing Hadoop-Need for Hadoop-Limitations of RDBMS -RDBMS versus HADOOP-History of Hadoop — Hadoop overview-Interacting with Hadoop ecosystem —HDFS - Processing Data with Hadoop MapReduce — Managing resources and applications with Hadoop YARN-Introduction to MAPREDUCE programming.

Unit IV (20 HOURS)

Introduction to MongoDB: Need for MongoDB -Terms used in RDBMS and MongoDB - Data types in MongoDB- MongoDB Query Language.

Unit V (20 HOURS)

 $Introduction\ to\ Cassandra: An\ introduction\ -Features\ of\ Cassandra-CQL\ data\ types-CQLSH-Keyspaces-CRUD-\ Collections\ -Using\ a\ Counter\ -\ Time\ to\ live\ -\ Alter\ commands\ -\ Import\ and\ Export$

Text Book

S.NO	AUTHOR	TITLE OF THE	PUBLISHER/	YEAROF
		ВООК	EDITION	PUBLICATION
1.	Seema Acharya, Subhashini Chellappan	Bigdata and Analytics	Wiley India Pvt.Ltd	2015

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	V.Bhuvaneswari	Bigdata Analytics-	Bharathiyar	2016
	T.Devi	A Practioner's	University,	
		Approach	Coimbatore	
2.	Michael Minelli, Michele Chambers, Ambiga Dhiraj	Big data Big Analytics	Wiley	2013
3.	Bart Baesens	Analytics in a Big data World	Wiley	2014
4.	DT Editorial Services	Big data Black Book	Dreamtech Press	2016

Web References

- 1. https://webopedia.com/TERM/B/big_data_analytics.html
- **2.** https://hadoop.apache.org/
- **3.** https://www.mongodb.com/
- **4.** https://www.tutorialspoint.com/cassandra/index.htm
- **5.** https://www.edureka.co/blog/mapreduce-tutorial/

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Understand the fundamentals of Bigdata analytics	K2
CO2	Describe the Hadoop architecture and File system	K2
CO3	Apply the MapReduce Programming model for real-world problems	К3
CO4	Explore the concepts of NoSQL databases	K4
CO5	Develop a complete business data analytics solution	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	M	S
CO2	S	S	S	S
CO3	M	S	M	L
CO4	S	S	S	${f L}$
CO5	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy Chalk and talk, PPT, Discussion, Interactive Teaching, Group discussion and Workshops

Course Designer Ms.A.Sahaya Jenitha

Semester III	Internal Marks: 40			Exte	ernal	Marks:60
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS3CC3P	PYTHON AND R LAB	CORE	90	-	6	4

- To write, test and debug simple Python programs
- To implement Python programs with list, tuples and dictionary
- To analyze the data using R

PYTHON PROGRAMMING

- 1. Create a calculator program
- 2. Demonstrate use of Loops
- 3. Demonstrate use of List
- 4. Demonstrate use of Tuples
- 5. Demonstrate use of Dictionaries
- 6. Explore string functions
- 7. Demonstrate usage of basic regular expression
- 8. Read and write a file
- 9. Demonstrate Exceptional Handling Technique
- 10. Create Comma Separate Files (CSV), Load CSV files into internal Data Structure

R PROGRAMMING

- 1. Demonstrate use of Data frames
- 2. Explore functions
- 3. Exporting data into CSV, Excel, SAS & STATA
- 4. Correlation with Matrix Example
- 5. Data Visualization
- 6. Demonstrate machine Learning algorithm
 - i. Decision Tree
 - ii. K-Means

Web References

- 1.https://www.programiz.com
- 2.https://www.statmethods.net
- 3. https://www.datamentor.io/

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge Level
Number		
CO1	Write and debug simple Python programs with loops and conditions	K3
CO2	Use Python lists, tuples, dictionaries for representing compound data and apply file concept in Python	K4
CO3	Construct Python programs step-wise by defining functions and calling them	K5
CO4	Create a data frame and exporting data into various fileformats in R.	K5
CO5	Apply Machine Learning algorithm in R	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	M	S
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S
CO5	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy Demonstration

Course Designer Ms.K.Reka

Semester III	Internal Marks: 25			Ext	ernal	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS3EC3A	BLOCKCHAIN	ELECTIVE	90	6	-	4

- Allow the students to explore the driving force behind the cryptocurrency
- Inculcate knowledge about Bitcoin, along with the Decentralization and Cryptography provides alternative to Bitcoins
- Initiate Smart contracts and currencies

Syllabus

UNIT I (13 HOURS)

Distributed systems- History of blockchain- Introduction to blockchain- Types of Blockchain- CAP theorem and blockchain- Benefits and limitations of blockchain.

UNIT II (17 HOURS)

Decentralization using blockchain- Methods of decentralization- Routes to Decentralization-Decentralized organizations -Cryptography and Technical Foundations: Cryptographic primitives-Asymmetric cryptography- Public and private keys.

UNIT III (20 HOURS)

Bitcoin –Transactions- Blockchain- Bitcoin payments. Alternative Coins -Theoretical foundations- Bitcoin limitations- Name coin, Litecoin, Primecoin, Zcash.

UNIT IV (20HOURS)

Definition-Ricardian contracts: Smart contract templates-Deploying smart contracts on a blockchain.

UNIT V (20 HOURS)

Internet of Things- Government- Health- Finance- Media.

Text Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER/EDITION	YEAR OF PUBLICATION
1.	Imran Bashir	Mastering Blockchain	Packt, Birmingham, Mumbai	2018
2.	Andreas M.Antonopoulos	Mastering Bitcoin	O'REILLY,2 nd Edition	2019

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER/EDITION	YEAR OF PUBLICATION
1.	Tiana Laurence	Blockchain for dummies	Wiley	2017

Web References

- 1.http://nptel.ac.in/courses/106106168/27
- 2. https://www.edx.org/learn/blockchain-cryptography
- 3.https://www.class-central.com/tag/blockchain
- 4.https://cognitiveclass.ai/courses/blockchain-course/
- 5. https://www.skillshare.com/browse/blockchain

Course Outcomes

On the successful completion of the course, students will be able to:

CO NUMBER	CO STATEMENT	KNOWLEDGE LEVEL
CO1	Define blockchain, types, applications &limitations	K1
CO2	Explore blockchain, cryptography concepts	K2
CO3	Enumerate bitcoin and other alternatives	K3
CO4	Differentiate various contracts	K4
CO5	Propose IoT in various sectors	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	M	M	L	L
CO2	M	L	M	L
CO3	S	L	M	L
CO4	M	M	M	S
CO5	L	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy Chalk and Talk, Discussion, Lecture, Quiz, PPT

Course Designer Ms.D.Radhika

Semester III	emester III Internal Marks: 25			Exte	ernal	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS3EC3B	PARALLEL PROCESSING	ELECTIVE	90	6	-	4

- To study how parallel computers work
- To analyze the correct designs of parallel architectures, especially within the technological constraints
- To prepare students for a career in designing the computer systems of the future

Syllabus

UNIT I (16 HOURS)

Fundamentals of Parallel Processing – Evolution of Computer System- Trends towards parallel processing – Parallelism in Uniprocessor Systems – Parallel Computer Structures – Architectural Classification Schemes– Parallel Processing Applications.

UNIT II (16 HOURS)

Memory and Input-Output Subsystems: Hierarchical Memory Structure – Virtual Memory System – Memory Allocation and Management – Cache Memories and Management – Input-Output Subsystems.

UNIT III (20 HOURS)

Pipelining: An Overlapped Parallelism – Principles linear pipelining – classification of pipeline processors – general pipeline and reservation tables – arithmetic pipeline design examples – data buffering and bus Structure – internal forwarding and register tagging – hazard detection and resolution – job Sequencing and collision prevention – vector processing requirements – characteristics – Pipelined vector processing methods.

UNIT IV (20 HOURS)

Vectorization and Optimization Method- Language Features in Vector Processing – Design of Vectorizing Compilers-SIMD array processors – Organization – Masking and Data routing – Inter PE Communications – SIMD Interconnection Networks – Static vs Dynamic network – Mesh connected Illiac network – Cube Interconnection network – Barrel Shifter and Data Manipulator - Shuffle-exchange and Omega networks- GPU Basics-Architecture of a modern GPU-Evolution of Graphics Pipelines-GPGPU-An intermediate Step-GPU computing.

UNIT V (18 HOURS)

Multiprocessors Architecture and Programming - Functional Structures - Interconnection Networks - Time Shared or Common Buses- Crossbar Switch and Multiport Memories- Multistage Networks for Multiprocessors- Parallel Memory Organizations - Multiprocessor Operating Systems - Multiprocessor Scheduling Strategies.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER/ EDITION	YEAR OF PUBLICATION
1.	Kai Hwang, Faye A. Briggs	Computer Architecture and Parallel Processing	McGraw Hill International Edition	2017

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER/ EDITION	YEAR OF PUBLICATION
1.	Sajjan G. Shiva	Advanced Computer Architecture	Taylor & Francis	2006
2.	Kai Hwang	Advanced Computer Architectures: Parallelism, Scalability, Programmability	Tata McGraw Hill	2003
3.	David B.Kirk, Wen-mei W.Hwu	Programming Massively Parallel Processors	MK Publications, Second Edition	2013

Web References

- 1. https://www.tutorialspoint.com/parallel_computer_architecture/index.htm
- 2. https://www.geeksforgeeks.org/introduction-to-parallel-computing/
- 3. https://www.studytonight.com/computer-architecture/parallel-processing-and-data-transfer
- 4. https://www.nlb.gov.sg/biblio/12672553
- 5.https://vincyjoseph.files.wordpress.com/2014/01/computer_architecture_hwang_brigg.pdf
- **6.**http://digilib.stmikbanjarbaru.ac.id/data.bc/18.%20Programming/2013%20Programming%20 Massively%20Parallel%20Processors%20A%20Hands-on%20Approach%202nd.pdf

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Discuss the concepts of parallel processing including various kinds of system architectures	K2
CO2	Illustrate the issues and techniques in improving performance of SIMD Computers	К3
CO3	Compare the pipeline and parallel concepts	K4
CO4	Categorize the Multiprocessor systems, cache coherence and Interconnection networks	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	M	S
CO2	S	M	M	S
CO3	S	S	S	S
CO4	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy Chalk and talk, Lecture, Discussion, Quiz, Demonstration, PPT

Course Designer Mrs.R.Ramya

Semester III	Internal Marks: 25			Exte	ernal	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS
19PCS3EC3C	COMPILER DESIGN	ELECTIVE	90	6	-	4

- To enrich the knowledge in various phases of compiler and its uses
- Learn code optimization techniques, machine code generation and use of symbol table
- To identify the similarities and differences among various parsing techniques and grammar transformation techniques

Syllabus

UNIT I (18 HOURS)

Introduction to Compiler– Phases of a Compiler – Cousins of Compiler- Lexical analysis: Role of a lexical analyzer – Input buffering –Specification of tokens – Finite Automata: Nondeterministic Finite Automata-Deterministic Finite Automata- Conversion of NFA to DFA-Constructing NFA from Regular Expression.

UNIT II (18 HOURS)

Syntax Analysis: Role of parser-Context Free Grammar-Regular Expression Vs. Context Free Grammar-Elimination of Left Recursion-Left Factoring- Top down parsing – Simple bottom up parsing – Shift reducing parsing.

UNIT III (20 HOURS)

LR Parsers - LR parsing algorithms-Constructing SLR parsing tables-Constructing Canonical LR parsing tables-Constructing LALR parsing table-Parser Generator-YACC.

UNIT IV (18 HOURS)

Run-time environment - Source language issues - Storage organizations - Storage allocation strategies -Parameter Passing- Intermediate code generation: Intermediate languages - Declarations - Assignment statements- Backpatching

UNIT V (16 HOURS)

Code generation - Issue in design of code generator — The target machine — Runtime storage management — Basic clocks and flow graphs — DAG representation of Basic Blocks- Code optimization: Introduction — Principle source of code optimization — Optimization of basic blocks-Peephole Optimization

Text Book

S.NO	AUTHOR	TITLE OF THE	PUBLISHER	YEAR OF
		BOOK	/EDITION	PUBLICATION
1	Alfred V.Aho,	Compilers	Pearson Education,	2007
	Ravi Sethi,	Principles,	6 th Edition	
	Jeffrey	Techniques and		
	D.Ullman, Monica	Tools		
	S.Lam			

References Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER/ EDITION	YEAR OF PUBLICATION
1	Parag H. Dave, Himanshu B. Dave	Compilers: Principles and Practice	Pearson	2012
2	Raghavan V	Principles of Compiler Design	Tata Mc-Graw Hill Education Pvt. Ltd	2017

Web References

- 1. https://www.slideshare.net/appasami/cs6660-compiler-design-notes?next_slideshow=1
- 2. https://www.slideshare.net/mir_majid_kant/lec00-outline
- 3. https://www.ssmengg.edu.in/weos/weos/upload/EStudyMaterial/Cse/6th%20sem/compiler%20design/compiler%20design.pdf
- 4. http://www.engppt.com/2009/08/compiler-design-ppt_21.html
- 5. https://www.slideshare.net/fellowbuddy/compiler-design-lecture-notes
- 6. https://www.slideshare.net/eelcovisser/lr-parsing-71059803
- 7. http://www.d.umn.edu/~rmaclin/cs5641/Notes/Lecture9.ppt
- 8. https://www.cse.iitm.ac.in/~krishna/cs3300/lecture2.pdf

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Construct grammars and automata for regular language	К3
CO2	Analyze the knowledge of patterns, tokens & regular expressions for solving a problem	K4
CO3	Develop new code optimization techniques for improving the performance of a program in terms of speed & space	K5
CO4	Predict symbol table and generate intermediate code	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	M	S
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S

S – Strong; M – Medium; L - Low

Pedagogy Chalk and Talk, PPT, Discussion, Assignment, Demonstration, Quiz, Case study

Course Designer Dr.P.Rajeswari

Semester III	Internal Marks: 25			Ext	ernal	Marks:75
COURSE CODE	COURSE TITLE CATEGORY L				P	CREDITS
19PCS3EC4A	ROBOTIC PROCESS AUTOMATION	ELECTIVE	90	6	-	4

- To enrich the knowledge in Robotic Process Automation
- Learn sequence and control flow
- To know about the RPA Use cases

Syllabus

UNIT I (15 HOURS)

What is Robotics Process Automation: Scope and Techniques of Automation - Robotic Process Automation - The Future of Automation.

UNIT II (20 HOURS)

Sequence, Flow Chart and Control Flow: Sequencing the Workflow – Activities – Control Flow, Various Types of Loops and Decision Making, Step-by-step example using Sequence and Flow Chart - Step-by-step example using Sequence and Control Flow.

UNIT III (20 HOURS)

Data Manipulation: Variables and Scope – Collections – Arguments – Purpose and use – Data Table usage with examples – Clipboard Management – File Operation with step-by-step example – CSV/Excel to data table and vice versa.

UNIT IV (20 HOURS)

Taking Control of The Controls System: Finding and Attaching Windows – Finding the Control – Techniques for waiting for a control – Act on Controls – Mouse and Keyboard Activities – Working with Ui Explorer – Handling events – Revisit Recorder – Screen Scraping – When to use OCR – Types of OCR available – How to use OCR – Avoiding Typical failure points.

UNIT V (15 HOURS)

RPA Use cases: RPA in Banking – Excel Automation – PDF Data Extraction & Automation – RPAData Migration and Entry – Email Automation

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Alok Mani Tripathi	Learning Robotic Process Automation	Packt, Birmingham	2018

Reference Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1	Steve Kaelble	Robotic Process Automation for dummies	NICE RPA team	2018

Web References

1.https://www.edureka.co/blog/rpa-tutorial/

2.https://www.udemy.com/course/robotic-process-automation/

3.https://www.guru99.com/robotic-process-automation-tutorial.html

4.https://www.automationanywhere.com/in/robotic-process-automation

5.https://www.uipath.com/blog/learning-robotic-process-automation-through-video tutorials

Course Outcomes

On the successful completion of the course, students will be able to:

CO NUMBER	CO STATEMENT	KNOWLEDGE LEVEL
CO1	Learn Robotic Process Automation and its Features	K1
CO2	Explore Control Flow and Decision Making	K2
CO3	Enumerate Clipboard Management	K3
CO4	Differentiate various controls	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	M	M	L	L
CO2	M	L	M	L
CO3	S	L	M	L
CO4	M	M	M	S
CO5	L	S	L	L

S-Strong; M-Medium; L-Low

Pedagogy Chalk and Talk, Discussion, Lecture, Quiz, PPT

Course Designer Ms.R.Sangeetha

Semester III	Internal Marks: 25			Exte	rnal l	Marks:75
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY L			P	CREDIT
19PCS3EC4B	MACHINE LEARNING	ELECTIVE	90	6	-	4

- Introduce and define the meaning of Machine Learning
- Explore various paradigms for knowledge encoding in computer systems.
- Also introduce the concept of learning patterns from data and develop a strong theoretical foundation for understanding state of the art Machine Learning algorithms.

Syllabus

UNIT I (15 HOURS)

Introduction to machine learning- What is machine learning – Classification, Supervised/Unsupervised Learning, Probably Approximately Correct (PAC) Learning.

UNIT II (15 HOURS)

Bayesian Decision Theory: Classification, Losses and Risks, Discriminant Functions, Utility Theory- Evaluating an Estimator: Bias and Variance- The Bayes' Estimator Parametric Classification-Model Selection Procedures.

UNIT III (20 HOURS)

Multivariable Methods: Multivariate Data – Parameter Estimation – Estimation of Missing Value – Multivariate Normal Distribution – Multivariate Regression – Dimensionality Reduction – Factor Analysis – Multidimensional Scaling – Locally Linear Embedding.

UNIT IV (20 HOURS)

Clustering: K-Means Clustering – Mixtures of Latent Variable Models – Hierarchical Clustering – Nonparametric Methods Nonparametric Density Estimation – K-Nearest Neighbor Estimator – Nonparametric Classification – Smoothing Models.

UNIT V (20 HOURS)

Decision Trees: Univariate Trees – Pruning – Rule Extraction from Trees – Multivariate Trees – Linear Discrimination: Generalizing the Linear Model – Logistic Discrimination – Discrimination by Regression.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Ethem Alpaydin	Introduction to	MIT Press,	2014
		Machine Learning	Third Edition	

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Tom M.	Machine Learning	McGraw Hill	
	Mitchell		Education (India)	2013
			PrivateLimited	
2.	Peter Norvig	Artificial	Pearson,	2015
	Stuart Russell	Intelligence A	Third Edition	
		Modern Approach		

Web References

- 1.https://expertsystem.com/machine-learning-definition/
- 2.https://www.geeksforgeeks.org/machine-learning/
- 3.https://www.edureka.co/blog/what-is-machine-learning/
- 4. https://towards datascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a 36 d 136 e f 68

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO STATEMENT	KNOWLEDGE
NUMBER		LEVEL
CO1	Describe the theory underlying machine learning	K1
CO2	Classify knowledge about Modeling and prediction and	K2
	basic feature engineering	
CO3	Use linear models and non-linear models	К3
CO4	Make inferences on algorithm using tree, rule based	K4
	models and analyze reinforcement learning techniques	
CO5	Construct algorithms using Python and R	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	M	M
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S
CO5	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy Chalk and Talk, PPT, Discussion, Assignment, Demo, Quiz, Case study

Course Designer Ms.V.Kavitha

Semester III	Internal Marks: 25				External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDITS	
19PCS3EC4C	ІоТ	ELECTIVE	90	6	-	4	

- To understand the technology behind Internet of Things
- To get familiar with the design principles of connected devices
- To know about IoT platforms and design methodologies

Syllabus

UNIT I (15 HOURS)

Introduction to IoT: Physical Design of IoT – Logical Design of IoT – IoT Enabling Technologies – IoT Levels & Deployment Templates – Domain Specific IoTs: Home Automation – Cities – Environment –Energy – Logistics – Retail – Agriculture.

UNIT II (20 HOURS)

IoT and M2M: Introduction – M2M – Different between IoT and M2M – SDN and NFV for IoT–IoT System Management with NETCONF- YANG: Simple Network Management Protocol (SNMP)-Network operator Requirement – NETCONF – YANG- NETOPEER – Developing IoT: IoT platforms design methodology – IoT Design Methodology – Motivation for using Python.

UNIT III (20 HOURS)

IoT Systems – Logical Design using python: Introduction – Installing Python – python Data Types & Data Structures – Control Flow – Functions – Modules – Packages-File handling-date/Time Operations-classes-Python Packages of interest for IoT – IoT physical Devices and End points: What is an IoT Device – Exemplary Devices - Raspberry pi Interfaces – Programming Raspberry pi with Python – other IoT Devices.

UNIT IV (15 HOURS)

Data Analytics for IOT: Apache Hadoop – Using Hadoop MapReduce for Batch Data Analysis – Apache Spark – Apache Storm- Using Apache Storm for Real–time Data Analysis.

UNIT V (20 HOURS)

IoT Physical Servers and Cloud Offerings: Introduction to Cloud Storage Models & Communication APIs – WAMP – Auto Bahn for IoT – Amazon Web Services for IoT - Tools forIoT: Puppet – Case Study on IoT System for Weather Monitoring.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1	Arshdeep Bahga, Vijay Madisetti	Internet of Things A Hands on Approach	University press	2014

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER/E DITION	YEAR OF PUBLICATION
1.	David Hanes,	IoT Fundamentals,	Cisco Press	2017
	Gonzalo Salgueiro,	Networking		
	Patrick Grossette,	Technologies, Protocols		
	Robert Barton,	and Use cases for		
	Jerome Henry	Internet of Things		
2.	Olivier Hersent,	The Internet of Things –	Wiley	2012
	David Boswarthick,	Key applications and		
	Omar Elloumi	Protocols		
3.	Jan Holler, Vlasios	From Machine to	Elsevier	2014
	Tsiatsis, Catherine	Machine to the Internet		
	Mulligan, Stamatis	of Things – Introduction		
	Karnouskos, Stefan	to a new age of		
	Avesand, David Boyle	Intelligence		

Web References

- **1.** https://github.com/connectiot/iottoolkit
- 2. https://www.arduino.cc/
- **3.** https://www.tutorialspoint.com/
- 4. https://www.guru99.com/
- **5.** https://www.pythonforbeginners.com/

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Illustrate IoT enabling Technologies	K3
CO2	Analyze applications of IoT in real time scenario	K4
CO3	Design a portable IoT using Raspberry pi / equivalent boards and relevant protocols	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	S	S
CO3	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy Chalk and Talk, PPT, Discussion, Assignment, Demo, Quiz, Case study

Course Designer Ms P.Muthulakshmi

Semester IV	Internal Marks: 25			External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
19PCS4CC9	CLOUD COMPUTING	CORE	90	6	•	5

- To provide an in-depth and comprehensive knowledge of the Cloud Computing fundamental issues, technologies, applications and implementations.
 - To motivate students to do programming and experiment with the various cloud computing environments
- To introduce about the Cloud Standards

Syllabus:

UNIT I: (15 HOURS)

Defining Cloud Computing- Cloud Types: The NIST model - The Cloud Cube Model - Deployment models - Service models - Examining the Characteristics of Cloud Computing: Paradigm shift - Benefits of cloud computing - Disadvantages of cloud computing - Assessing the Role of Open Standards. Assessing the Value Proposition: Early adopters and new applications - The laws of cloud eonomics - Cloud computing obstacles - Behavioral factors relating to cloud adoption.

UNIT II: (20 HOURS)

Understanding Cloud Architecture: Exploring the Cloud Computing Stack—Composability- Infrastructure — Platforms - Virtual Appliances - Communication Protocols — Applications. Understanding Services and Applications by Type: Defining Infrastructure as a Service (IaaS) - Defining Platform as a Service (PaaS) - Defining Software as a Service (SaaS) - SaaS characteristics - Open SaaS and SOA.

UNIT III: (20 HOURS)

Understanding Abstraction and Virtualization: Using Virtualization Technologies - Load Balancing and Virtualization: Advanced load balancing - The Google cloud - Understanding Hypervisors: Virtual machine types - VMware vSphere - Understanding Machine Imaging: Porting Applications - The Simple Cloud API - AppZero Virtual Application Appliance. Capacity Planning - Load testing - Resource ceilings - Server and instance types.

UNIT IV: (20 HOURS)

Understanding Cloud Security: Securing the Cloud – Securing Data – Establishing Identity and Presence. Using the Mobile Cloud: Working with Mobile Devices – Defining the Mobile Market – Using Smartphones with the Cloud. Working with Mobile Web Services: Understanding Service Types – Performing Service Discovery – Using SMS – Defining WAP and other Protocols – Performing Synchronization.

UNIT V: (15 HOURS)

Cloud Programming and Software Environments: Parallel and distributed programming paradigms – Programming support of Google App Engine – Programming on Amazon AWS and Microsoft Azure – Emerging Cloud software environments.

Text Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER	YEAR OF
			/EDITION	PUBLICATION
1	Barrie Sosinsky	Cloud Computing Bible	Wiley	2011
	·		Publishing Inc	
	Kai Hwang,	Distributed and Cloud	Morgan	2013
2	Geoffrey C. Fox and	computing: From parallel	Kaufmann	
	Jack J. Dongarra	processing to the Internet of		
	Jack J. Dongana	Things		

Reference Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1	Michael Miller	Cloud Computing	Pearson Education Inc., 7th Edition	2012
2	Rajkumar Buyya & Co.	Cloud Computing Principles and Paradigms	John Wiley & Sons Publications	2011

Web References:

- 1. https://www.tutorialspoint.com/cloud_computing/index.htm
- 2. https://data-flair.training/blogs/cloud-computing-tutorial/

Course Outcomes

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge Level
Number		
CO1	Explain the cloud paradigm and its various forms of services	K3
CO2	Illustrate the architecture, infrastructure and delivery models	K3
CO3	Apply suitable virtualization concepts	K4
CO4	Solve problems using cloud toolkit	K4
CO5	Create interactive mobile services	K5

Mapping with Programme

Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	M
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S
CO5	S	M	S	L

S- Strong; M- Medium; L- Low

Pedagogy: Chalk and talk, Discussion, Quiz, Assignments & PPT

Course Designer: Ms.P.Muthulakshmi

Semester IV	Internal Marks: 25			Exte	rnal I	Marks:75
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
19PCS4CC10	DIGITAL IMAGE PROCESSING	CORE	90	6	-	5

- To impart the knowledge of image fundamentals and mathematical transforms necessary for image processing
- To understand the image enhancement techniques
- To study image compression procedures
- To study the image segmentation and representation techniques

Syllabus:

UNIT-I (14 HOURS)

Introduction to Image Processing: Overview of Image Processing-Nature of Image Processing-Image Processing and Related Fields-Digital Image Representation-Types of Images-Digital Image Processing Operations-Fundamental Steps in Image Processing- Image Processing Applications-Digital Imaging System- Colour Image Processing: Colour Models- Colour Quantization.

UNIT-II (18 HOURS)

Image Acquisition: Physical and biological aspects-Sampling and Quantization-Image quality-Image Transforms: Need for Image Transforms-Properties of Fourier Transform-Discrete Cosine Transform- Discrete Sine Transform- Walsh Transform-Hadamard Transform-Haar Transform-Slant Transform-SVD and KL Transforms.

UNIT-III (19 HOURS)

Image Enhancement and Restoration: Image Quality and Need for Image Enhancement-Point Operations-Spatial Filtering Concepts-Frequency Domain Filtering-Image Degradation Model-Categories of Image Degradations-Image Restoration Techniques.

UNIT-IV (19 HOURS)

Image Segmentation: Introduction-Classification of Image Segmentation Algorithms-Detection of Discontinuities-Edge Detection-Hough Transforms and Shape Detection-Corner Detection-Principles of Thresholding

UNIT-V (20 HOURS)

Image Compression: Image Compression Models – Compress Algorithms and its types – Types of Redundancy – Lossless Compression Algorithms – Lossy Compression Algorithms – Image and Video Compression Standards.

Case study: Face Recognition-Iris Recognition-Fingerprint Recognition-Signature Verification

Text Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1	Dr.S.Sridhar	Digital Image Processing	Oxford University Press	2012

Reference Books:

S.NO	AUTHOR	TITLE OF THE	PUBLISHER	YEAR OF
		BOOK	/EDITION	PUBLICATION
1	Anil Jain K.	Fundamentals Of Digital Image Processing	PHI Learning Pvt. Ltd	2011
2	Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins	Digital Image Processing Using MATLAB	Third Edition Tata Mc Graw Hill Pvt. Ltd	2011
3	Malay K. Pakhira	Digital Image Processing And Pattern Recognition	PHI Learning Pvt. Ltd, 1st Edition	2011

Web References:

- 1. http://www.cs.nmt.edu/~ip/lectures.html
- 2. http://cvc.yale.edu/projects/yalefaces/yalefaces.html
- 3. https://bestlearning.gnomio.com/

Course Outcomes

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Understand the fundamentals concepts of digital image processing and image transforms	K2
CO2	Analyze images in the frequency domain using various transforms	K4
CO3	Evaluate the techniques for image enhancement and image restoration	K5
CO4	Interpret image segmentation techniques	K3
CO5	Compare various compression techniques	K4
CO6	Apply image processing algorithms in practical applications	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	S	S
CO3	S	S	M	S
CO4	S	M	S	S
CO5	S	S	S	S
CO6	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy: Power point Presentation, e-content.

Course Designer: Ms.K.Reka

Semester IV	Internal Marks: 40			Ext	ernal	Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	CREDIT
19PCS4CC4P	FOSS LAB	CORE	90	-	6	4

- To expose students to FOSS environment
- To use and modify existing programs using open source packages/Technologies
- To inculcate knowledge in developing new software

Syllabus:

- 1. Linux
- 2. GIMP: GNU Image Manipulation Program
- 3. Apache Struts
- 4. Perl
- 5. Ruby
- 6. Apache Cassandra database
- 7. Mongo DB
- 8. Hadoop

Web References:

- 1. https://www.vmware.com/
- 2. https://www.cyberciti.biz/tips/linux-unix-bsd-documentations.html
- 3. https://developer.gimp.org/api/2.0/
- 4. https://struts.apache.org/
- 5. https://www.tutorialspoint.com/perl/perl_references.html
- 6. https://www.ruby-lang.org/en/documentation/
- 7. https://cassandra.apache.org/doc/latest/
- 8. https://docs.mongodb.com/manual/reference/database-references/
- 9. https://hadoop.apache.org/

Course Outcomes:

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Ability to install and run open-source operating systems	K1
CO2	Explain open source project structure and how to successfully setup a project	K2
CO3	Ability to contribute software to and interact with Free and Open Source Software development projects	К3
CO4	Exploring the Hadoop Distributed File System (HDFS)	К3

Mapping with Programme Outcomes:

Cos	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy : Demonstration

Course Designers: Ms.S.Udhayapriya & Ms.V.Kavitha

Semester IV	Internal Marks: 25			External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
19PCS4EC5A	WIRELESS SENSOR NETWORKS	ELECTIVE	90	6	-	4

- To get a thorough knowledge of sensors and its architecture
- To learn about the characteristics of wireless transmission
- To gain the exposure of sensor platform and its tools

Syllabus:

UNIT I (13 HOURS)

OVERVIEW OF WIRELESS SENSOR NETWORKS: Application Examples-Types of Applications -Challenges for Wireless Sensor Networks- Enabling Technologies for Wireless Sensor Networks.

UNIT II (17 HOURS)

ARCHITECTURES: Single-Node Architecture - Hardware Components-Energy Consumption of Sensor Nodes - Operating Systems and Execution Environments- Network Architecture - Sensor Network Scenarios- Optimization Goals and Figures of Merit- Gateway Concepts.

UNIT III (20 HOURS)

NETWORKING SENSORS: Physical Layer and Transceiver Design Considerations- MAC Protocols for Wireless Sensor Networks- Low Duty Cycle Protocols and Wakeup Concepts - S-MAC-The Mediation Device Protocol-Wakeup Radio Concepts-Address and Name Management- Assignment of MAC Addresses- Routing Protocols Energy-Efficient Routing-Geographic Routing.

UNIT IV (20 HOURS)

INFRASTRUCTURE ESTABLISHMENT: Topology Control-Clustering-Time synchronization- Localization and Positioning- Sensor Tasking and Control.

UNIT V (20 HOURS)

SENSOR NETWORK PLATFORMS AND TOOLS: Sensor Node Hardware – Berkeley Motes-Programming Challenges- Node level software platforms- Node-level Simulators- Statecentric programming.

Text Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Holger Karl,	Protocols and	John Wiley	2011
	AndreasWillig	Architectures for		
		Wireless Sensor		
		Networks		
2.	Feng Zhao,	Wireless Sensor	Elsevier	2007
	Leonidas J. Guibas	Networks- An		
		Information Processing		
		Approach		

Reference Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Kazem Sohraby,	Wireless Sensor	John Wiley	2007
	Daniel Minoli, and	Networks-Technology,		
	Taieb Znati	Protocols and		
		Applications		
2.	Anna Hac	Wireless Sensor Network	John Wiley	2003
		Designs		

Web References:

- 1. www.cs.wpi.edu
- 2. sensors-and-networks.blogspot.com
- 3. www.tfb.edu.mk

Course Outcomes:

On the successful completion of the course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Define the wireless sensor, various platforms and its	K1
	issues	
CO2	Review the various deployment mechanisms	K2
CO3	Construct the MAC layer and its issues	K3
CO4	Differentiate architectures, functions and	K4
	performance of wireless sensor networks systems	
	and its platforms	
CO5	Propose various routing protocols	K5

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	M	M
CO3	S	S	S	S
CO4	S	S	S	S
CO5	S	S	S	S

S – Strong; M – Medium; L – Low

Pedagogy: Chalk and Talk, Discussion, Lecture, Quiz, PPT

Course Designer: Ms.D.Radhika

Semester IV	Internal M	Exte	ernal l	Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	CREDIT
19PCS4EC5B	MANET	ELECTIVE	90	6	-	4

- Able to understand the principles of adhoc networks
- To get a knowledge of routing protocols and their performance
- Gain battery management schemes
- Identify issues and solutions of transport layer

Syllabus:

UNIT I (12 HOURS)

Adhoc Networking-Model of Operation-Commercial Applications-Technical factors affecting Adhoc networks.

UNIT II (18 HOURS)

Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks – Classifications of Routing Protocols – Table–Driven Routing Protocols – On Demand Routing Protocols-Hybrid Routing Protocols.

UNIT III (20 HOURS)

Issues in Designing a Multicast Routing Protocol –Classifications of Multicast Routing Protocols – Tree–Based Multicast Routing Protocols– Mesh–Based Multicast Routing Protocols– Energy–Efficient Multicasting – Multicasting with Quality of Service Guarantees – Application – Dependent Multicast Routing.

UNIT IV (20 HOURS)

Transport layer: Issues in designing- Classification of Transport Layer Solutions-Security in Adhoc Wireless Networks-Secure Routing in Adhoc Wireless Networks-Network Layer Solutions-QoS Frameworks for Adhoc Wireless Networks.

UNIT V (20 HOURS)

Battery Management Schemes-Transmission Power Management Schemes-Recent advances in Wireless Networks-Ultra Wide Band Radio Communication-Wireless Fidelity Systems.

Text Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	C.Siva Ram Murthy, B.S.Manoj	Ad hoc Wireless Networks Architectures and protocols	Pearson Education	2007
2.	Charles E. Perkins	Adhoc Networking	Addison-Wesley Professional	2008

Reference Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Stefano Basagni, MarcoConti, Silvia Giordano and Ivan Stojmenovic		Wiley-IEEE press	2004
2.	Mohammad Ilyas	The handbook of adhoc wireless networks	CRC press	2002

3.	C. K. Toh	Ad	Hoc	Mobile	Prentice Hall	2001
		Wireles	SS	Networks		
		Protoco	ols and	Systems		

Web References:

- 1. en.wikipedia.com
- 2. tools.ietf.com
- 3. folk.uio.no
- 4. www.ietf.org
- 5. Tandfonline.com
- 6. books.google.co.in

Course Outcomes:

On the successful completion of the course, students will be able to:

O Number	CO Statement	Knowledge Level
CO1	State the adhoc networks, characteristics and its features	K1
CO2	Review the protocol design issues of adhoc networks	K2
CO3	Examine the transport layer issues	К3
CO4	Compare QoS related performance measurements of ad hoc and sensor networks	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	S	S
CO3	S	S	S	S
CO4	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy: Lecture, Quiz, and PPT

Course Designer: Ms.D.Radhika

Semester IV	Internal M	Exte	ernal I	Marks:75		
COURSE CODE	COURSE TITLE CATEGORY L		T	P	CREDIT	
19PCS4EC5C	MOBILE COMPUTING	ELECTIVE	90	6	-	4

- To understood Wireless networks GSM, UMTS and WAP Architecture
- To gain basic knowledge about Android application development
- To create real time app using content providers and Threads

Syllabus:

UNIT I (15 HOURS)

Applications – Mobile and Wireless Devices – Simplified Reference Model – Need for Mobile Computing – Wireless Transmission – Multiplexing. Telecommunication system: Telecommunication system– GSM – Architecture- Handover-Security.

UNIT II (15 HOURS)

Wireless LAN: IEEE 802.11 – System Architecture-MAC Frame – MAC Management – Bluetooth - Architecture. Mobile IP: Goals – Packet Delivery –Strategies – Registration – Ad hoc Networks – Routing Strategies.

UNIT III (21 HOURS)

Getting started with Android programming: What Is Android? - Obtaining the Required Tools - Creating Your First Android Application - Anatomy of an Android Application - Activities, Fragments, and Intents: Understanding Activities- Linking Activities Using Intents - Fragments - Calling Built-In Applications Using Intents.

UNIT IV (21 HOURS)

Getting to know the Android user interface: Understanding the Components of a Screen-Adapting to Display Orientation - Managing Changes to Screen Orientation - Utilizing the Action Bar - Designing your user interface with views: Using Basic Views - Using Picker Views - Using List Views to Display Long Lists- Understanding Specialized Fragments-Displaying pictures and menus with views.

UNIT V (18 HOURS)

Content providers: Sharing Data in Android - Using a Content Provider—Messaging: SMS Messaging-Sending E-mail —Location based services: Displaying Maps - Getting Location Data - Monitoring a Location - Developing Android services: Creating Your Own Services- Establishing Communication between a Service and an Activity -Binding Activities to Services- Understanding Threading.

Text Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Jochen H.Schiller	Mobile	Addison Wesley	2014
		Communications	Pearson	
			Education	
2.	Wei Meng Lee	Beginning Android 4	Wiley India Pvt.	2012
		Application	Ltd	
		Development		

Reference Books:

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER /EDITION	YEAR OF PUBLICATION
1.	Raj Kamal	Mobile Computing	Oxford University Press	2012
2.	Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal	Mobile Computing	Tata Mcgraw Hill Publishing company limited	2010

Web References:

- 1. http://developer.android.com/guide/index.html.
- 2. http://developer.android.com/reference/packages.html
- 3. http://developer.android.com/guide/components/fundamentals.html
- 4. http://www.gsm-files.com/

Course Outcomes:

On the successful completion of the course, students will be able to:

Co Number	CO Statement	Knowledge Level
CO1	Illustrate the concepts of Multiplexing, GSM Architecture and its Protocols	K3
CO2	Analyze Messaging and Location based services	K4
CO3	Categorize Activities, Fragments, Intents & Views	K5

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4
CO1	S	S	S	S
CO2	S	S	S	S
СОЗ	S	S	S	S

S-Strong; M-Medium; L-Low

Pedagogy: Chalk and Talk, Lecture, Discussion, PPT, Demonstration

Course Designer: Mrs. K.Pradeepa