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Abstract
In the present work, a one-step synthetic method was implemented in an effective way to synthezise aminophenol-modified 
zinc oxide (Ap-modified ZnO). The as-prepared sample was characterized by various spectral and analytical tools. The 
electrochemical performance of Ap-modified ZnO demonstrated that the electrode material can be used in supercapacitors. 
The pronounced capacitive behaviour of Ap-modified ZnO was proved by cyclic voltammetric studies (CV), galvanostatic 
charge–discharge test (GCD) and electrochemical impedance spectroscopy (EIS) techniques in 1 M H2SO4. The newly 
developed Ap-modified ZnO electrode displayed an excellent gravimetric capacitance (Cg) of 427 Fg−1 at current density 
of 1 mA cm−2, which may be attributed to its unique structure, existence of abundant pores and large electroactive sites, 
supportive for facile electron, ion transport and enhanced electrical conductivity.
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Introduction

The continuous need for sustainability in energy and envi-
ronmental research has resulted exponentially in the produc-
tion of a wide range of cheap and eminent electrical devices, 
in addition to fuel cells, batteries and capacitors for a wide-
spread applications. For progression in the energy density, 
the specific capacitance of electrodes, modification of sur-
face area of given electrodes or the voltage of the cell have 
to be strengthened throughout the process [1, 2].

Compared to batteries and conventional capacitors, the 
electrochemical storage devices, called supercapacitors, have 

higher efficiency in energy and power density respectively. 
Depending on the various energy storage process, super-
capacitors (SCs) are subdivided into electrochemical dou-
ble layer capacitors (EDLCs), pseudo-capacitors (PCs) and 
hybrid capacitors. The parameters like electrical conductiv-
ity, pore structure and specific surface area determine the 
performance of EDLC electrodes. For pseudo-capacitors, 
the energy storage is achieved through reversible and fast 
redox reactions. The combination of electrode with EDLC 
and pseudo-capacitor behaviour is hybrid capacitors, respec-
tively [3–6].

In general, SCs are composed of pseudo-capacitive oxides 
or nitrides where there is no carbon-based matrix. Research-
ers identified the fact that the replacement of carbon elec-
trodes with pseudo-capacitive oxides or nitrides or redox 
active substances has resulted in significant capacitance due 
to their charge storage mechanism. However, this increase 
in the overall capacitance of the cell is associated with the 
combination of low energy and cycle life [6].

In energy storage devices, many organic compounds 
received attention as composite electrodes in reversible 
redox reaction. The advantages of using organic moie-
ties include strong covalent bonding, π-π interaction, low 
weight, large-scale production and biocompatibility [7]. In 
the midst of organic compounds, amino phenols are noti-
fied compounds among the class of substituted anilines. The 
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hydroxyl group in the phenyl ring can be oxidized to quinine 
and quinine can be reduced again. Nitrogen doping in the 
parent molecule can alter the electronic and crystalline struc-
ture and improve chemical stability, surface polarity and the 
properties of electron donors [8].

On the other hand, metal oxides have attracted consider-
able focus for utilization in energy storage devices due to 
their salient structural and morphological features. Numer-
ous efforts are made towards synthesizing other alterna-
tive and cheap transition metal oxides particularly for SCs. 
Recently, many metal oxides like RuO2, NiO2, MnO2 and 
IrO2 have been used in SCs because of their high specific 
capacitance. But, the high cost and low abundance on earth’s 
crust have retarded their commercial expediency. As a result, 
a concerted effort is being made to identify a low-cost effi-
cient metal oxide [9]. Among all these materials, ZnO is 
considered as a promising candidate for supercapacitors due 
to its abundance in nature, affordability, eco-friendly nature 
and easy preparation at nanoscale with different morpholo-
gies morphology such as nanorods, nanowires, nanobelts 
and nanohelixes. It exhibits remarkable electronic, optical 
and electrochemical properties due to its wide band gap 
(3.37 eV) and large exciton binding energy (60 meV), which 
make ZnO suitable for applications in photovoltaics [10], gas 
sensors [11], biocompatible corrosion inhibitor [12], pho-
tocatalysis [13] and supercapacitor [14]. However, the low 
conductivity at high current delayed performance of ZnO for 
supercapacitors [15].

Recently, ZnO also has been used as a potential electrode 
material for supercapacitors because ZnO could provide effi-
cient mechanical support and electrical conduction path. 
Many other works have focused on ZnO based materials to 
improve the stability of supercapacitors. Selva Kumar et al. 
fabricated nanoZnO/activated carbon composite electrode, 
which showed a specific capacitance of 160 Fg−1 and good 
electrochemical reversibility [16]. ZnO/carbon composite 
material prepared by Jayalakshmi et al. could yield specific 
capacitance value of 21.7 Fg−1 [17]. Wu et al. synthesized 
ZnO-reduced graphene oxide nanocomposite as an electrode 
material for high-performance supercapacitors, which exhib-
ited a specific capacitance of 109 Fg−1 at the scan rate of 
2 mV s−1[18]. Similarly, Guo et al. fabricated a sandwiched 
nanoarchitecture of reduced graphene oxide/ZnO electrode, 
which showed a specific capacitance of 51.6 Fg−1 at the 
scan rate of 10 mV s−1 [19]. However, it is still a challenge 
to achieve good specific capacity as well as cycling stability 
for ZnO-based pseudo-capacitors owing to the low conduc-
tivity of transition metal oxides. Therefore, the researchers 
are trying to modify ZnO-based materials to improve the 
performance in energy storage device applications.

Aminophenol (Ap) is an important conducting polymer 
containing both nitrogen and oxygen functional groups in the 
backbone chain, which could offer extra pseudo-capacitance. 

The Ap exhibits good electrical and electrochemical prop-
erties, easy synthesis, good mechanical, environmental 
stability and low cost [20]. Although lot of research work 
has been carried out towards the organic redox additives 
possessing hydroxyl and amine groups, most of them just 
focus on individual functional group at one time and rarely 
on the dual-functional one simultaneously integrated with 
hydroxyl and amine groups. Hence, aminophenol has been 
introduced in combination with transition metal oxide (ZnO) 
for the improvement of the capacitive function [21]. When 
AP is modified with transition metal ion of Zn2+, the dopant 
serves as redox active catalyst and enhances the capacitance 
and thus increases the energy density [22].

In this paper, we explored Ap-modified ZnO, synthesized 
by a simple and convenient one-step chemical route. The 
as-prepared material was confirmed by physico-chemical 
methods. Further, the fabrication of Ap-modified ZnO as 
electrode material for supercapacitor in the aqueous medium 
was investigated. The electrochemical analysis showed that 
Ap-modified ZnO electrode performs a better capacitive 
behaviour as compared with ZnO electrode. It was also noted 
that Cg of Ap-modified ZnO can reach a maximum value of 
427 Fg−1 at the current density 1 Ag−1. Moreover, the as-
synthesized material of Ap-modified ZnO greatly enhanced 
the contribution of pseudo-capacitance, which is due to 
synergistic effect between the materials used and enhanced 
the electrochemical charge storage capacity. Considering 
the above performance, Ap-modified ZnO is noted to be a 
promising candidate as electrode material in supercapacitor.

Experimental

Materials

Zinc sulphate heptahydrate (ZnSO4.7H2O) and m-ami-
nophenol were purchased from Alfa Aesar, India. Ethanol, 
sulphuric acid (H2SO4) and sodium hydroxide (NaOH) 
were procured from Merck. Carbon black, polyvinylidine 
difluoride (PVDF), N-methyl-2-pyrrolidone (NMP), nickel 
foil and potassium hydroxide (KOH) were obtained from 
Sigma Aldrich for electrode fabrication. All of the solutions 
were prepared with double-distilled water.

Synthesis of Ap‑modified ZnO

One mole of ZnSO4 0.7H2O was dissolved in the required 
volume of 1 M NaOH with constant stirring in a mechanical 
shaker at 150 rpm for 1 h [15, 23, 24]. The zinc oxide formed 
was filtered through suction and dried in an oven at 80 ℃ for 
2 h. By sol–gel method, exactly 0.5 mol of zinc oxide was 
mixed in minimum amount of water and then added with 
0.5 mol of aminophenol. The mixture was vigorously stirred 
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in magnetic stirrer for 1 h. Finally, brown colour precipi-
tate obtained was collected, filtered and purified for further 
characterization.

Characterization techniques

Fourier transform infrared (FTIR) spectrum was recorded 
in the range of 400 to 4000 cm−1 in PerkinElmer FT-IR 
spectrometer. X-ray diffraction (XRD) study was performed 
using Rigaku D/Max-IIIC diffractometer with 1.54 Å Cu-Kα 
radiation in 2θ range of 10–80°. The morphology was 
recorded with field emission scanning electron microscopy 
(FESEM) and the composition of the sample was determined 
by energy-dispersive X-ray analysis (JSM-6701F, Japan) 
spectrum. The chemical composition of the sample was 
investigated using X-ray photoelectron spectroscopy (XPS, 
ESCLAB 250Xi, Thermo Scientific).

Electrochemical measurements

The electrochemical measurements were carried out in a 
three-electrode testing system (Princeton Applied Research 
(VSP-1) Electrochemical Work station) using ZnO-coated 
Ni foil and Ap-modified ZnO-coated Ni foil as working 
electrodes, platinum (Pt) wire as counter electrode and sat-
urated silver/silver chloride as reference electrode in 1 M 
H2SO4 solution as electrolyte. For fabricating the working 
electrodes, the active materials, acetylene black and polyvi-
nylidine difluoride were mixed in a mass ratio of 80:10:10 
and then dissolved in N-methyl pyrrolidone to obtain paste 
form. Then, the resulting paste was coated onto the nickel 
foil substrate in the dimension of 1.5 × 1.5 cm2 and dried at 
60 °C for 12 h. The mass of active material was found to be 
0.004 g for both ZnO and Ap-modified ZnO electrodes. CV 
was performed at a working potential of 0 to 0.6 V with vari-
able scan rate between 5 and 100 mVs−1. The GCD study 
was carried out at various current density of 1 to 5 Ag−1. The 
EIS was performed between 100 kHz and 0.1 Hz at an AC 
amplitude of 10 mV. The gravimetric capacitance (Cg) and 
areal capacitance (Ca) of the electrode can be determined 
from the cyclic voltammetry (CV) by the following Eqs. 1 
and 2 [25–27].

The gravimetric capacitance (Cg) and areal capacitance 
(Ca) of the electrode can also be derived from the galva-
nostatic charge discharge (GCD) studies by the following 
Eqs. 3 and 4 [25–31]:

(1)Cg =
∫ idv

S × Δv ×m

(2)C
a
=

1

s × Δv × m ∫
vc

va

I(V)dv

where Cg is gravimetric capacitance of the electrode (F g−1), 
∫ idV is integral area under CV curve (A), I is applied current 
(A), Δt is discharge time (s), ΔV = (Va – Vc) is potential win-
dow (V), m is mass of the active material (mg), Ca is areal 
capacitance of the electrode (F cm−2), S is scan rate (mVs−1) 
and s is area of the electrode material (cm−2).

Results and discussion

FT‑IR analysis

FTIR spectrum of ZnO (Fig.  1) displayed the bands 
between 400 and 1000  cm−1, due to presence of Zn–O 
groups. The main peaks at 532 and 882 cm−1 were attrib-
uted to Zn–O stretching mode of ZnO lattice [15]. FTIR 
spectrum of Ap-modified ZnO (Fig. 1) showed a typi-
cal peak at 3038  cm−1, corresponding to N–H stretch-
ing vibration. The peak at 1615 cm−1 was allocated to 
C = N stretching in conjugation with phenyl group, and 
1510 cm−1 peak was ascribed to C = C skeletal stretch-
ing. The peak at 1250 cm−1 was ascribed to C-N stretch-
ing vibration of secondary aromatic amine. The peaks 
obtained between 1400 and 1600 cm−1 were attributed to 
the stretching mode of C-H and C = C group in benzene 
ring. The peak observed at 2925 cm−1 was owing to C-H 
stretching vibration. The peaks at 755 and 587 cm−1 were 

(3)Cg =
I × Δt

m × Δv

(4)Ca =
I × Δt

s × Δv

Zn-O
Zn-O

O-H

C=N

N-H

O-H

C=CC=C
C-N N-H

Zn-O

C-N-C

C-H

Fig. 1   FTIR spectrum of ZnO and Ap-modified ZnO
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due to N–H out-of-plane bending vibration and C-N–C 
bonding mode of aromatic rings. A new band appeared 
at 512 cm−1, was the signature peak, obtained due to the 
introduction of ZnO to aminophenol. Further, the peak at 
462 cm−1 was ascribed to Zn–O group in aminophenol. 
The absorption peaks at 3450 cm−1 in ZnO and 3340 cm−1 
in Ap-modified ZnO samples were ascribed to O–H group 
of the absorbed water molecules from the environment 
[32–34].

XRD analysis

Figure 2 shows XRD peaks of ZnO at 2θ values of 31.8°, 
34.5°, 36.4°, 47.8°, 56.7°, 62.1°, 66.5°, 68.1° and 69.1°, 
which fitted well with the typical ZnO peaks (JCPDS 
36–1451) [35, 36]. The Ap-modified ZnO XRD pattern 
revealed the typical peaks at 2θ values of 12.4°, 13.7°, 
25.8°, 28.4°, 30.1°, 31.1°, 32.7°, 34.7°, 36.7°, 47.6°, 
56.9°, 62.5°, 68.3° and 69.1°, respectively [33, 34]. The 
sharp peaks obtained were indicating the crystalline nature 
of Ap-modified ZnO. Also, it was noted that the XRD 
peaks at 2θ = 31.1°, 34.7°, 36.7°, 47.6°, 56.9°, 62.5°, 68.3° 
and 69.1° matched well with the previous reports of ZnO 
sample, proving that ZnO was effectively incorporated in 
aminophenol [35].

The average crystallite size of ZnO and Ap-modified 
ZnO was found to be 28 and 23.5 nm, respectively, using 
Scherrer equation (Eq. 5):

(5)D =
K�

�����

where D, K, λ, β and θ denote mean crystallite size, shape 
factor (taken as 0.94), wavelength of incident beam, full 
width at half maximum and Bragg’s angle, respectively.

FESEM and EDX analysis

Figure 3A and B display FESEM images of ZnO and Ap-
modified ZnO. The FESEM image of ZnO (Fig. 3A) showed 
the presence of aligned or packed stone-like morphology. 
Further, Ap-modified ZnO (Fig. 3B) exhibited homogene-
ously distributed leafy layer structure. Such type of surface 
morphology revealed its suitability for SCs application as 
it could provide large active sites for effective transfer dur-
ing electrochemical reaction pathways. The elements pre-
sent in ZnO (Zn and O) [15] and Ap-modified ZnO (Zn, 
C, N and O) were successfully confirmed by EDX analysis 
(Fig. 3C and D). These observations clearly indicated that 
ZnO and Ap-modified ZnO were without any impurities.

XPS analysis

XPS was used to confirm the formation of Ap-modified 
ZnO (Fig. 4A). The characteristics peaks observed at 1022 
and 1045.2 eV for Zn 2p, 284.6 eV for C 1 s, 399.8 eV 
for N1s and 532.1 eV for O 1 s were comparable with the 
earlier reported values [37]. As shown in Fig. 4B, there are 
two major peaks at 1022 and 1045.2 eV in Zn 2p spectrum 
with spin-energy separation of 23.2 eV, indicating the bind-
ing energy of Zn 2p3/2 and Zn 2p1/2, respectively [37, 38], 
related to Zn2+ species. The high-resolution spectrum of 
C1s showed two distinctive peaks at 284. eV and 286.1 V, 
corresponding to C–C, C = C and C-N bonds, respec-
tively (Fig. 4C). The typical peaks at 399.8 and 401.2 eV 
in Fig. 4D were assigned to protonated amine (-NH+) of 
aminophenol [39]. In addition, O1s spectrum (Fig. 4E) 
revealed the peak at 529.2 eV, which was the signature of 
metal–oxygen bond (O2

− ions in the Zn–O). The fitting peak 
of O1s at 531.2 eV owing to OH− group was indicative of 
hydroxylated surface of the sample. The peak at 532.6 eV 
was ascribed to physically adsorbed and chemisorbed water 
[40].

Density functional theory (DFT) study

Optimized geometry of Ap-modified ZnO was attained by 
B3lyp/LanL2DZ level of theory with 6-31G(d) basis sets 
by employing Gaussian 16 W software suite (Fig. 5A) [4]. 
The global energy minimal structure was checked with 
zero imaginary frequencies. The HOMO–LUMO energy 
gap calculated by density functional theory (DFT) for 
Ap-modified ZnO was found to be 4.25 eV (Fig. 5B). The 
analysis predicted HOMO energy level of Ap-modified 
ZnO as 0.59 eV and LUMO as 4.84 eV. The IR stretching 

31.8°

34.5°
36.4°

47.8° 56.7° 62.1°
66.5° 68.1°

69.1°

12
.4
°

13.7° 25.8°

28.4°

30.1°

Fig. 2   XRD Pattern of ZnO and Ap-modified ZnO
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Fig. 3   FESEM Image of (A) 
ZnO, (B) Ap-modified ZnO. (C 
and D) EDX Spectrum of ZnO 
and Ap-modified ZnO

200 nm 200 nm

A B

C D

A B C

D E

Fig. 4   XPS survey spectrum of (A) Ap-modified ZnO, (B) Zn 2p, (C) C 1 s, (D) N1s and (E) O 1 s of Ap-modified ZnO
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frequency calculated by DFT method matched well with the 
experimentally observed results (Fig. S1, ESI). In particu-
lar, the stretching frequency of 532 cm−1, corresponding to 
the introduction of ZnO into aminophenol, was found to be 
similar with experimental data. Also, the peak at 1500 cm−1 
was in agreement with C = C skeletal stretching, as shown 
in IR (Fig. 1), and the peak at 1610 cm−1 allocated to C = N 

stretching in conjugation with phenyl group also coincided 
with IR results (Fig. 1).

Supercapacitive properties

Capacitance measurements from CV

Figure 6A and B display CV plots of pure ZnO and Ap-
modified ZnO electrode materials recorded in a three-elec-
trode electrochemical cell at dissimilar scan rates ranging 
from 5 to 100 mVs−1 with potential window of 0 to 0.6 V 
in 1 M H2SO4. The couple of well-defined redox peaks dis-
played clearly in the cyclic voltammogram suggested the 
pseudo-capacitive behaviour, due to the presence of revers-
ible Faradaic reactions (Scheme 1, Fig. 6C) [20, 41, 42]. For 
the title material, the shifting of anodic and cathodic peak 
potentials with increasing scan rate from 5 to 100 mV s−1 
confirmed the efficient mass transfer between the electrodes 
[40, 42–46]. Subsequently, when the scan rate was increased, 
the redox peak current increased accordingly. During the 
Faradaic redox process (ZnO), the intercalation and dein-
tercalation of the protons (H+) occurring on the electrode 
surface can be represented in Eq. 6 [47].

The estimated gravimetric capacitance (Cg) value of ZnO 
were 176 F g−1 (Ca = 0.70 F cm−2), 173 F g−1 (Ca = 0.69 F 

(6)��� +�
+ + e− ⇌ ����

HOMO

LUMO
4.84 eV

0.59 eV

4.25 eV

A

B

Fig. 5   (A) Optimized geometry of Ap-modified ZnO and (B) energy 
level diagram of Ap-modified ZnO

Fig. 6   (A) CV curve of bare Ni 
foil, ZnO and Ap-modified ZnO 
recorded at 5 mVs−1 scan rate. 
(B) CV curve of ZnO recorded 
at different scan rate. (C) CV 
curve of Ap-modified ZnO 
recorded at different scan rate. 
(D) Variation of Cg and Ca vs. 
scan rate

A B

C D
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cm−2), 164 F g−1 (Ca = 0.65 F cm−2), 158 F g−1 (Ca = 0.64 F 
cm−2), 152 F g−1 (Ca = 0.60 F cm−2), 146 F g−1 (Ca = 0.58 F 
cm−2) and 144 F g−1 (Ca = 0.57 F cm−2), while the estimated 
gravimetric capacitance (Cg) values of Ap-modified ZnO 
were 232 F g−1 (Ca = 0.92 F cm−2), 218 F g−1 (Ca = 0.87 F 
cm−2), 204 F g−1 (Ca = 0.81 F cm−2), 198 F g−1 (Ca = 0.79 F 
cm−2), 184 F g−1 (Ca = 0.73 F cm−2), 174 F g−1 (Ca = 0.69 
F cm−2) and 168 F g−1 (Ca = 0.67 F cm−2) at the scan rate 
of 5, 10, 20, 25, 50, 75 and 100 mV s−1, respectively. The 
enhanced Cg values of Ap-modified ZnO than that of the 
pristine ZnO were owing to the presence of the dopant, ami-
nophenol, which could render abundant active surface sites 
on the electrode [48]. Moreover, in Fig. 6A, the integral 
area under CV of Ap-modified ZnO is noted to be higher 
than that of pure ZnO, which clearly indicated the admira-
ble supercapacitive behaviour of Ap-modified ZnO material, 
because of the potential material, aminophenol with two oxi-
dizable functional groups (-NH2 and -OH) [49].

From Fig. 6C, it is noted that Cg values decreased for 
both the electrodes with increasing scan rate. The diffusion 
of ions into the electrode at high scan rate was observed to 
be slow at the electrode–electrolyte interface [50, 51]. The 
CV results revealed that aminophenol doped with ZnO has 
substantial Cg and outstanding electrochemical reversibility 
compared to that of bare ZnO electrode. Moreover, Dunn 
and Trasatti method of analysis was used to deconvolute 
surface and diffusion-controlled capacitance processes. Fur-
ther, this method showed the contribution from the surface 
and diffusion-controlled charge storage processes in the total 
stored charge for Ap-modified ZnO electrode (in detail, SI 
(Fig. S2 and S4)).

Capacitance measurements from GCD

Figure 7A and B represent the discharge curves of ZnO and 
Ap-modified ZnO electrode at different current densities 
(1–5 mA cm−2). It is clear that all GCD curves exhibited 
non-linear shape, indicating Faradic-type supercapacitive 
performance [20, 49, 52]. It is clear from Fig. 7A that Ap-
modified ZnO has an exceptionally higher discharge time 

as compared to its counterpart at the current density of 
1 mA cm−2. Evidently, Ap-modified ZnO electrode exhib-
ited much longer discharge time and hence higher spe-
cific capacitance compared to bare ZnO. It is noteworthy 
to highlight the fact that the modifying of aminophenol in 
ZnO layer resulted in higher penetration and hence higher 
electrochemical process at the surface sites of Ap-modified 
ZnO electrode. These results confirmed that ZnO is well-
dispersed in the matrix, providing high electrical conductiv-
ity, rapid and effective ion charge transfer/electron transport 
and abundant redox sites.

The estimated gravimetric capacitance (Cg) values 
of ZnO were 240 F g−1 (Ca = 0.96 F cm−2), 213 F g−1 
(Ca = 0.85 F cm−2), 191 F g−1 (Ca = 0.76 F cm−2), 168 F g−1 
(Ca = 0.67 F cm−2) and 138 F g−1 (Ca = 0.55 F cm−2), while 
the estimated Cg values of Ap-modified ZnO were 427 F 
g−1 (Ca = 1.71 F cm−2), 293 F g−1 (Ca = 1.17 F cm−2), 213 
F g−1 (Ca = 0.85 F cm−2), 176 F g−1 (Ca = 0.71 F cm−2) and 
157 F g−1 (Ca = 0.63 F cm−2) at the current density of 1, 2, 
3, 4 and 5 mA cm−2, respectively. Figure 7C and 7D portray 
the change in Cg and Ca with respect to current density. It 
clearly showed that Cg decreased with increasing current 
density [53–56]. The increased Cg and Ca values of Ap-mod-
ified ZnO can be ascribed to the extended surface provided 
through its leafy layer-like morphology. The comparison 
of Cg obtained from the present work with other published 
works is given in Table 1.

Electrochemical impedance spectral analysis

EIS tests were also performed to prove the ion transport 
behaviour of the as-prepared electrodes. Figure 8A depicts 
the Nyquist plot for the synthesized materials based on EIS 
analysis, and all the samples exhibit a semicircle at the high-
frequency region and a straight line at the low-frequency 
region [15, 62, 63]. The high-frequency intercept of the 
semicircle on the real axis represents the series resistance 
(Rs), and its diameter represents the charge-transfer resist-
ance (Rct) of the Faradaic process [64–66]. The Rs values of 
ZnO and Ap-modified ZnO were calculated to be 4.03 and 

Scheme 1   Redox pathway of 
the synthesized material as a 
modified electrode
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Fig. 7   (A) GCD profile of ZnO 
and Ap-modified ZnO recorded 
at 1 mA cm−2 current den-
sity, (B) GCD profile of ZnO 
recorded at different current 
density, (C) GCD profile of 
Ap-modified ZnO recorded at 
different current density, (D) 
variation of Cg and Ca vs. cur-
rent density

A

D
C

B

Table 1   Capacitive behaviour 
of organic and inorganic based 
electrode materials

Materials Electrolyte Specific capacitance 
(F g−1)

Reference

N-doped graphene/p-aminophenol 1 M H2SO4 365.7 [52]
poly(m-aminophenol)/carbon nanofiber 1 M H2SO4 325.8 [20]
MnO2 doped poly (aminophenol) 1 M H2SO4 459 [57]
Poly(o-aminophenol)/graphene 1 M H2SO4 281 [49]
Ppy/ZnO/GO 2 M KOH 123 [58]
ZnO/RGO 0.1 M Na2SO4 135 [36]
Graphene/ZnO 2 M KOH 400 [35]
ZnO/AC 1 M Na2SO4 160 [16]
ZnO/MnO2 1 M Na2SO4 423.5 [59]
Ni-doped ZnO 0.5 M Na2SO4 95 [60]
B-doped ZnO 6 M KOH 230 [61]
Ap-modified ZnO 1 M H2SO4 427 Present work

Fig. 8   (A) Nyquist plot of ZnO 
and Ap-modified ZnO, (B) 
gravimetric capacitance reten-
tion of ZnO and Ap-modified 
ZnO

A B
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1.31 Ω. In addition, the Rct values of ZnO and Ap-modified 
ZnO were observed to be 42.24 Ω and 24.72 Ω. Obviously, 
Ap-modified ZnO electrode showed lower Rs value (1.31Ω) 
in comparison with ZnO (4.03Ω), demonstrating the effec-
tive incorporation of aminophenol in ZnO layer matrix and 
accounting for improved electronic and ionic resistances, 
morphology and conductivity of the electrode [20, 52]. 
Therefore, EIS results are also supportive of the high elec-
trochemical performance of Ap-modified ZnO electrode.

Stability measurement

Cyclic performance of the electrode material is a vital fea-
ture to ensure it practical applications in energy storage 
devices. The cycling stability of ZnO and Ap-modified 
ZnO electrodes is investigated by repeating the GCD tests 
at 1 mA cm−2 for 5000 cycles and is shown in Fig. 8B. The 
capacitance retained about 87.5% and 94.4% of its initial 
capacitance even after 5000 GCD cycles for ZnO and Ap-
modified ZnO respectively at 1 mA cm−2, which indicated 
the excellent long-term cyclic stability of the as-synthesized 
materials. The better stability of Ap-modified ZnO is due to 
presence of aminophenol, particularly the contributory func-
tional groups namely amines (-NH2) and hydroxyl (-OH), 
which delivered good electrical conductivity. The porous 
and extended morphology of Ap-modified ZnO facilitated 
the ion transport by abundant interstitial spaces at elec-
trode–electrolyte region. Moreover, the synergistic effect 
of aminophenol and ZnO in Ap-modified ZnO electrode 
showed a large capacitance and good cyclability, the prom-
ising features for the development of high performance SCs.

In order to understand the capacitance decay of the mate-
rial over cycles, Bode plot is recorded after 5000 cycles 
and represented in Fig. S5. The Nyquist plot of ZnO and 
Ap-modified ZnO electrodes measured after 5000 cycles 
showed significant changes. The solution resistance (Rs) 
has increased to a very minimal level (from 1.31 Ω to 1.34 
Ω). As evident from the Fig. S5A, the solution resistance 
at the high-frequency region increases slightly after cycles, 
suggesting the decreased ion mobility during the long cyclic 
process. However, the straight line at lower frequency region 
was found to be closer to the imaginary axis, indicating the 
better pseudo-capacitive nature and good stability even after 
cycles. Further, the Bode phase angle obtained after cycling 
test of ZnO and Ap-modified ZnO electrodes (Fig. S5B) was 
observed in the range of 50°–70° at low-frequency region, 
which was attributed to the perfect pseudo-capacitance func-
tion of electrodes [67–69]. The changes in the morphology 
of ZnO and Ap-modified ZnO electrodes are analysed after 
5000 GCD cycles and shown in Fig. S6. The minimal change 
in the morphology suggested that the as-synthesized materi-
als undergo considerable aggregation during the long cyclic 
process. The above changes might have occurred as a result 

of electrolyte ion transfer at the electrode during the continu-
ous charging and discharging cycles, which may result in 
the capacitance decay. The observed capacitance decay is 
in agreement with the earlier reports [70].

Moreover, the chemical and phase composition of the 
electrode material ZnO, Ap-ZnO after 5000 cycling process 
was also checked with XRD analysis (Fig. S7). No signifi-
cant changes (Fig. S7) were observed even after continuous 
cycling, indicating excellent stability of the material. Fur-
ther, the high retention of capacitance evident from the XRD 
analysis (Fig. S7) can be attributed to the stable structural 
matrix of ZnO and Ap-modified ZnO electrodes even after 
continuous GCD cycling.

Conclusion

Ap-modified ZnO synthesized by sol–gel method was 
tested as electrode material for practical application in SC. 
Various spectral and analytical tools were used to study the 
structural, morphological and electrochemical properties. 
The as-fabricated Ap-modified ZnO electrode exhibited a 
typical gravimetric capacitance Cg of 427 Fg−1, and further 
it retained 94.4% of its initial capacitance even after 5000 
GCD cycles at the current density 1 mA cm−2. The signifi-
cant increase in Cg value was noted for Ap-ZnO-modified 
electrode compared to reported works in literature. The 
excellent performance of Ap-modified ZnO was attributable 
its leafy layer-like morphology, advantageous for efficient 
ion–electron transport. This could aid for effective electro-
lyte penetration, deep into the inherent pores of the active 
electrode material. Furthermore, the synergistic effect of 
aminophenol and ZnO in the unique material contributed 
for enhanced electrochemical performance. DFT calcula-
tions were carried out to view the optimized HOMO–LUMO 
energy levels of Ap-modified ZnO and to compute the theo-
retical energy gap. Thus, the present work will provide a 
generic strategy for developing one of the promising elec-
trode materials for supercapacitors.
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